Analysis III

Abgabe: 26.11. bis 29.11. in den Übungen.

Das Lebesgue-Maß, auf \mathbb{R} wird mit λ bezeichnet.

27. (4 Punkte) Sei δ_0 das Dirac-Mass auf $\mathcal{P}(\mathbb{R}^n)$ definiert durch

$$\delta_0(E) = \begin{cases} 1 & \text{falls } 0 \in E \\ 0 & \text{sonnst} \end{cases}.$$

Zeigen Sie, dass jede Abbildung $f:\mathbb{R}\to\mathbb{R}$ δ_0 -integrierbar ist und berechnen Sie

$$\int_{\mathbb{R}} f \, d\delta_0 \ .$$

28. Für ein Maß μ auf (X, \mathcal{A}) und eine meßbare Funktion $g: X \to \mathbb{R}, g \geq 0$, definieren wir $\mu_g: \mathcal{A} \to [0, \infty]$ durch

$$\mu_g(E) := \int_E g \, d\mu$$

für $E \in \mathcal{A}$.

- a) (2 Punkte) Beweisen Sie, dass μ_g ein Maß auf \mathcal{A} ist.
- b) (2 Punkte) Zeigen Sie, dass $\mu(E) = 0$, schon $\mu_g(E) = 0$ impliziert.
- c) Nehmen Sie an, dass $X = \mathbb{R}$ und

$$g(x) = \begin{cases} 0 & \text{falls } x \le 0 \\ 1/x & \text{sonst} \end{cases}.$$

gilt. Geben Sie Beispiele für $E, F \subset \mathbb{R}$, sodass

i.
$$\mu_g(E) < \infty \text{ und } \lambda(E) = \infty,$$

ii.
$$\mu_g(F) = \infty$$
 und $\lambda(F) < \infty$

gilt.

29. (4 Punkte) Seien $E=[0,\pi]\cup[2\pi,3\pi]\cup\mathbb{Q}\subset\mathbb{R}$ und $f(x)=\sin(x)$. Berechnen Sie

$$\int_{E} f \, d\lambda \, .$$

Begründen Sie Ihre Antwort.