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Chapter 1

Probability theory

1.1 A short history of classical probability theory

Arguably the (first) historically acknowledged hour of birth of basic probability theory was a series of
exchanges of letters between Pascal and de Fermat in 1654. Most prominently, they were investigating the
so-called ’problem of points’, in which the setting is as follows: Two players, A and B, are consecutively
playing a game in which each player has the same chance of winning. The first player who wins a fixed
number of times (say, three) wins the prize money. Now imagine that due to unforeseen circumstances
the tournament has to be stopped prematurely at a time when player A has won twice and player B has
won once. How should the prize money be distributed?
In fact, this problem had been around for some time already when Pascal and de Fermat found the right
answer: Attempts to solve it had been given by Pacioli in 1494, Cardano in 1539 and Forestani in 1603,
just to name a few. The bulk of those solutions either comes out of (mathematically) thin air and looks
naive or at least implausible from today’s point of view. Moreover, it had also been suggested that the
problem is in fact a jurisdictional problem, not a mathematical one.
Either way, in the exchange of letters mentioned above, de Fermat gave a solution to the problem
by essentially enumerating all possible outcomes for the remaining games and then distributing the
money in the same ratio as these outcomes make player A or B win, respectively.1 Pascal, on the
other hand, realized that this combinatorial approach is getting prohibitively expensive in the case of
not three wins, but an arbitrary number of wins. He solved the problem recursively, thereby reducing
the computational complexity and at the same time already introducing the fundamental concept of an
‘expectation’ (without naming it this way), see Definition 1.9.1.
Further motivation came from the desire to gauge insurance premia; it is not completely clear, however,
why it was exactly during the above centuries that probability theory came into being. In fact, gambling
had been a favorite pastime for millenia,2 and also insurance and law (see e.g. Noams slowdown paper?)
would have proved useful areas of application of probability theory. It may be argued that the means to
‘generate’ randomness had not been sufficiently sophisticated before, when for example in the place of
dice people used so-called ‘Astragali’, which is a type of bone. Indeed, according to today’s knowledge,
it was only in the 10th century that all possible results of a series of throwing a die several times had
been completely enumerated.
A further impediment might have been that (excessive) gambling had been frowned upon by the Catholic
Church. Cardano, who had already been mentioned above, and who also was a medic3, found a neat
way around this moral difficulty when explaining why he dealt with gambling: ‘Even if gambling were
altogheter an evil, still, on account of the very large number of people who play, it would seem to be a
natural evil. For that very reason it ought to be discussed by a medical doctor like one of the incurable
diseases.’4

1Inherent to this approach is the assumption that all those possible outcomes of the remaining games are equally likely
(i.e., they have the same probability, although the definition of probability in this setting is not clear either; there are at
least two different interpretations, the ‘objective’ (i.e., derived through symmetries such as in dice or coin tosses – keep in
mind, though, that coins and dice do usually have some asymmetries; for example, for a die one usually has a number of
cavities on each side specifying the value of the die roll – or by investigating frequencies with which certain events happen)
and the ‘subjective’ (epistemic or Bayesian, where a probability is a measure of the intensity of belief). We will soon have
a closer look at the frequentist motivation.

2in China, and also around 500 BC people were gambling on the streets of Rome
3and who also has the Cardan joint named after him
4If you are interested in the history of this so-called ’classical probability theory’, you might want to have a look
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6 CHAPTER 1. PROBABILITY THEORY

1.2 Mathematical modelling of random experiments

So while the intuition of probability has been around for a long time from a practical point of view,
it was only in 19335 that A. N. Kolmogorov started developing an axiomatic mathematical theory,
see [Kol33]. While it is worthwhile to have a look at this original article, other texts which are suitable
for accompanying this lecture are the books by A. Renyi, [Ren69], I. Schneider [Sch88], G. Gigerenzer
and C. Krüger [GK99], as well as U. Krengel [Kre05] and R. Durrett [Dur10].
One of the principal goals of probability theory is to describe experiments which are either random
or for which one does not have sufficient information or sufficient computing power to describe them
deterministically. For the latter, consider e.g. the rules of playing roulette in a casino. Even after the
croupier has spun the wheel as well as the ball, a player is still allowed to make a bet until ‘rien ne va
plus’. However, once ball and wheel have been spun essentially all information necessary to compute
the (now essentially deterministic apart from possible air currents, percussions, etc.) outcome of this
particular instance of the game. Hence, if a player was fast enough to use all this information to compute
the outcome of this game, she would be able to beat the house. However, without technical support (see
e.g. so-called ‘roulette computers’), a random modeling of this situation is still very close to reality. In
the same spirit, a sequence of die rolls or coin tosses would be considered random experiments.
We will not go into details of discussing the more philosophical question of whether randomness actually
does exist or not (see also ‘Bell’s theorem’ for a more philosophical contribution on the existence of
randomness).
A possible outcome of an experiment such as the one described above is usually referred to as an
elementary event and denoted by ω. The set of elementary events is most often denoted by Ω (so ω P Ω).
An event is a set A Ă Ω of elementary events to which we want to be able to associate a probability PpAq
via a suitable function P : 2Ω Ñ r0, 1s defined on the power set 2Ω of Ω (i.e., on the set of all subsets of
Ω). Ideally, one would like to ba able to make sense of PpAq for all A Ă Ω. However, we will later on see
that this is generally asking too much, and for such a function P to have ‘reasonable’ properties, it will
have to be restricted to a subset of 2Ω.6 To a small extent, we will investigate the theoretical basics for
this in Section 1.3. However, as an anticipation of our findings below, it will turn out below that as long
as Ω is either finite or countable, such problems will not arise.
Given an elementary event ω P Ω (i.e., the outcome of a single realization of a random experiment) and
an event A Ă Ω, the interpretation is that the event A has occurred if ω P A and A has not occurred if
ω R A.

The first goal in describing experiments as outlined above is to find Ω and P in a way that is suitable for
the respective experiment.

Example 1.2.1. Consider a sequence of three consecutive rolls of a fair die. In this setting, the most
obvious choice would arguably be Ω “ t1, 2, 3, 4, 5, 6u3, and P would be the uniform probability measure
on Ω characterized by Pptpω1, ω2, ω3quq “ 6´3 for any ω “ pω1, ω2, ω3q P Ω (since the die is fair, each
outcome should have the same probability).
We could e.g. consider the event A that the second and third dice both show 1, i.e. A “ tω P Ω : ω2 “
ω3 “ 1u. Its probability would be

PpAq “ Pptω P Ω : ω2 “ ω3 “ 1uq
“

ÿ

ωPΩ :ω2“ω3“1

Ppωq “ |tω P Ω : ω2 “ ω3 “ 1u| ¨ 6´3 “ 6 ¨ 6´3 “ 1{36

(in the second equality we already used in anticipation, see (1.3.7) below, the fact that we want the
probability of an event to be equal to the sum of the probabilities of the one-element events constituted by
its elementary events)

Remark 1.2.2. There are lots of other choices for Ω and P to describe the above experiment of three
consecutive die rolls; however, the above is arguably the most intuitive.

While the above example was probably quite intuitive, we will now describe how everyday experience
leads us to the axiomatic foundations of probability theory, and this is also most likely to be the reason
you might have arrived at the solution to the above example on your own.

at [Hal90] or also [Das88], where the first one has a more mathematical flavour, and the latter a more philosophical one.
5This is the other generally acknowledged hour of birth of probability theory, and one might argue that before, probability

theory was more the application of mathematical tools from other areas to problems that somehow involved probability
theory.

6See also the Banach-Tarski paradox to get a first impression on what could go wrong if one admits arbitrary subsets
of Ω.
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Imagine performing a certain repeatable experiment n times, and denote the elementary events that you
observe by ω1, . . . , ωn P Ω. For any event A Ă Ω you can now record the relative frequency with which
this event occurred during those n repetitions of the experiment. Indeed, introducing for A Ă Ω the
indicator function of A as

1A : Ω Ñ t0, 1u

ω ÞÑ
"

1, if ω P A,

0, if ω R A,

we can define the relative frequency of A via

hpA,ω1, . . . , ωnq :“ 1

n

nÿ

i“1

1Apωiq.

Now if we performed the experiment another n times we would probably observe realizations
prω1, . . . , rωnq ‰ pω1, . . . , ωnq, and quite possibly also different relative frequencies

hpA, rω1, . . . , rωnq ‰ hpA,ω1, . . . , ωnq.
However, experience tells us that as n Ñ 8, the relative quantities should converge to a ‘limiting relative
frequency’, and this gives rise to what we will interpret as the (frequentist) probability of the event A:

PpAq :“ lim
nÑ8

hpA, rω1, . . . , rωnq. (1.2.1)

So far, this is no rigorous mathematical definition of PpAq since it was experience which told us that
the limit on the RHS (‘right-hand side’) of (1.2.1) exists, not a mathematical theorem. Instead, the
properties that we observe for relative frequencies will lead us to the axioms which will be the foundations
of probability theory. Indeed, we do have the following properties of relative frequencies (independent of
the actual realization ω1, . . . , ωn of the sequence of experiments):

•
hpA,ω1, . . . , ωnq P r0, 1s

for all A Ă Ω;

•
hpH, ω1, . . . , ωnq “ 0, hpΩ, ω1, . . . , ωnq “ 1;

• if A,B Ă Ω with A X B “ H, then

hpA Y B,ω1, . . . , ωnq “ hpA,ω1, . . . , ωnq ` hpB,ω1, . . . , ωnq.

• if A Ă Ω, then
hpAc, ω1, . . . , ωnq “ 1 ´ hpA,ω1, . . . , ωnq,

where Ac :“ ΩzA is the complement of A in Ω.

Motivated by our heuristic guiding identity (1.2.1), we postulate the same properties to hold true for the
function P, which we aim to use for prescribing probabilities to subsets of Ω.

•
PpAq P r0, 1s @A Ă Ω;

•
PpHq “ 0, PpΩq “ 1; (1.2.2)

• If A,B Ă Ω and A X B “ H, then

PpA Y Bq “ PpAq ` PpBq. (1.2.3)

• If A Ă Ω, then
PpAcq “ 1 ´ PpAq. (1.2.4)

Remark 1.2.3. The above is called the ‘frequentist’ approach to probability. However, sometimes people
also want to attribute probabilities to ‘experiments’ that cannot be repeated easily. E.g., one could ask
what the probability of a ‘Grexit’ (i.e., the event that Greece leaves the Euro zone) within the next five
years, that Germany wins the 2022 World Cup, or that you will win the Fields’ medal at some point
in your career. This then leads to the ‘Bayesian’ approach to probability (named after 18th century
mathematician Thomas Bayes).
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1.3 σ-algebras, probability measures, and probability spaces

As alluded to above, we will in general not be able to assign probabilities to all subsets of Ω. Hence, we
will have to restrict to certain subsets F of its power set 2Ω. From (1.2.2) to (1.2.4) we readily deduce
that the following properties should be fulfilled for such subsets.

Definition 1.3.1. Let Ω be a non-empty set. A subset F of 2Ω is called an algebra over Ω if the following
properties are fulfilled:

(a)

Ω P F ; (1.3.1)

(b)

A P F implies Ac P F ; (1.3.2)

(c) For all n P N,

A1, A2, . . . , An P F implies
ď

jPt1,...,nu
Aj P F . (1.3.3)

It will, however, turn out that in order to treat the case of infinite Ω and to do interesting things such
as asymptotic analysis, the properties of an algebra are not sufficient.
Instead, we will require that F is also closed under countable unions.

Definition 1.3.2. A subset F of 2Ω is called a σ-algebra over Ω if the following properties are fulfilled:

(a)

Ω P F ; (1.3.4)

(b)

A P F implies Ac P F ; (1.3.5)

(c)

A1, A2, . . . P F implies
ď

nPN
An P F . (1.3.6)

The following properties can be derived using the definition of a σ-algebra.

Lemma 1.3.3. Let F be a σ-algebra over Ω. Then:

(a) H P F ;

(b) A,B P F implies A Y B, A X B, A△B, and AzB P F ; here, A△B :“ pAzBq Y pBzAq denotes the
symmetric difference of A and B.

(c) A1, A2, . . . P F implies that č

nPN
An P F .

Proof. (a) Note that (1.3.4) in combination with (1.3.5) implies H P F .

(b) Choosing A1 :“ A, A2 :“ B, Ai :“ H for all i ě 3, the property A Y B P F follows immediately
from part paq and property (1.3.6).

The remaining parts of the proof are left as an exercise (De Morgan’s laws might prove useful here).

Exercise 1.3.4. If F is a σ-algebra over Ω and F P F , then

F X F :“
 
F X G : G P F

(

is a σ-algebra over F (it is called the trace σ-algebra of F in F).

Definition 1.3.5. If F is a σ-algebra over Ω, then the pair pΩ,Fq is called a measurable space.
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For a set Ω, a nice σ-algebra F over Ω will be the set of events that we will be able to gauge in terms
of probability. This will usually be done using probability measures, which are function with specific
properties defined on a σ-algebra contained in 2Ω and mapping to r0, 1s. Their exact definition is
motivated by and extends the properties of (1.2.2) and (1.2.3).

Definition 1.3.6. A probability measure P on the measurable space pΩ,Fq is a function P : F Ñ r0, 1s,
such that the following properties are fulfilled:

(a)
PpΩq “ 1;

(b) for every sequence A1, A2, . . . P F of pairwise disjoint sets (i.e., Ai X Aj “ H for all i, j P N with
i ‰ j), one has

P
`

YnPN An

˘
“

ÿ

nPN
PpAnq. (1.3.7)

This property is usually referred to as σ-additivity.

In this context, the triple pΩ,F ,Pq is called a probability space, and F is often referred to as the σ-algebra
of events. The properties required for P here are the so-called Kolmogorov axioms.

Example 1.3.7. • Let Ω be a finite non-empty set and F :“ 2Ω. Then

P : F Q F ÞÑ |F |
|Ω|

defines a probability measure on pΩ,Fq.
Indeed, the RHS is well-defined since 0 ă |Ω|, and is an element of r0, 1s since F Ă Ω. In addition,
PpΩq “ 1. Now for pFnq a sequence of pairwise disjoint subsets of Ω we get

PpYnPNFnq “ | YnPN Fn|
|Ω| “

ÿ

nPN

|Fn|
|Ω| “

ÿ

nPN
PpFnq,

which establishes the σ-additivity and hence finishes the proof.

P as defined above is also referred to as the uniform probability measure on pΩ,Fq, and the corre-
sponding probability space / experiment is oftentimes called Laplace space or Laplace experiment.

•

Definition 1.3.8. Let pΩ,Fq be a measurable space. For ω P Ω, the Dirac measure in ω is defined
via

δω : F Ñ r0, 1s.
F ÞÑ 1F pωq.

It is easy to show that δω as defined above indeed is a probability measure: By definition, δωpF q P
t0, 1u Ă r0, 1s for all F P F . In addition, δωpΩq “ 1Ωpωq “ 1, and for a pairwise disjoint sequence
pFnq with Fn P F for all n P N, we have that

δωpYnFnq “ 1¨YnFn
pωq,

which equals 1 if and only if ω P Fn for some n P N and 0 otherwise. Similarly,
ÿ

n

δωpFnq “
ÿ

n

1Fn
pωq,

and since the Fn are pairwise disjoint, again we get that the RHS equals 1 if and only if ω P Fn

for some n P N and 0 otherwise. Thus, δω defines a probability measure on pΩ,Fq.

We now collect further properties of probability spaces.

Proposition 1.3.9. Let pΩ,F ,Pq be a probability space.

(a)
PpHq “ 0;



10 CHAPTER 1. PROBABILITY THEORY

(b) For all A,B P F with A X B “ H we have

PpA Y Bq “ PpAq ` PpBq (additivity). (1.3.8)

(c) For all A P F ,
PpAcq “ 1 ´ PpAq.

(d) For all A,B P F with A Ă B, one has

PpAq ď PpBq (monotonicity). (1.3.9)

(e) For every sequence pAnqnPN with An P F for all n P N,

PpYnPNAnq ď
ÿ

nPN
PpAnq (σ-subadditivity).

(f) Let pAnqnPN be a sequence with An P F and An Ă An`1 for all n P N. Then, with A :“ YnPNAn,

one has
lim
nÑ8

PpAnq “ PpAq (continuity of probability measures from below)

(g) Let pAnqnPN be a sequence with An P F and An Ą An`1 for all n P N. Then, with A :“ XnPNAn,

one has
lim
nÑ8

PpAnq “ PpAq (continuity of probability measures from above)

Proof. (a) We have H “ 9Y8
n“1H (where we write 9Y in order to emphasise that it is a union over

disjoint sets), hence the σ-additivity supplies us with

PpHq “
ÿ

nPN
PpHq.

Since PpHq P r0, 1s, the only value of PpHq for which this equality can hold true is PpHq “ 0.

(b) Setting A1 :“ A, A2 :“ B, and Ai :“ H for all i ě 3, this follows from the σ-additivity (1.3.7) of
probability measures.

(c) We have A 9YAc “ Ω, hence the additivity (1.3.8) provides us with

PpAq ` PpAcq “ PpΩq “ 1,

from which the result follows.

(d) We have B “ A 9YpBzAq, and hence additivity gives

PpAq ` PpBzAq “ PpBq.

Since P takes non-negative values only, the claim follows.

(e) We define Bn :“ Anz Yn´1
j“1 Aj . Then Bn P F for all n, they form a sequence of pairwise disjoint

sets, and YnPNAn “ 9YnPNBn. Thus,

PpYnPNAnq “ Pp 9YnPNBnq σ-additivity“
ÿ

nPN
PpBnq ď

ÿ

nPN
PpAnq,

where the last inequality follows from (1.3.9).

(f) As before, set Bn :“ Anz Yn´1
j“1 Aj . We get A “ YnPNBn, and using the monotonicity of the

sequence pAnqnPN also Am “ Ym
n“1Bn. Thus,

PpAmq “ PpYm
n“1Bnq “

mÿ

n“1

PpBnq.

Taking limit on both sides we obtain

lim
mÑ8

PpAmq “
8ÿ

n“1

PpBnq “ PpYnPNBnq “ PpAq.
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(g) Left as an exercise.

The following result helps computing the probabilities of unions of events which are not necessarily
pairwise disjoint.

Lemma 1.3.10. (a) For A,B P F ,

PpA Y Bq “ PpAq ` PpBq ´ PpA X Bq.

(b) Let n ě 2, A1, . . . , An P F . Then

P

´ nď

k“1

Ak

¯
“

nÿ

k“1

p´1qk´1
ÿ

1ďi1ă...ăikďn

PpAi1 X . . . X Aikq. (Inclusion-exclusion formula)

Proof. (a) We have A Y B “ A 9YpBzAq P F and thus

PpA Y Bq “ PpAq ` PpBzAq.

In addition, B “ pBzAq 9YpA X Bq, which in combination with the above yields

PpA Y Bq “ PpAq ` PpBq ´ PpA X Bq,

and finishes the proof.

(b) We proceed by induction. For n “ 2, this is part (a). Now assume the statement holds for some
n ě 2. Then by part (a),

P

´ n`1ď

k“1

Ak

¯
“ P

´ nď

k“1

Ak

¯
` PpAn`1q ´ P

´ nď

k“1

pAn`1 X Akq
¯
.

Applying the induction assumption to the first and third summand we can continue to get

nÿ

k“1

p´1qk´1
ÿ

1ďi1ă...ăikďn

PpAi1 X . . . X Aikq ` PpAn`1q

´
nÿ

k“1

p´1qk´1
ÿ

1ďi1ă...ăikďn

PpAn`1 X Ai1 X . . . X Aikq

“
nÿ

k“1

p´1qk´1
ÿ

1ďi1ă...ăikďn

PpAi1 X . . . X Aikq ` PpAn`1q

`
n`1ÿ

k“2

p´1qk´1
ÿ

1ďi1ă...ăik´1ăik“n`1

PpAi1 X . . . X Aikq

“
n`1ÿ

k“1

p´1qk´1
ÿ

1ďi1ă...ăikďn`1

PpAi1 X . . . X Aik q,

which proves the induction step.

1.4 Examples of probability spaces

1.4.1 Discrete probability spaces

As already mentioned before, a principal part of this lecture is concerned with those instances of Ω where
we don’t run into technical difficulties concerning the measurability of subsets of Ω, i.e., with so-called
‘discrete probability’ spaces.
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Definition 1.4.1. If Ω is either finite or countably infinite, F “ 2Ω, and P some probability measure on
pΩ,Fq, then pΩ,F ,Pq is called a discrete probability space.

In the setting of discrete probability spaces, we can always associate a probability to any subset A P 2Ω

of Ω (which is not true for general probability space, see Remark 1.4.8 below). Also, note that in this
context, P is uniquely defined by the values Pptωuq for one point sets, for which we often write Ppωq –
both these properties are not necessarily true anymore for uncountable Ω. We have already seen a first
example for a probability space in Example 1.2.1.

Claim 1.4.2. If pΩ, 2Ω,Pq is a discrete probability space, then for all A P F ,

PpAq “
ÿ

ωPA
Ppωq. (1.4.1)

In particular, P is uniquely determined by its values on one-point sets.

Proof. Since A P 2Ω, and tωu P 2Ω for all ω P Ω, the σ-additivity of P immediately implies (1.4.1).

Example 1.4.3. Consider the situation where you toss two fair and indistinguishable coins. We can
choose Ω :“ tpT, T q, pH,Hq, pH,T qu where the elementary event ω “ pT, T q corresponds to both coins
showing tails, ω “ pH,Hq corresponds to both coins showing heads and pH,T q corresponds to one coin
showing heads and and the other coin showing tails. As common in the case of a discrete space, we
endow Ω with the power set σ-algebra 2Ω. Due to Claim 1.4.2 it is now sufficient to give all the values of
Ppωq. The cases pT, T q and pH,Hq can be handled along the same punchline as in Example 1.2.1 yielding
PppH,Hqq “ PppT, T qq “ 1

4 . Thus, by Proposition 1.3.9 (c), we infer that PppH,T qq “ 1 ´ PptpH,Hqu Y
tpT, T quq “ 1 ´ 1

2 “ 1
2 . While this apparent asymmetry might look slightly puzzling at a first glance,

it is caused by the fact that there is only one possible outcome of the experiment leading to both coins
showing head or tails; on the other hand, since the coins cannot be distinguished, there are two outcomes
leading to seeing one coin showing heads and the other showing tails. This explains the above choice of
probabilities.

Exercise 1.4.4. Assuming a uniform distribution on all orderings that a deck of 52 cards numbered
from 1 to 52 can be in (i.e., all orderings have the same probability), what is the probability that at least
one of the cards is in the right place (where by ‘right place’ we mean that the card with number m is in
the m-th position)?
Solution: Let

Ω :“
!

px1, . . . , x52q : xi P t1, 2, . . . , 52u @i P t1, 2, . . . , 52u and xi ‰ xj @i ‰ j
)

be the space of all orderings, F :“ 2Ω, and for any A P F we set PpAq :“ |A|
|Ω| “ |A|

52! .

Then according to Example 1.3.7, pΩ,F ,Pq actually defines a probability space.
Writing Ai :“ tω P Ω : ωi “ iu for the event that the i-th card is in the right place, we get PpA1q “
51!
52! “ 1

52 , PpA1 X A2q “ 50!
52! “ 1

52¨51 , or more generally, for 1 ď i1 ă . . . ă ik ď 52,

PpAi1 X . . . X Aikq “ 1

52 ¨ 51 ¨ . . . ¨ p52 ´ k ` 1q! “ p52 ´ kq!
52!

.

The event that at least one card is in the right position can then be written as

tω P Ω : Di P t1, . . . , 52u such that ωi “ iu “ tω P Ω : Di P t1, . . . , 52u such that ω P Aiu
“ Y52

i“1Ai.

Hence, using the inclusion-exclusion formula we compute

PpY52
i“1Aiq “

52ÿ

k“1

ÿ

1ďi1ă...ăikď52

p´1qk´1PpAi1 X . . . X Aikq.

Using that
ˇ̌
tpi1, i2, . . . ikq P t1, 2, . . . , 52uk : 1 ď i1 ă . . . ă ik ď 52u

ˇ̌
“

ˆ
52

k

˙
,
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we can continue the above as

“
52ÿ

k“1

p´1qk´1

ˆ
52

k

˙ p52 ´ kq!
52!

“
52ÿ

k“1

p´1qk´1 1

k!
.

Note that if we replace 52 by n in the above and take n Ñ 8, we see that the probability we are interested
in converges to 1 ´ e´1.

As the above examples already suggest, the first goal in describing random experiments is to find a
corresponding probability space. For this purpose, it is essential to have a precise set of rules according to
which the random experiments are performed. To get an understanding of what kind of ambiguities might
occur, have a look at the so-called Bertrand’s paradox or the Monty-Hall problem (‘Ziegenproblem’), the
latter of which is also planned to be investigated in the exercise classes.
A commonly used concept that has already appeared before is the following (see also Example 1.3.7).

Definition 1.4.5. A discrete probability space pΩ,F ,Pq with |Ω| ă 8 is called Laplace Probability

Space if PpAq “ |A|
|Ω| for all A P F .

As in the case of rolling dice, the Laplace probability space (or ‘Laplace model’) is reasonable if none of
the possible outcomes of the random experiments seems favourable over any other.

Remark 1.4.6. For computing probabilities in Laplace experiments (such as Example 1.2.1), ‘counting’
is essentially enough to determine the respective probabilities. Probability spaces on the other hand
provide an elegant tool for coping with more complex situations: Assume for example that we had reason
to suspect that the die in Example 1.2.1 is three time as likely to show 6 than any other number. We can
then define another probability measure P˚ on the same measurable space pΩ,Fq, which is characterized
via

P˚pωq :“
3ź

i“1

´1
8
1tωPΩ :ωi‰6upωq ` 3

8
1tωPΩ :ωi“6upωq

¯
, @ω P Ω.

Convince yourself that this indeed defines a probability measure! Note that in this notation, the previous
probability measure P corresponding to the Laplace experiment would just be characterized via Ppωq “ 1

63

for all ω P Ω.

1.4.2 Continuous probability spaces

So far have we have only investigated discrete probability spaces. However, it turns out to be necessary
to consider more general setups.

Example 1.4.7. Consider a needle thrown in the plane R2 and denote by ϕ P r0, 2πq the angle that the
line obtained by continuing the needle to infinity in both directions encloses with the x-axis.
One intuitive choice would then be to set Ω “ r0, 2πq, and we would also like to have that

Ppra, bqq “ b ´ a

2π
for any 0 ď a ă b ă 2π. (1.4.2)

As a consequence, we would like the corresponding σ-algebra to contain all intervals ra, bq Ă r0, 2πq at
least. The smallest such σ-algebra is denoted by Bpr0, 2πqq, and called the ‘Borel-σ-algebra on r0, 2πq’.
Remark 1.4.8. In the subsequent course ‘Probability Theory I’ we will show that there exists a unique
probability measure P on Bpr0, 2πqq such that (1.4.2) holds true, Bpr0, 2πqq contains all intervals ra, bq Ă
r0, 2πq, and such that P cannot be extended to a probability measure on the power set 2r0,2πq.

The following exercise shows that it does indeed make sense to talk about the smallest σ-algebra con-
taining some subset of 2Ω as done in the previous example

Exercise 1.4.9. Let pFλqλPΛ be a family of σ-algebras over a non-empty set Ω. Show that

XλPΛF

again is a σ-algebra over Ω.

Definition 1.4.10. Let Ω be a non-empty set and D Ă 2Ω. Then the smallest σ-algebra containing D
is denoted by

σpDq :“
č

E

E ,

where the intersection is over all σ-algebras E on Ω and containing D. It is well-defined due to Exercise
1.4.9.
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1.5 Conditional probabilities

Above we had introduced the concept of a probability measure. Sometimes we already have some partial
information available on the outcome of an event. It is then immediate to ask how this additional
information ‘changes’ the probabilities of the outcome. E.g., again in the above Example 1.2.1 of rolling
dice, imagine there is an oracle that tells you the numbers shown by the first two dice. Assume that via
this oracle you now know that the first and second die both show 6. While originally the probability of
three dice showing 6 is 6´3, with this additional information at hand you might rather say it should be
1{6. Formally:

Definition 1.5.1. Let F,G P F be such that PpGq ą 0. Then we define the conditional probability of F
given G as

PpF |Gq :“ PpF X Gq
PpGq . (1.5.1)

Recalling our guiding motivation for properties of probability measures via (limiting) relative frequencies,
the RHS of (1.5.1) would correspond to the (limiting) relative frequency of experiments for which F occurs
among those experiments for which G occurs:

hpF X G,ω1, . . . , ωnq
hpG,ω1, . . . , ωnq “

1
n

řn
i“1 1FXGpωiq

1
n

řn
i“1 1Gpωiq

“
řn

i“1 1FXGpωiqřn
i“1 1Gpωiq

.

Exercise 1.5.2. Check that with F :“ tω1 “ ω2 “ 6u and G :“ tω1 “ ω2 “ ω3 “ 6u we do indeed get
that PpG |F q “ 1{6.

Proposition 1.5.3. Let pΩ,F ,Pq be a probability space. For G P F such that PpGq ą 0 the function

F Q A ÞÑ PpA |Gq (1.5.2)

defines a probability measure on pΩ,Fq with PpGq “ 1.

Proof. Since PpGq ą 0 by assumption, the function in (1.5.2) is well-defined. Since for any A P F one

has PpA X Gq ď PpGq, the function maps from F to r0, 1s. Furthermore, PpG |Gq “ PpGXGq
PpGq “ 1 and

PpH |Gq “ PpHXGq
PpGq “ 0, so it only remains to check the σ-additivity of the function. For this purpose,

let pAnq be a sequence of pairwise disjoint elements of F . Then

PpYnAn | Gq “ PppYnAnq X Gq
PpGq “ Pp 9YnpAn X Gqq

PpGq
σ-additivity of P“

ÿ

nPN

PpAn X Gq
PpGq “

ÿ

nPN
PpAn |Gq,

which proves the σ-additivity of the function in (1.5.2), which thus defines a probability measure.

The following result is interesting in its own right and will also be used the proof of Bayes’ formula below.

Theorem 1.5.4 (Law of Total Probability). Let pΩ,F ,Pq be a probability space and let pBnqnPI be an
at most countable partition (i.e., I is at most countable) of Ω into events; i.e., one has Bi XBj “ H for
all i, j P I with i ‰ j, as well as YnPIBn “ Ω, and Bn P F for all n P I. Then for all A P F ,

PpAq “
ÿ

nPI
PpA |Bnq ¨ PpBnq,

where for simplicity of notation we set PpA |Bnq “ 0 if PpBnq “ 0.

Proof. Since the pBnqnPI form a partition with I at most countable, we get using the (σ)-additivity of P
that

PpAq “ PpAX 9YnPIBnq “ Pp 9YnPIpAXBnqq “ P
`

9YnPIpAXBnq
˘

“
ÿ

nPI
PpBnqą0

PpAXBnq “
ÿ

nPI
PpA |Bnq¨PpBnq,

where as before for simplicity of notation we set PpA |Bnq “ 0 if PpBnq “ 0.

This will prove useful in particular in the statistics part of the lecture, where we will go into further
detail regarding this result.
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Theorem 1.5.5 (Bayes’ Formula). Let the assumptions of Theorem 1.5.4 be fulfilled and let PpAq ą 0.
Then for any n P I,

PpBn |Aq “ PpA |Bnq ¨ PpBnqř
jPI PpA |Bjq ¨ PpBjq .

In particular, for any B P F

PpB |Aq “ PpA |Bq ¨ PpBq
PpAq ,

where again we interpret PpA |Bq “ 0 if PpBq “ 0.

Proof. Using the definition of conditional probabilities, we get

PpBn |Aq “ PpBn X Aq
PpAq “ PpA |Bnq ¨ PpBnq

PpAq ,

and applying the Law of Total Probability to the denominator, the result follows.

The above theorem can lead to surprising results.

Example 1.5.6. Assume the setting of testing people on a certain illness. In this setting, a quantity
that is of principal interest in applications is the conditional probability that a person is sick given that
the test has shown a positive result.
Assume an appropriate probability space to be given, denote by B the event that a person is sick and in
order to be specific let us say that PpBq “ 10´5. Assume that we know the test gives the correct result in
99% of the cases, no matter whether a person is sick or not. In particular, denoting by A the event that
the test shows a positive result, we infer

PpA |Bq “ .99 and PpA |Bcq “ .01, (1.5.3)

As alluded to before, the quantity of major interest is PpB |Aq. Now Bayes’ Theorem tells us that we can
compute it once we know PpA |Bq, PpAq, and PpBq.
But using (1.5.3) and the Law of Total Probability, we infer that

PpAq “ PpA |BqPpBq ` PpA |BcqPpBcq “ .99 ¨ 10´5 ` 0.01 ˚ p1 ´ 10´5q « 0.01.

Then Bayes’ Theorem supplies us with

PpB |Aq “ PpA |Bq ¨ PpBq
PpAq “ .99 ¨ 10´5

.01
« 0.001.

It may seem very surprising at first glance that in the above example the probability that a person is sick,
conditionally on the test showing a positive result, is so small. The reason for this is, as one may infer
from the above computations, that the occurrence of this certain illness in the population is significantly
smaller than the probability with which the test fails.

1.6 Independence

We have already used the concept of independence in Example 1.2.1 above, when we tacitly assumed
that the outcome of one of the die does not have any influence on the probabilities of the occurrence of
the outcomes of the remaining dice (or, equivalently, to justify the use of a Laplace probability space also
for the threefold die roll). In essence, two events are independent if the occurrence of one event does not
influence the probability of occurrence of the other event, and vice versa. Put in mathematical terms,
events F,G P F with PpGq ą 0 would thus be considered independent if

PpF |Gq “ PpF q. (1.6.1)

In terms of our interpretation of relative frequencies, this means that the (limiting) relative frequency of
F is not changed if we restrict to those experiments for which G occurs.
Multiplying (1.6.1) on both sides by PpGq, this can be rewritten as

PpF X Gq “ PpF qPpGq,

which is the guiding identity for the following definition.
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Definition 1.6.1. Given a probability space pΩ,F ,Pq, a family of events pAλqλPΛ Ă F , Λ ‰ H, is called
independent if for any J Ă Λ finite one has

P

´ č

jPJ
Aj

¯
“

ź

jPJ
PpAjq. (1.6.2)

In this context we usually just say that the Aλ are independent.

If two events A,B P F are independent, then we sometimes also use the notation AKB.

So far we have mostly been dealing with a finite number of events. It might not be apparent yet, but we
will later on deal with infinite numbers of independent events and hence give the above definition in full
generality already.

Example 1.6.2. (a) In any probability space pΩ,F ,Pq, the events Ω,H P F are independent. Indeed,
we only have to check (1.6.2) for n “ 2, for which we get

PpΩ X Hq “ PpHq “ 0

and

PpΩq ¨ PpHq “ 1 ¨ 0 “ 0.

However, if F P F with PpF q P p0, 1q, then F and F c are not independent. Indeed, one has
PpF X F cq “ PpHq “ 0, but PpF qPpF cq P p0, 1q.

(b) Two events A,B with PpBq ą 0 are independent if and only if PpAq “ PpA |Bq.
Indeed, multiplying both sides of this equation by PpBq ą 0 we immediately get PpAqPpBq “ PpAX
Bq, which is the equality characterizing the independence of two events.

(c) Consider again the Laplace probability space of three consecutive dice rolls from Example 1.2.1.
Our guiding intuition in using the Laplace assumption, i.e., assigning to any possible outcome of
these three dice rolls the same probability, was hinging on the assumption that the result of one
of the dice rolls should have no influence on the probabilities of the others. For example, if we
introduce the events

A1 :“ tω P Ω : ω1 ď 3u, (1.6.3)

A3 :“ tω P Ω : ω3 is evenu, (1.6.4)

we see that

PpA1 X A3q “ |A1 X A3|
|Ω| “ 3 ¨ 3 ¨ 6

63
“ 1{4.

On the other hand,

PpA1qPpA3q “ 3

6

3

6
“ 1{4,

and thus A1 and A3 are independent.

Remark 1.6.3. It is important here to notice that two events can be independent, although the occurrence
of one event does have an influence on how the other event can be realized. For this purpose, consider
in Example 1.2.1 the events

A1 :“ tω P Ω : ω1 is evenu
and

A2 :“ tω P Ω : ω1 ` ω2 is evenu.
Now if we know that A1 occurs, then A2 will be realized if and only if the of the second die shows an
even number, whereas if A1 does not occur, then A2 can be realized if and only if the second die shows
an odd number. Hence, there is a causal dependence between A1 and A2, and in common language we
would not call the events A1 and A2 independent. However, in the sense of Definition 1.6.1, they are
independent, since we have

PpA1qPpA2q “ 1

2

1

2
“ 1

4
,
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and

PpA1 X A2q “ 3 ¨ 3 ¨ 6
63

“ 1

4
.

This is because behind Definition 1.6.1 was the equality of (1.6.1), which means that the occurrence of
A1 should not have any influence on the probability with which A2 occurs, not on how the event A2 is
actually realized; and this is indeed the case as the last two displays show us.

Exercise 1.6.4. (a) Show that if the dice are biased (e.g., they slightly favour even over odd numbers
– this would require a corresponding adaptation of the probability measure P) in this example, then
A1 and A2 are not independent anymore.

(b) Let pΩ,F ,Pq be a probability space and pAλqλPΛ Ă F a family of events. Show that this family is
independent if and only if for any subset J Ă Λ, the family pAλqλPJ Ă F is an independent family
of events.

Example 1.6.5. Give an example which shows that for events A1, . . . , An P F , the validity of

PpAk X Alq “ PpAkqPpAlq @1 ď k ă l ď n, (1.6.5)

does not yet imply the independence of the events A1, . . . , An P F .
In particular, this means that if the events A1, . . . , An are pairwise independent, (i.e., if PpAi X Ajq “
PpAiqPpAjq for all 1 ď i ă j ď n), it does not necessarily imply that the events A1, . . . , An are indepen-
dent.
Solution: In our favourite Example 1.2.1 define

A1 :“ tω : ω1 is even u,

A2 :“ tω : ω2 is even u,
and

A3 :“ tω : ω1 ` ω2 is even u.
It is then not hard to check that (1.6.5) holds for n “ 3, i.e., the events are pairwise independent;
however, we have

PpA1 X A2 X A3q “ 3 ¨ 3 ¨ 6
63

“ 1

4
,

whereas

PpA1qPpA2qPpA3q “ 1

2

1

2

1

2
“ 1

8
.

Thus, the events A1, A2, and A3 are not independent.

While above we learned one way how to check independence of events, we will now provide a short
interlude for the reverse problem, i.e., how to model independent events.

1.6.1 Finite products of probability spaces

In our guiding Example 1.2.1, intuition led us to a reasonable probability space for modeling the ex-
periment. How do we treat more complicated situations of modeling (possibly different) ‘independent’
experiments?
If pΩ1,F1,P1q, . . . , pΩn,Fn,Pnq are discrete probability spaces used for modeling n possibly different
experiments, then if the result of one a subset of those experiments does not influence the probabilities
of the outcomes of the remaining experiments, they can be modeled as a single experiment modeled by
the following product space

pΩ1 ˆ . . . ˆ Ωn,F1 b . . . b Fn,P1 b . . . b Pnq, (1.6.6)

with
F1 b . . . b Fn “ 2Ω1ˆ...ˆΩn ,

and where the product measure is completely defined via

P1 b . . . b Pnppω1, . . . , ωnqq :“
nź

k“1

Pkpωkq, @pω1, . . . , ωnq P Ω1 ˆ . . . ˆ Ωn. (1.6.7)
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Exercise 1.6.6. (a) Show that (1.6.7) does define a probability measure on pΩ1ˆ . . .ˆΩn, 2
Ω1ˆ...ˆΩnq.

(b) If Ak Ă Ωk describes a possible outcome of the k-th experiment in the original setup, then in the
product space setup this corresponds to

Bk :“ Ω1 ˆ Ωk´1 ˆ Ak ˆ Ωk`1 ˆ Ωn,

and A1 ˆ . . . ˆ An “ Xn
k“1Bk describes the event that the k-th experiment has output Ak, for all

1 ď k ď n, in the product space setup. Show that the events B1, . . . , Bn are independent.

Example 1.6.7. If, for example, we consider the roll of a loaded die as in Remark 1.4.6 and the toss of
one of the two fair coins of Example ex:indistCoins, we can take

Ω “ t1, 2, 3, 4, 5, 6u ˆ tH,T u, F “ 2Ω,

and the probability measure P on pΩ,Fq characterized through

Pppω1, ω2qq “
´1
8
1tωPΩ:ω1‰6upωq ` 3

8
1tωPΩ :ω1“6upωq

¯
ˆ 1

2
, @ω P Ω.

Again, check that P defines a probability measure P on pΩ, 2Ωq, so in particular PpΩq “ ř
ωPΩ Ppωq “ 1.

1.7 Random variables

So far, we have described the outcomes of random experiments we were interested in by corresponding
events of the underlying and suitably chosen probability space. E.g., in the basic Example 1.2.1 of rolling
three dice we could describe the event that the first die shows a number not larger than three and at the
same time the third die shows an even number via the event A1 X A3, see (1.6.3) and (1.6.4).
Now on one hand, in more complex situations this approach becomes more and more cumbersome. On
the other hand, in probability theory one is oftentimes not interested so much in the very structure
of the underlying probability space (for which there might be many choices as we shortly outlined
below Example 1.2.1), but rather in observables of certain experiments (such as e.g. the sum of the
three dice rolls in Example 1.2.1. Thus, it turns out to be useful to be able to describe outcomes of
experiments without possibly knowing the specific structure of the underlying probability space. The
following definition will serve as a first step into that direction.

Definition 1.7.1. Let pΩ,F ,Pq be a probability space and pE, Eq a measurable space. Then a function
X : Ω Ñ E is called a random variable (’Zufallsvariable’) if for all A P E its preimage under X is
contained in F , i.e., if X´1pAq :“ tω P Ω : Xpωq P Au P F .
More generally, for measurable spaces pE, Eq and pG,Gq, a mapping f : E Ñ G is called E´G-measurable
if f´1pAq P E for all A P G. Hence, a random variable from pΩ,Fq to pE, Eq is nothing else than an
F ´ E-measurable function. For a random variable X the values Xpωq, ω P Ω, are called realizations of
the random variable X.

Oftentimes in this introductory class we will be interested in the case where E is just a finite set and
E “ 2E . Also, by convention, random variables are usually denoted using upper case letters such as X
and Y , and the shorthand PpX P Aq :“ PpX´1pAqq for A P E is very common.

Example 1.7.2. (a) Let pΩ,F ,Pq be a discrete probability space and pE, Eq an arbitrary measurable
space. Then any function X : Ω Ñ E is a random variable.

Indeed, for any A P E we get that X´1pAq P 2Ω “ F , and hence X is a random variable.

(b) In the setting of Example 1.2.1 we can e.g. define the mappings Xn, 1 ď n ď 3, via Xnpωq :“ ωn,

which due to part (a) are thus random variables, and Xn describes the outcome of the n-th die.

The observable ‘sum of the three dice rolls’ can then be written as

3ÿ

i“1

Xi,

which, since the underlying probability space is discrete, is a random variable again.



1.7. RANDOM VARIABLES 19

(c) We can also use random variables to describe events: The event F that the second and third die
show both 1 can be written in terms of random variables as

F “ tω P Ω : X2pωq “ X3pωq “ 1u,

or, using the shorthand notation,
F “ tX2 “ X3 “ 1u.

Since we are dealing with a Laplace experiment, its probability is given by

PpF q “ Pptω P Ω : X2pωq “ X3pωq “ 1uq “ Pptω P Ω : ω2 “ ω3 “ 1uq
“ |tω P Ω : ω2 “ ω3 “ 1u| ¨ 6´3 “ 6 ¨ 6´3 “ 1{36.

The slightly more complicated example

PpX1 is odd, X1 ` X2 ` X3 is evenq “ 1{4

is left as an exercise. Here and in the following we implicitly use the notation PpF,Gq :“ PpF XGq.
In our context, there are two principal classes of random variables:

Definition 1.7.3. (a) A random variable X from an arbitrary probability space pΩ,F ,Pq to pR,BpRqq
is called a real random variable (‘(reelle) Zufallsgröße’).

Here, BpRq is the Borel-σ-algebra of R, i.e., it is the smallest σ-algebra over R that contains all
open subsets of R (BpRq also contains all singletons txu for x P R, all closed sets, and all intervals).

(b) A random variable X defined on a probability space pΩ,F ,Pq and mapping to pE, Eq as in the defi-
nition is called a discrete random variable (‘diskrete Zufallsvariable’) if XpΩq is at most countable,
and if 2XpΩq Ă E .

Remark 1.7.4. Note that according to this definition, a random variable can be a discrete random
variable and a real random variable at once.

Lemma 1.7.5. Let X and Y be real random variables defined on pΩ,F ,Pq and let f : R Ñ R be a
continuous function (or let f just be measurable from pR,BpRqq to pR,BpRqq, which admits significantly
more functions). Then X ` Y , X ´Y , X ¨ Y , X{Y (if the latter is well-defined for all ω P Ω) and f ˝X
are also real random variables.
If X is a discrete random variable from pΩ,F ,Pq to pE, Eq and g : E Ñ R is an arbitrary function, then
g ˝ X is a discrete real random variable.

We will only prove this lemma in the lecture ‘probability theory I’, where we will have derived all the
tools required for doing so. As already mentioned above, instead of trying to necessarily give probability
spaces explicitly, we want to understand the probabilities with which random variables take values in
certain ‘nice’ sets, namely elements of E . I.e., we are interested in probabilities of the form PpX´1pAqq,
with A P E .
The following theorem tells us that if X is a random variable defined on pΩ,F ,Pq and mapping into the
measurable space pE, Eq, then pE, E ,P ˝ X´1q is a probability space as well.

Theorem 1.7.6 (Image measure (‘Bildmaß’) induced by a random variable). Let pΩ,F ,Pq be a proba-
bility space and let X : pΩ,F ,Pq Ñ pE, Eq be a random variable. Then

P ˝ X´1 : E Ñ r0, 1s
A ÞÑ PpX´1pAqq “ PpX P Aq

(1.7.1)

defines a probability measure on pE, Eq.
Remark 1.7.7. As is obvious from (1.7.1), the notation P ˝ X´1 comes from the fact that one can
consider it as the concatenation of the pre-image operator

X´1 : E Ñ F

A ÞÑ X´1pAq,

with the map induced by the probability measure

P : F Ñ r0, 1s
F ÞÑ PpF q.
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Proof of Theorem 1.7.6. Since X is a random variable, we have that X´1pAq P F for all A P E . Thus,
P ˝ X´1 is well-defined on E , and it takes values in the interval r0, 1s. In addition,

P ˝ X´1pEq “ PpX´1pEqq “ PpΩq “ 1.

It remains to check the σ-additivity. For this purpose, let pAnq be a sequence of pairwise disjoint sets
with An P E for all n P N. We will need the observation that

X´1p 9YnAnq “ 9YnX
´1pAnq.

Using this identity, we obtain

P ˝ X´1pYnAnq “ P
`
X´1p 9YnAnq

˘
“ Pp 9YnX

´1pAnqq “
ÿ

nPN
PpX´1pAnqq “

ÿ

nPN
P ˝ X´1pAnq,

where in the last but one inequality we used the σ-additivity of P itself. This finishes the proof.

The above result gives rise to one of the fundamental concepts of probability theory.

Definition 1.7.8. Two (or more) random variables will be called identically distributed, if their distri-
butions coincide

Definition 1.7.9. P ˝ X´1 as defined in Theorem 1.7.6 is called the distribution (‘Verteilung‘) of X or
the law of X. It is sometimes also written as PX .

The distribution of X describes the probabilities with which the random variable X takes values in the
sets A P E . Thus, from a probabilistic point of view it contains all the information we need in order
to understand the random experiment X is describing (without knowing the actual probability space
pΩ,F ,Pq). As a consequence, random variables are usually characterized by their distributions, and a
plethora of them is so important that they get their own names. We will just have a look at a few of them
here. For this purpose we will assume that there is an underlying probability space pΩ,F ,Pq which is
rich enough to have such random variables defined on it (which you are invited to check as an exercise),
but we will not need its specific structure here.
As we have seen before, the concept of independence of events plays an important role in probability
theory. Now since we use random variables to describe random experiments, and since in particular
we want to have a notion of independent experiments as well, we want to introduce the concept of
independent random variables. The easiest way to do so arguably is to reduce it to the notion of
independence of σ-algebras. For this purpose, we start with the following.

Definition 1.7.10. Let pE, Eq be a measurable space. Then a subset D of 2E is called a sub-σ-algebra
of E if

(a) D is a σ-algebra, and

(b) D Ă E .

Having introduced the notion of families of independent events above, it will turn out useful to define
the independence of σ-algebras as well. This will prove particularly useful in the context of random
variables.

Definition 1.7.11. Let pΩ,F ,Pq be a probability space. A family of sub-σ-algebras pFλqλPΛ of F is
called independent, if any family of subsets pAλqλPΛ with Aλ P Fλ is independent.

Note that it is essential here that each Fλ is a sub-σ-algebra of F in order to be able to apply P to its
elements.
The following is a direct consequence of the definition of independence of events from Definition 1.6.1 as
well as Definition 1.7.10.

Remark 1.7.12. A family of sub-σ-algebras pFλq, λ P Λ, of F , is an independent family of σ-algebras
if and only if for all n P N, λ1, . . . , λn P Λ with λi ‰ λj for all 1 ď i ă j ď n, and Fλk

P Fλk
one has

PpX1ďkďnFλk
q “

nź

k“1

PpFλk
q.
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The following result is the next step on the way to defining independence of random variables.

Lemma 1.7.13. Let X : pΩ,F ,Pq Ñ pE, Eq be a random variable. Then X´1pEq :“ tX´1pF q : F P Eu
is a sub-σ-algebra of F .

Proof. Since X is a random variable we haveX´1pEq Ă F . It remains to show that X´1pEq is a σ-algebra.
For this purpose, since E P E we clearly have Ω “ X´1pEq P X´1pEq.
Regarding the stability under taking complements, if A P X´1pEq, then there exists F P E with A “
X´1pF q. Now since E is a σ-algebra, it follows that F c P E , and we have Ac “ X´1pF cq, thus Ac P
X´1pEq.
It remains to show the stability under countable unions. For this purpose let pAnqn be a sequence of sets
with An P X´1pEq for all n P N. Thus, there exists a sequence pFnqn of sets with Fn P E for all n P N

and An “ X´1pFnq. Since E is a σ-algebra we get that YnFn P E . Now since YnAn “ X´1pYnFnq this
supplies us with the fact that YnAn P X´1pEq.
Thus, X´1pEq is a sub-σ-algebra of F .

Definition 1.7.14. Let pEλ, EλqλPΛ be a family of measurable spaces and let pXλqλPΛ be a family of
random variables defined on the same probability space pΩ,F ,Pq, such that Xλ : Ω Ñ Eλ for all λ P Λ. The
family pXλqλPΛ is called independent if the family of sub-σ-algebras pX´1

λ pEλqqλPΛ of F is independent.

Remark 1.7.15. • Similarly to Remark 1.7.12, it follows from the definition that such a family of
random variables is independent if and only if one has

P
`
Xλk

P Gλk
@1 ď k ď n

˘
“

nź

k“1

PpXλk
P Gλk

q (1.7.2)

for all n P N, λj P Λ for all 1 ď j ď n, λi ‰ λj for all 1 ď i ‰ j ď n, and Gλj
P Eλj

for all
1 ď j ď n.

Here, following standard jargon we write P
`
Xλk

P Gλk
@1 ď k ď n

˘
for

P
`

Xn
k“1 tXλk

P Gλk
u
˘

“ P
`

Xn
k“1 tω P Ω : Xλk

pωq P Gλk
ulooooooooooooooomooooooooooooooon

PF

˘
.

• As in the case of independent events, we also use the notation XKY to write that the random
variables X and Y are independent. The reason for this will only become apparent in the lecture
‘probability theory I’ when we introduce L2 spaces – in fact, in this case independence in some sense
corresponds to orthogonality.

In the case of discrete random variables, the above definition can be simplified.

Lemma 1.7.16. In the setting of Definition 1.7.14, assume that the random variables Xλ are all discrete
random variables. Then they form an independent family if and only if for all n P N, all pairwise distinct
λ1, . . . , λn P Λ, and all xλ1 P Eλ1 , xλ2 P Eλ2 , . . . , xλn

P Eλn
, one has that

PpXλ1 “ xλ1 , . . . , Xλn
“ xλn

q “
nź

j“1

PpXλj
“ xjq. (1.7.3)

Proof. If the family is independent, choosing Gλj
:“ txλj

u for all 1 ď j ď n (note that txλj
u P Eλj

since
by assumption Xλj

is a discrete random variable) and using that the λi are pairwise distinct, it follows
from (1.7.2) that (1.7.3) holds true.
To prove the reverse direction assume (1.7.3) to hold for all choices of the corresponding parameters,
and let arbitrary Gλj

, 1 ď j ď n, as in Remark 1.7.15 be given. Since each Gλj
X Xλj

pΩq is countable,
we get that

P
`
Xλk

P Gλk
@1 ď k ď n

˘
“ P

`
Xλk

P Gλk
X Xλk

pΩq @1 ď k ď n
˘

σ-additivity“
ÿ

xλ1
PGλ1

XXλ1
pΩq,...,

xλnPGλnXXλn pΩq

P
`
Xλ1 “ xλ1 , . . . , Xλn

“ xλn

˘

(1.7.3)“
ÿ

xλ1
PGλ1

XXλ1
pΩq,...,

xλnPGλnXXλn pΩq

nź

j“1

P
`
Xλj

“ xλj

˘
“

nź

j“1

´ ÿ

xλj
PGλj

XXλj
pΩq

P
`
Xλj

“ xλj

˘¯

“
nź

j“1

P
`
Xλj

P Gλj
X Xλj

pΩq
˘

“
nź

j“1

P
`
Xλj

P Gλj

˘
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(make sure you also understand the fourth equality sign, which essentially is a version of the distributive
law for infinitely many summands). This establishes (1.7.2) and hence finishes the proof.

Example 1.7.17. In the context of Examples 1.2.1 and 1.7.2, the random variables X1 and X2 ` X3

are independent.
The first thing we verify is that X2 ` X3 is again a random variable. In fact, in Example 1.7.2 we
had observed that any function defined on a discrete probability space is a random variable; thus, so is
X2 ` X3, and it maps to t1, . . . , 12u endowed with the σ-algebra 2t1,...,12u. We now have to check the
independence. In this setting, see Remark 1.7.15 and observe that the family of random variable for which
we want to show independence consists of two elements, X1 and X2 ` X3, this boils down to showing
that for any A1 P 2t1,...,6u and any A2 P 2t1,...,12u we have

PpX1 P A1, X2 ` X3 P A2q “ PpX1 P A1qPpX2 ` X3 P A2q. (1.7.4)

Now we observe that
tX1 P A1u “ F1 ˆ t1, . . . , 6u2

for F1 :“ A1 Ă t1, . . . , 6u. Similarly,

tX2 ` X3 P A2u “ t1, . . . , 6u ˆ F2

for some F2 Ă t1, . . . , 6u2. As a consequence, using the fact that P was defined as the uniform distribution
on Ω, we get

PpX1 P A1, X2 ` X3 P A2q “ PpF1 ˆ F2q “ |F1 ˆ F2|
63

“ |F1| ¨ |F2|
63

.

On the other hand we obtain

PpX1 P A1q “ PpF1 ˆ t1, . . . , 6u2q “ |F1|
6

and similarly

PpX2 ` X3 P A2q “ Ppt1, . . . , 6u ˆ F2q “ |F2|
62

.

This establishes (1.7.4).

Remark 1.7.18. Sums of independent random variables and convolutions: Oftentimes one is interested
in functionals of several, possibly independent, random variables (as exemplified by the above example
again, where we considered the sum of the second and third die roll). It immediately arises the question
of what we can say about the distribution of the corresponding functional in this case.
For simplicity we start with considering the case of independent Z-valued random variables and want to
investigate the distribution of their sum. For this purpose, let X and Y be independent random variables
defined on the same probability space pΩ,F ,Pq and for notational convenience set pXpxq :“ PpX “ xq as
well as pY pxq :“ PpY “ xq. Then we get for n P Z that

pX`Y pzq “ PpX ` Y “ zq “
ÿ

xPZ
PpX “ x, Y “ z ´ xq “

ÿ

xPZ
PpX “ xqPpY “ z ´ xq

“
ÿ

xPZ
pXpxqpY pz ´ xq,

where we used the independence of X and Y (in the form of Lemma 1.7.16) to obtain the penultimate
equality. The right-hand side interpreted as a function in z turns out to be so important that it is granted
its own name. It is called the (discrete) convolution pX ˚ pY of pX and pY . Thus, from the above we
deduce the equality of functions

pX`Y “ pX ˚ pY .

Thus, in this case of independent random variables X and Y , the distribution of X ` Y only depends
on the distributions of X and Y. Furthermore, from the above we also infer that the convolution is a
commutative operation:

pX ˚ pY “ pY ˚ pX .

The convolution will play an important role in establishing functional connections between the distribu-
tions of sums of independent random variables. We will get back to this identity at a later point in this
class.
One reason the convolution is helpful here is the following fact: The Fourier transform of a convolution
of two functions equals the product of the convolutions of those functions.
We will get back to this in the exercise classes.
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1.8 Specific distributions

The following remark will prove useful in the next sections when we introduce various different distribu-
tions: On the one hand, it tells us that for any given probability measure on a measurable space, we can
always find a random variable that has this probability measure as its distribution. On the other hand,
this also suggests why we will mostly be concerned with distributional properties of random variables,
rather than the details of the underlying probability space.

Remark 1.8.1. Given any distribution µ (i.e., a probability measure on pE, Eq) one can construct a
random variable X with law µ as follows. Indeed, ake pE, E , µq as the underlying probability space and
choose X to be the identity on E. Then X defines a random variable from pE, E , µq to pE, Eq with law
µ.

1.8.1 Discrete distributions

In order to rephrase the above examples in terms of distributions, we recall the notion of a Dirac measure
from Definition 1.3.8. We will call any distribution on a measurable space pE, Eq which is of the form

ÿ

nPN
αnδxn

,

where xn P E and αn ě 0 with
ř

nPN αn “ 1 a discrete distribution.

Example 1.8.2. A random variable X on pΩ,F ,Pq is called Bernoulli distributed with parameter
p P r0, 1s (named after the Swiss mathematician Jacob Bernoulli (1655–1705)) if X : Ω Ñ t0, 1u as well
as

PpX “ 1q “ p, and PpX “ 0q “ 1 ´ p.

In this case one writes X „ Berp and the law / distribution P ˝ X´1 is referred to as the Bernoulli
distribution Berp which, using Definition 1.3.8, can be written as

Berp “ pδ1 ` p1 ´ pqδ0.

A random variable that is Bernoulli distributed describes a coin flip (biased if p ‰ 1{2), for example.
Assume w.l.o.g. (‘o.B.d.A.’; without loss of generality) that the coin shows heads with probability p and
tails with probability 1 ´ p. If a gambler plays n independent trials with this coin and wins if the coin
shows heads, whereas she loses if the coin shows tails, then this can be modeled on the probability space
Ω “ t0, 1un, where 1 is identified with heads (or winning, for that matter), and 0 with tails (i.e., losing).
We choose F :“ 2Ω. For ω “ pω1, . . . , ωnq P Ω we define

Ppωq “ p
řn

j“1 ωj p1 ´ pqn´řn
j“1 ωj .

Then Xi : Ω Ñ t0, 1u defined via Xipωq :“ ωi describes the result of the i-th coin flip, and it is not hard
to check that the Xi „ Berp, and that the X1, . . . , Xn form an independent family.
Assume now that the gambler is interested in the number of coin flips that she has won out of the n

trials. For this purpose, introduce the random variable Snpωq :“ řn
i“1 ωi. For k P t0, 1, . . . , nu there are`

n
k

˘
elements ω P Ω for which one has

Snpωq “ k,

and hence we see that the probability that the gambler has won exactly k out of n coin flips, is given by

PpSn “ kq “
ˆ
n

k

˙
pkp1 ´ pqn´k.

The distribution obtained in this way directly leads us to the next example.

Example 1.8.3. A random variable X is called Binomially distributed with parameters n P N and
p P p0, 1q, if

for all k P t0, 1, . . . , nu one has PpX “ kq “
ˆ
n

k

˙
pkp1 ´ pqn´k. (1.8.1)

In this case, one writes X „ Binn,p and its distribution is referred to as the Binomial distribution Binn,p,
which can be written as

Binn,p “
nÿ

k“0

ˆ
n

k

˙
pkp1 ´ pqn´kδk.
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More generally and not necessarily in the context of coin flips, it can be interpreted as describing the
number of successes in n independent trials, when the random variables X1, . . . , Xn describing the trials
form an independent family, and each trial has a probability of p to be successful.
We can summarize the above observations in the following claim.

Claim 1.8.4. The sum

Sn :“
nÿ

j“1

Xj

of independent random variables X1, . . . , Xn, each distributed according to Berp, is distributed according
to Binn,p.

The concept of a family of random variables that are independent and all have the same distribution is
so important that it has its own name.

Definition 1.8.5. A family pXλq, λ P Λ, is called independent identically distributed (i.i.d.) (‘un-
abhängig identisch verteilt’ (u.i.v.)), if

(a) the family pXλq, λ P Λ, is an independent family of random variables, and

(b) if the Xλ, λ P Λ, all have the same distribution.

In addition, the binomial distribution is intimately connected to so-called ‘urn models’. For this purpose,
assume that you are given an urn containing N P N balls, K P t0, 1, . . . , Nu of which are white and N´K

of which are black. Then the probability that when drawing n P N times from this urn in a uniform i.i.d.
fashion with replacement (‘Ziehen mit Zurücklegen’) you have seen exactly k P t0, 1, . . . , nu white balls,
is given by

Binn,N{Kpkq.
Indeed, this follows immediately from Claim 1.8.4, since the draws can be interpreted as an i.i.d. family
X1, . . . , Xn of BerpK{Nq distributed variables, where Xi “ 1 if the i-th draw results in a white ball and
Xi “ 0 if the i-th draw results in a black ball.

Example 1.8.6. A random variable X is called geometrically distributed with success parameter p P
p0, 1q, if

for all k P N one has PpX “ kq “ pp1 ´ pqk´1. (1.8.2)

In this case we write X „ Geop, and its distribution is referred to as the Geometric distribution Geop,
which can be written as

Geop “
8ÿ

k“1

pp1 ´ pqk´1δk.

Remark 1.8.7. Some authors call X geometrically distributed if instead of (1.8.2),

for all k P N0 one has PpX “ kq “ pp1 ´ pqk.

Example 1.8.8. A random variable X is called Poisson distributed with parameter ν ą 0 if X : Ω Ñ N0

and

PpX “ kq “ e´ν ν
k

k!
@k P N0.

In this case we write X „ Poiν , and its distribution is referred to as the Poisson distribution Poiν (named
after the French mathematician Siméon Denis Poisson (1781 – 1840)), which can be written as

Poiν “ e´ν
8ÿ

k“0

νk

k!
δk.

Poisson distributed random variables are e.g. used to describe the number of customers that have called
a customer service center in a certain time interval. The reason for such a description being feasible is
given by the following theorem.

Theorem 1.8.9 (Poisson limit theorem). Let ppnq be a sequence of numbers from r0, 1s such that the
limit ν :“ limnÑ8 npn exists. Then for each k P N0,

lim
nÑ8

Binn,pn
pkq “ Poiνpkq.
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Proof. For k P N0 fixed we have

Binn,pn
pkq “

ˆ
n

k

˙
pknp1 ´ pnqn´k “ n!

k!pn ´ kq!
ppnnqk
nk

´
1 ´ pnn

n

¯n´k
nÑ8ÝÑ νk

k!
e´ν “ Poiνpkq.

This result gives rise to the fact that the Poisson distribution is used for modelling e.g. the number
of customers that contact a call center during a certain time interval. We partition the time interval
into n subintervals of equal width, and as we take n to infinity, it is reasonable to assume that in any
of the subintervals either zero or one customers are calling. Due to symmetry and independence, it
furthermore seems reasonable to assume that the probability of a customer calling in a subinterval has a
probability decaying like p{n some p P p0,8q (as n Ñ 8), and that the fact that a customer has called
during one subinterval does not influence the probabilities that a customer is calling during another
time interval.7 Thus, the probability of k customers calling during the original time interval should be
reasonably approximated by Binn,p{npkq if n is large. The above Theorem 1.8.9 now shows that the
Binomial distribution is the right candidate for this.

Example 1.8.10. Let N P N, and K,n P t0, 1, . . . , Nu. A random variable X is called hypergeometrically
distributed with parameters N, tK, n if X : pΩ,F ,Pq Ñ t0, 1, . . . , Nu with

PpX “ kq “
`
K
k

˘`
N´K
n´k

˘
`
N
n

˘ for k P t0 _ n ` K ´ N, . . . , n ^ Ku, (1.8.3)

and PpX “ kq “ 0 otherwise.8

In this case we write X „ HypN,K,n, and its distribution is referred to as the Hypergeometric distribution
HypN,K,n with parameters N, K, and n. The hypergeometric distribution can be interpreted as an urn
model (‘Ziehen ohne Zurücklegen’). Assume in total there are N balls in an urn, K of them are white
and N ´ K of them are black. For k P t0, 1, . . . , Nu, the quantity HypN,K,npkq then gives the probability
that in a uniformly random draw of n balls without replacement (‘Ziehen ohne Zurücklegen’) out of the
urn, there are exactly k white balls and n´k black balls.9 Indeed, there are altogether

`
N
n

˘
possibilities to

draw n balls (without replacement) out of an urn that contains N balls. Since there are
`
K
k

˘
possibilities

to choose k white balls out of the K white balls present in the urn and
`
N´K
n´k

˘
possibilities to choose n´k

black balls out of the all in all N ´ K black balls in the urn, there are in total
`
K
k

˘
¨
`
N´K
n´k

˘
favourable

outcomes to our drawing procedure. Since we were supposing that the drawing mechanism was uniformly
random, we infer that the probability we are after is given by

`
K
k

˘
¨
`
N´K
n´k

˘
`
N
n

˘ .

Example 1.8.11. We give some further distributions which occur frequently:

(a) A random variable X is called Rademacher distributed (named after the German-American math-
ematician Hans Rademacher) if X : Ω Ñ t0, 1u as well as

PpX “ 1q “ PpX “ ´1q “ 1

2
.

The corresponding distribution P ˝ X is called Rademacher distribution, named after the German-
American mathematician Hans Rademacher. To us, it will mostly be important as the distribution
of the increments of simple random walk to be introduced below.

(b) As a generalization to the Binomial distribution introduced in Example 1.8.3, we consider the
multinomial distribution. For r, n P N and pi P p0, 1q, 1 ď i ď r, such that

řr
i“1 pi “ 1, we call an

Nr
0-valued random variable X multinomially distributed with parameters n, p1, . . . , pr if

PpX “ px1, . . . , xrqq “ n!

śr
i“1 p

xi

iśr
i“1 xi!

, @px1, . . . , xrq P Nr
0 with

rÿ

i“1

xi “ n, (1.8.4)

7These are slightly delicate issues; in fact, if the customer center in question is e.g. that of an energy retailer and there
is a power outage during some part of the time interval we consider, then these assumptions will generally not be met.
However, they seem reasonable to assume during normal operation.

8We use the notation a _ b :“ maxpa, bq and a ^ b :“ minpa, bq which is quite common in probability theory.
9This also explains the restriction on k given in (1.8.3): In a sample of size n there cannot be more than n ^ K white

balls; at the same time, there have to be at least n´ pN ´Kq “ n`K ´N white balls in the sample, since at most N ´K

balls are black.
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and PpX “ px1, . . . , xrqq “ 0 otherwise. We write Multn,p1,...,pr
for the respective distribution.

The multinomial distribution is named this way due to the multinomial coefficient, which for n P N

as well as x1, . . . , xr P N0 with
řr

i“1 xi “ n, is defined as

ˆ
n

x1, x2, . . . , xr

˙
:“ n!

x1! ¨ x2! ¨ . . . ¨ xr!
.

Thus, the probability in (1.8.4) can alternatively be expressed as

ˆ
n

x1, x2, . . . , xr

˙ rź

i“1

pxi

i .

In the case r “ 2, the multinomial distribution boils down to the binomial distribution, in the sense
that the first coordinate of a Multn,p,1´p-distributed random variable is a Binn,p-distributed random
variable. In general, it can also be interpreted as the n-fold independent repetition of an experiment
which has r different possible outcomes, each of them realized with probability pi, 1 ď i ď r, at each
trial.

In terms of an urn model, if we have an urn with Ki balls of color i, 1 ď i ď r, then with
N :“

řr
i“1 Ki and n P N, a Mult

n,
K1
N

,...,
Kr
N

-distributed random variable X describes the number

accumulated outcome of n independent draws with replacement (‘Ziehen mit Zurücklegen’): Xi is
the number of times a ball of color i, 1 ď i ď r, has been drawn among the n trials.

1.8.2 Distribution functions

For real-valued random variables (which we sometimes also refer to as ‘real random variables’) the concept
of its (cumulative) distribution function plays a prominent role.

Definition 1.8.12. Let X be a real random variable defined on a probability space pΩ,F ,Pq. Then the
function

FX : R Ñ r0, 1s,
t ÞÑ PpX ď tq,

is called the (cumulative) distribution function (or cdf) of X (‘Verteilungsfunktion von X ’).

It is apparent from the definition that the distribution function of X depends on X only through its
distribution PX . The main reason why distribution functions are important in this context is that they
characterize probability measures on pR,BpRqq, cf. Theorem 1.8.18 below.

Remark 1.8.13. Note that the cdf is well defined since tX ď xu “ tω P Ω : Xpωq P p´8, xsu P F due
to the fact that X is a real-valued random variable and for all x P R, p´8, xs P BpRq.

Example 1.8.14. Let X „ Geop. Then the distribution function of X is given by

FXptq “
#

0, if t ă 1,
řttu

j“1 pp1 ´ pqj´1 “ p
1´p1´pqttu

1´p1´pq “ 1 ´ p1 ´ pqttu, if t ě 1.

Exercise 1.8.15. If X is a discrete real random variable, then FX has jumps exactly at the points in
tx P XpΩq : PpX´1txuq ą 0u and is piecewise constant otherwise.

Theorem 1.8.16. If X is a real random variable, then its distribution function FX has the following
properties:

(a) FX is non-decreasing;

(b)
lim

tÑ´8
FXptq “ 0, lim

tÑ8
FXptq “ 1;

(c) FX is right-continuous (i.e., for all t0 P R one has FXpt0q “ limtÓt0 FXptqq;
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Proof. If X is a real random variable, denote the underlying probability space by pΩ,F ,Pq and the
distribution function of X by FX . Then FXptq “ PpX ď tq P r0, 1s. In addition, using the monotonicity
property of Proposition 1.3.9, we get for h ą 0 that

FXptq “ PpX ď tq ď PpX ď t ` hq “ FXpt ` hq,

hence FX is non-decreasing.
To establish the second property, we observe that since Xpωq P R for all ω P Ω, we get tX ď tu Ó H as
t Ñ ´8. Thus, the continuity from above for P (see Proposition 1.3.9) implies

FXptq “ PpX ď tq tÑ´8ÝÑ PpHq “ 0.

Similarly, we get that tX ď tu Ò Ω as t Ñ 8 and hence the continuity of P from below (see Proposition
1.3.9) implies

FXptq “ PptX ď tuq tÑ8ÝÑ PpΩq “ 1.

Altogether, this proves the second point.
It remains to prove the right-continuity. Thus, let t0 P R be given. Note that tX ď t ` hu Ó tX ď tu as
h Ó 0, so in particular for a any sequence phnqnPN with hn ą 0 and hn Ñ 0 as n Ñ 8. Combining this
with continuity from above for P, we deduce

FXpt ` hnq “ PpX ď t ` hnq nÓ0ÝÑ PpX ď tq “ FXptq.

Since t0 P R was chosen arbitrarily, this proves the right-continuity of FX .

This leads us to the following definition.

Definition 1.8.17. Any function F : R Ñ r0, 1s that satisfies the three properties given in Theorem
1.8.16 is called a distribution function (on R; ‘Verteilungsfunktion’).

The following result complements Theorem 1.8.16, and combined they establish that there is a corre-
spondence between random variables and distribution functions.

Theorem 1.8.18. There exists a one-to-one correspondence between probability measures on pR,BpRqq
and distribution functions on R in the following sense: For P a probability measure on pR,BpRqq, we
consider the probability space pR,BpRq,Pq and the random variable idR, which is the identity function
on R; this gives rise to the distribution function Fid. Then the mapping which maps from the set of
probability measures on pR,BpqRqq to the set of distribution functions, and which is defined via taking P

to the distribution function Fid, is bijective.

We will only be able to prove this result in ‘Probability theory I’, but it will already be helpful in dealing
with distributions with densities.
As an immediate consequence, we obtain the following corollary.

Corollary 1.8.19. For each distribution function F there exists a random variable X, defined on some
probability space pΩ,F ,Pq and mapping to pR,BpRqq, such that F “ FX .

Proof. Let a distribution function F be given. By Theorem 1.8.18 there exists a probability measure P

such that considering the identity id on R, we have Fid “ F.

Given a distribution function with positive density, you will be asked to explicitly construct a random
variable X with the properties named in the previous corollary in Exercise sheet number five.

1.8.3 Distributions with densities

We have already seen in Example 1.4.7 that it can be useful to have a concept of distributions which are
not discrete but take values in a continuum such as R. Theorem 1.8.16 suggests that it might indeed be
possible to have such distributions.

Definition 1.8.20. A function f : R Ñ r0,8q which is Riemann-integrable on every bounded interval,
and for which ż 8

´8
fpxqdx “ 1 (Riemann integral),

is called a probability density (‘Wahrscheinlichkeitsdichte’).
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The motivation for suggesting distributions induced by integrals over probability densities is the following.

Exercise 1.8.21. (a) Let f be a probability density. Show that the function

F : R Ñ R

t ÞÑ
ż t

´8
fpxqdx

defines a distribution function. In this case, we refer to f as the density of F .

(b) If F has a density, then F is a continuous function. However, not every distribution function F

which is continuous has a density.

The result of this exercise in combination with Theorem 1.8.16 is good news since it tells us that there is
a whole new class of probability distributions obtained by integrating over probability densities. Indeed,
if X is a random variable the distribution function of which is given by

FXptq “
ż t

´8
fpxqdx,

then by definition we have

PpX P p´8, tsq “ PpX ď tq “
ż t

´8
fpxqdx.

From this we get for a ď b that

PpX P pa, bsq “ PpX P p´8, bsqq ´ PpX P p´8, asqq “
ż b

a

fpxqdx.

Extending this identity, we can deduce that for any finite union of (say left open right closed) intervals
I Ă R we have

PpX P Iq “
ż

I

fpxqdx,

with I the domain of integration. Motivated by this equality we would like to define the distribution on
pR,BpRqq by having this identity not only for finite unions of intervals; in fact, we would like that for all
B P BpRq one has

PpX P Bq “
ż

B

fpxqdx,

i.e., the function

BpRq Q B ÞÑ
ż

B

fpxqdx

should define a probability measure on pR,BpRqq.10
There is, however, a significant problem inherent to this approach: Our notion of integral, i.e., the
Riemann integral, is not powerful enough to develop a fully-fledged theory of probability measures on
pR,BpRqq induced by probability densities (which in some sense we already swept under the rug by
omitting the more difficult part of the proof of Theorem 1.8.16). Indeed, we already get into trouble
by requiring the σ-additivity. For this purpose, consider the probability density 1

2π1r0,2πq from Example
1.4.7 where a needle was thrown, and assume we are interested in the probability of the event that
the angle the needle encloses with the x-axis is rational. We have for any q P Q X r0, 2πq (note that
tqu P BpRq) we would certainly want to be able to associate a probability with the set tqu) that

ż q

q

1r0,2πqpxqdx “ 0, (1.8.5)

i.e., the probability of seeing a specific (rational) angle should be 0. Since BpRq is stable under countable
unions, we would also want to be able to associate a probability to YqPQXr0,2πq P Bpr0, 2πqq. From (1.8.5)

10It might be useful to note here that in the case of discrete random variables we never had any issues when dealing with
the distribution on the range of the random variable; this was the case since the distribution was completely determined
by the probabilities of the type PpX “ xq, x P E.
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in combination with the postulated σ-additivity for probability measures we would want to get that
this probability is 0. However, using the Riemann integral we cannot even integrate 1r0,2πq over the set
YqPQXr0,2πq since the upper and lower sums converge to different limits, namely 2π and 0.
As a consequence, in this introductory course we will not be able to give a theory unifying discrete random
variables and random variables whose distribution has a density; instead, the concepts we develop will
usually have to be developed separately for both types of random variables separately.
It will only be the case in the sequel class ‘Probability Theory I’ when we introduce the concept of the
‘Lebesgue integral’ that we will have a comprehensive theory at our disposal for treating not only the
above two types of random variables, but even more general ones at once.11

We will now fix some notation.

Definition 1.8.22. (a) If µ is a probability measure on pR,BpRqq with

µpp´8, tsq “
ż t

8
fpxqdx @t P R, (1.8.6)

for some probability density f, then we say that µ has density f .

Also, in passing we note that a probability measure µ on pR,BpRqq which fulfills (1.8.6) is already
characterized this way. We will, however, not prove this result in this introductory class.

(b) If X is a real random variable such that FX is a distribution function with density f, then X is
called a continuous random variable with density f , or shortly, a continuous random variable or a
random variable with a density.

Remark 1.8.23. The above terminology is slightly unfortunate since a continuous random variables X

with a density is not necessarily continuous as a function from Ω to R. In fact, the notion of continuity
is not even well-defined is Ω has no metric or topology.

Remark 1.8.24. (a) If f is a probability density that defining a probability measure µ via the identity

(1.8.6), and if rf is a function such that tx P R : fpxq ‰ rfpxqu is finite, then rf is a probability
density as well, and it gives rise to the same measure µ via

µpp´8, tsq “
ż t

´8
rfpxqdx.

(b) If f is a probability density which is continuous in x0 P R, then the corresponding distribution
function

F ptq “
ż t

´8
fpxqdx

is differentiable in x0 with F 1px0q “ fpx0q according to the Fundamental Theorem of Calculus
(‘Hauptsatz der Differential- und Integralrechnung’).

Example 1.8.25. (a) For a, b P R with a ă b the uniform distribution (‘Gleichverteilung’) on the
interval ra, bs has the density

R Q x ÞÑ 1

b ´ a
1ra,bspxq.

We write Unipra, bsq for the uniform distribution on the interval ra, bs, and the corresponding dis-
tribution function is given by

F ptq “

$
&
%

0, if t ď a,
t´a
b´a

, if t P pa, bq,
1, if t ě b.

(b) Let κ ą 0. The exponential distribution (‘Exponentialverteilung’) with parameter κ has density

R Q x ÞÑ
"

κe´κx, if x ě 0,
0, otherwise.

We write X „ Exppκq if X is a random variable that is exponentially distributed with parameter
κ ą 0.

11Most of the concepts such as expectation, variance, etc. that we will develop below will only be introduced for these two
types of random variables. However, as we will see in the sequel ‘Probability Theory I’, these concepts can be introduced
in a fairly general manner using the theory of Lebesgue integration.
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(c) The normal or Gaussian distribution (‘Normalverteilung’ or ‘Gaußverteilung’, named after the
German mathematician Carl Friedrich Gauss (1777–1855)) with parameters µ P R and σ2 P p0,8q
has the density

R Q x ÞÑ 1?
2πσ2

e´ px´µq2

2σ2 .

We write X „ N pµ, σ2q if X is a random variable that is normally distributed with parameters µ

and σ2.

It should also be noted here that the cumulative distribution function of the standard Normal dis-
tribution N p0, 1q is usually denoted by

Φptq :“
ż t

´8

1?
2π

e´ x2

2 dx, (1.8.7)

and that there is no closed expression for general values of t for the right-hand side. There are,
however, tables to look up those values for a variety of different values for t.

We will get back to those distributions after having introduced the concept of expectation.

Remark 1.8.26. As in some way a generalization to Section 1.6.1, one can show that to an arbitrary
finite family pFλq, λ P Λ, of distribution functions, there exists a probability space pΩ,F ,Pq and a finite
family pXλq, λ P Λ, of random variables defined on it such that the family is independent and for each
λ P Λ, we have Xλ „ Fλ. We will not prove this result in this class, since it requires stronger tools than
we have at our disposal, but you may use the result without further mentioning for the rest of this class.

1.9 Expectation

There are certain quantities associated to random variables (or their distributions for that matter) that
play a key role. Arguably the most important one is their expectation, if it exists.

Definition 1.9.1. Let X be a discrete real random variable from pΩ,F ,Pq to a measurable space pE, Eq
with E Ă R. We say that it has finite expectation if

ÿ

xPXpΩq
|x| ¨ PpX “ xq ă 8. (1.9.1)

In this case its expectation (‘Erwartungswert’) (or sometimes called mean) is defined as

ErXs :“
ÿ

xPXpΩq
x ¨ PpX “ xq. “

ÿ

xPE
x ¨ PXpxq. (1.9.2)

If, on the other hand, X is a continuous real random variable from pΩ,F ,Pq to pR,BpRqq with density
̺, we say that it has finite expectation if

ż 8

´8
|x| ¨ ̺pxqdx ă 8. (1.9.3)

In this case the quantity ż 8

´8
x ¨ ̺pxqdx

is well-defined as a (finite) real number, and it is called the expectation (‘Erwartungswert’) (or sometimes
called mean) of X, and also denoted by ErXs. Indeed, in this setting, by the improper Riemann integral
can be defined via ż 8

´8
x ¨ ̺pxqdx “

ż c

´8
x ¨ ̺pxqdx `

ż 8

c

x ¨ ̺pxqdx,

where c P R is arbitrary.
Random variables with finite expectation are also called integrable random variables (‘integrierbare Zu-
fallsvariablen’). A random variable whose expectation equals 0 is called centred (‘zentriert’).12

12The reason for this is clear for continuous random variables, and it will become clear for general random variables once
one has the notion of Lebesgue integration.
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Remark 1.9.2. (a) Given the definition of expectation in (1.9.2), at a first glance it might seem slightly
unnatural to require the summability of the absolute value |x| in (1.9.1) instead of just summability
of x in order to talk about ‘finite expectation’. The reason for this is that this absolute summability
condition ensures that one will always obtain the same expectation in (1.9.2), independent of the
order in which the summation is performed.

Note also that if X has finite expectation, then the left-hand side of (1.9.1) equals Er|X |s.

(b) The rightmost sum of (1.9.2) provides us with an interpretation of the expectation in terms of
physics: If we consider the distribution of a unit mass on R induced by P ˝ X´1 (in the sense that
any point x P XpΩq Ă R is given mass P ˝ X´1pxq), then the expectation ErXs is the center of
gravity of this distribution of mass.

(c) Just to be on the safe side we will always consider random variables to be either discrete or con-
tinuous in the following.

(d) In what follows, if e.g. we write ErXs or ErfpXqs for some function f , then we always tacitly
assume that X and fpXq are either discrete random variables or continuous random variables with
a density, so that we are at least in the position to check whether the respective expectations make
sense.

Remark 1.9.3. (a) From this definition it follows that the expectation of a random variable X only
depends on the random variable X through its distribution P˝X´1. For the case of discrete random
variables this is immediate from the definition, while in the case of continuous random variables it
is most convenient to retreat to Lebesgue integration, which we will not do in this course.

(b) The above distinction in the definition of expectations for discrete random variables on the one
hand and random variables with a density on the other hand seems slightly artificial. It will in
fact turn out that using the Lebesgue integral we can define the expectation for general real random
variables, in particular comprising the two special cases of discrete random variables and random
variables with a density.

Definition 1.9.4. (a) For real random variables we usually denote by

X` :“ X _ 0

its positive part and by

X´ :“ ´pX ^ 0q

its negative part, which then implies the equality

X “ X` ´ X´.

(b) For a random variable X on pΩ,F ,Pq and an event A Ă F we define

ErX ; As :“ ErX ¨ 1As,

if the expectation on the right-hand side exists.

Definition 1.9.5. We denote by L1 :“ L1pΩ,F ,Pq the set of all discrete or continuous real random
variables defined on pΩ,F ,Pq with finite expectation.
If at most one of the expectations ErX`s and ErX´s is infinite, then X is called ‘quasi-integrable’ and
one can still define its (infinite) expectation as ErXs P t´8,8u as before. It will follow from Proposition
1.9.7 below that if X has finite expectation, then

ErXs “ ErX`s ´ ErX´s.

This still holds true if X is only quasi-integrable, and in this case exactly one of the expectations on the
right-hand side is infinite.

In particular, when considering sums we will still call them well-defined as long as no expression of the
type 8 ´ 8 occurs.
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Example 1.9.6. (a) In the setting of Examples 1.2.1 and 1.7.2, we get

ErX1s “
ÿ

xPX1pΩq
x ¨ PpX1 “ xq “

6ÿ

j“1

j
1

6
“ 21

6
“ 3.5

This is of course what we would have expected for a fair die.

(b) Let X „ N pµ, σ2q. Then
ż 8

´8
x

1?
2πσ2

e´ px´µq2

2σ2 dx
x ÞÑx`µ“ 1?

2πσ2

ż 8

´8
px ` µqe´ x2

2σ2 dx

“ µ ` 1?
2πσ2

ż 8

´8
xe´ x2

2σ2 dx
looooooooooooomooooooooooooon

“0 due to symmetry

“ µ,

where we took advantage of the fact that

ż 8

´8

1?
2πσ2

e´ x2

2σ2 dx “ 1

to take µ out of the integral. Thus, X has finite expectation, namely µ. Thus, we observe that the
parameter µ is in fact the expectation of an N pµ, σ2q-distributed random variable. We will soon
investigate the role of σ2.

(c) Let X „ Exppκq some κ P p0,8q. Using integration by parts we get

ż 8

´8
1xPr0,8qpxqx̺pxqdx “

ż 8

0

xκe´κx dx “ ´xe´κx|8x“0 ´
ż 8

0

´e´κx dx “ 1

κ

(d) Let X „ Poipνq some ν ą 0. Then

ErXs “
ÿ

nPXpΩq
n ¨ PpX “ nq “

ÿ

nPN0

n ¨ e´ν ν
n

n!
“ ν

ÿ

nPN
e´ν νn´1

pn ´ 1q! “ ν.

Proposition 1.9.7 (Properties of expectations). Let X,Y P L1 and c P R.

(a) If X ď Y (i.e., Xpωq ď Y pωq for all ω P Ω), then

ErXs ď ErY s (monotonicity of expectation);

(b) cX ` Y P L1, and

ErcX ` Y s “ cErXs ` ErY s (linearity of expectation); (1.9.4)

(c) if in addition X and Y are independent, then XY P L1 and

ErXY s “ ErXsErY s. (1.9.5)

Remark 1.9.8. It is sometimes helpful to have the above result not only when X,Y P L1, but also if
some of the respective random variables are only quasi-integrable. Thus, you might want to check that

• (a) holds true if X and Y are only quasi-integrable;

• (1.9.4) holds true also if either at most one of the random variables is quasi-integrable, or otherwise
if c ě 0 and both random variables are quasi-integrable with

(a) ErX`s “ ErY `s “ 8, or

(b) ErX´s “ ErY ´s “ 8.

• (1.9.5) does not generally hold true if we require one of the random variables X and Y to be
quasi-integrable only.



1.9. EXPECTATION 33

Proof. We will give the proof for discrete random variables. The proof in the case when at least one of
the two random variables is continuous can e.g. be done by approximating continuous random variables
by discrete ones.

(a) If X,Y P L1 we get

ErXs “
ÿ

xPXpΩq
x ¨ PpX “ xq “

ÿ

xPXpΩq,yPY pΩq
x ¨ PpX “ x, Y “ yq,

where the last equality takes advantage of the fact that X has finite expectation. Now since
X ď Y we get that tX “ x, Y “ yu can only be non-empty if y ě x. Thus, we can upper bound
the right-hand side of the previous display by

ÿ

xPXpΩq,yPY pΩq
y ¨ PpX “ x, Y “ yq “

ÿ

yPXpΩq
y ¨ PpX “ yq “ ErY s,

where now in the first equality we used the fact that Y has finite expectation.

(b) For c “ 0 we have cX “ 0 which has finite expectation 0. Thus, without loss of generality assume
c ‰ 0. We have

ÿ

xPpcXqpΩq
|x| ¨ PpcX “ xq “

ÿ

xPXpΩq
|cx| ¨ PpcX “ cxq “ |c| ¨

ÿ

xPXpΩq
|x| ¨ PpX “ xq ă 8,

where the last inequality follows since X has finite expectation. Now since the above sums converge
absolutely, we get that the equations hold true without the absolute value signs as well, the left-
hand side then equals ErcXs and the right-hand side equals cErXs.
Thus, it remains to show that X ` Y has finite expectation and that ErX ` Y s “ ErXs ` ErY s.
Using that X and Y have finite expectations we get

ÿ

zPpX`Y qpΩq
|z| ¨ PpX ` Y “ zq “

ÿ

xPXpΩq

ÿ

z´xPY pΩq
|z| ¨ PpX “ x, Y “ z ´ xq

ď
ÿ

xPXpΩq

ÿ

z´xPY pΩq
p|x| ` |z ´ x|q ¨ PpX “ x, Y “ z ´ xq

“
ÿ

xPXpΩq

ÿ

ryPY pΩq
|x| ¨ PpX “ x, Y “ ryq `

ÿ

xPXpΩq

ÿ

ryPY pΩq
|ry| ¨ PpX “ x, Y “ ryq

“
ÿ

xPXpΩq
|x| ¨ PpX “ xq `

ÿ

ryPY pΩq
|ry| ¨ PpY “ ryq ă 8.

In particular, all sums in the above chain are absolutely convergent. Hence, we can omit the
absolute values in those computations, in which case the inequality turns into an equality and we
deduce

ErX ` Y s “ ErXs ` ErY s
from the equations.

(c) We compute similarly to the previous part that

ÿ

zPpXY qpΩq
|z| ¨ PpXY “ zq “

ÿ

yPY pΩq,y‰0

ÿ

z
y

PXpΩq
|y| ¨ |z{y| PpX “ z{y, Y “ yqlooooooooooomooooooooooon

“PpX“z{yqPpY “yq (independence)

x:“z{y“
ÿ

xPXpΩq
|x| ¨ PpX “ xq

ÿ

yPY pΩq
|y| ¨ PpY “ yq,

and the right-hand side is finite by assumption. In particular, this implies XY P L1. Again, due to
the absolute summability of all occurring sequences, we can redo the above without absolute value
signs to get ÿ

zPpXY qpΩq
z ¨ PpXY “ zq “

ÿ

zPXpΩq
z ¨ PpX “ zq

ÿ

yPY pΩq
y ¨ PpY “ yq,

which due to X,Y,XY P L1 amounts to (1.9.5).
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Example 1.9.9. We had already seen in Claim 1.8.4 that the sum of n independent random variables
X1, . . . , Xn, each distributed according to Berp, p P r0, 1s, has distribution Binn,p. Thus, if Y „ Binn,p,
we get, using the fact that the expectation of a random variable depends only on its distribution,

ErY s “ E

” nÿ

j“1

Xj

ı
“

nÿ

j“1

ErXjs “ np,

where in the second equality we used the linearity of expectation.
Thus, the expectation of a Binn,p{n-distributed random variable equals p. This is in accordance with the
Poisson limit theorem, i.e., Theorem 1.8.9, which states that the Binn,p{n distribution converges to Poip
in some sense, since according to Example 1.9.6 (d) the expectation of a Poip distributed random variable
is also p.

It will often be the case that we will want to compute the expectation not only of a real random variable
X , but of certain functionals such as fpXq “ X2. Lemma 1.7.5 tells us that if either X is a real discrete
random variable or otherwise if f is real-valued continuous, then fpXq is a real random variable again.
Thus, at least under the assumption that fpXq is discrete or that is again has a density, it makes sense
to check whether fpXq has finite expectation and if so, to compute it.
Now oftentimes the distribution of X , is well known, i.e., the values PpX “ xq are easy to obtain, whereas
the ones for PpfpXq “ xq are harder to get. On the other hand, they are a priori needed to compute

ErfpXqs “
ÿ

xPfpXpΩqq
x ¨ PpfpXq “ xq,

if it exists. The following result tells us how to compute ErfpXqs using the original distribution of X
instead of that of fpXq.

Proposition 1.9.10. [Change of variable formula (‘Transformationssatz’)]

(a) Let X be a discrete random variable from pΩ,F ,Pq to pE, Eq and let f : E Ñ R be an arbitrary
function. Then, fpXq has finite expectation if and only if

ÿ

xPXpΩq
|fpxq| ¨ PpX “ xq ă 8,

and in this case
ErfpXqs “

ÿ

xPXpΩq
fpxq ¨ PpX “ xq. (1.9.6)

(b) If X is a continuous random variable with density ̺ such that fpXq also is a continuous random
variable, then fpXq P L1 if and only if

ż 8

´8
|fpxq| ¨ ̺pxqdx ă 8, (1.9.7)

and in this case the expectation is finite and given by

ErfpXqs “
ż 8

´8
fpxq ¨ ̺pxqdx.

Proof. We will give the proof of the first part only.

Er|fpXq|s “
ÿ

xPfpXpΩqq
|x| ¨ PpfpXq “ xq “

ÿ

xPfpXpΩqq

ÿ

yPXpΩq : fpyq“x

|fpyq| ¨ PpX “ yq

“
ÿ

yPXpΩq
|fpyq| ¨ PpX “ yq.

Thus, fpXq has finite expectation if and only if
ř

yPXpΩq |fpyq| ¨ PpX “ yq ă 8, and since in this case

all sums are absolutely convergent, we can omit the absolute value signs and obtain (1.9.6).
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Example 1.9.11. Find an example of a continuous random variable X with a density and a continuous
function f : R ý, such that the random variable f ˝ X does not have a density (cf. assumptions in
Proposition 1.9.10).

We will take advantage of Proposition 1.9.10 heavily from now on and therefore not give an explicit
example for it right now.

1.9.1 Second (and higher) moments

Whereas for a random variable with finite expectation the quantity ErXs is referred to as the first
moment, it turns out that higher moments will play a crucial role, and sometimes they even completely
determine a distribution (see e.g. [Bil95, Section 30]).

Definition 1.9.12. Let p P N and let X be a discrete or continuous real random variable such that the
random variable Xp is quasi-integrable. Then the p-th moment of X is defined as ErXps P r´8,8s
For p ą 0, the space of all real random variables X on pΩ,F ,Pq such that Er|X |ps ă 8 is denoted by
Lp :“ LppΩ,F ,Pq.

Since for 0 ă p ď q we have |x|p ď 1 ` |x|q for all x P R we immediately obtain the inclusion

Lq Ă Lp. (1.9.8)

Example 1.9.13. Let X be a continuous real random variable with probability density

̺pxq “ 1r1,8qpxq 1
x3ş8

´8 1r1,8qpxq 1
x3 dx

, x P R.

Then

Er|X |ps “
ż 8

´8
|x|p̺pxqdx

is finite for p P p0, 2q and infinite for p P r2,8q. Thus, X P Lp for p P p0, 2q but X R Lp for p P r2,8q.

In order to prove the fundamental Hölder inequality below we will need the following auxiliary result.

Lemma 1.9.14 (Young’s inequality (English mathematician William Henry Young (1863–1942))). Let
a, b P r0,8q and p, q P p1,8q such that

1

p
` 1

q
“ 1.

Then

ab ď ap

p
` bq

q
. (1.9.9)

Definition 1.9.15. Let I Ă R be an interval and ϕ : I Ñ R a function. Then ϕ is called convex if for
all x, y P I and λ P p0, 1q the inequality

ϕpλx ` p1 ´ λqyq ď λϕpxq ` p1 ´ λqϕpyqp“ ϕpxq ` p1 ´ λqpϕpyq ´ ϕpxqq (1.9.10)

holds true.
We call ϕ strictly convex if the above inequality is strict whenever x ‰ y.

Proof of Lemma 1.9.14.

ab “ exptlnpabqu “ exptln a ` ln bu “ exp
!1
p
lnpapq ` 1

q
lnpbqq

)

convexity of the exponential function
ď 1

p
ap ` 1

q
bq,

which finishes the proof.

Theorem 1.9.16 (Hölder inequality (German mathematician Otto Ludwig Hölder (1859–1937))). Let
p, q ą 1 such that 1

p
` 1

q
“ 1. Then, for random variables X,Y one has

Er|XY |s ď
`
Er|X |ps

˘ 1
p
`
Er|Y |qs

˘ 1
q . (1.9.11)
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Remark 1.9.17. (a) In particular, this implies that if X P Lp and Y P Lq, then XY P L1.

(b) The special case of p “ q “ 1{2 gives a version of the Cauchy-Schwarz (Augustin-Louis Cauchy
(1789–1857), Hermann Schwarz (1843–1921) inequality you might know from linear algebra (or
might get to know in functional analysis) for inner products.

(c) Hölder’s inequality not only holds for expectations (which will be interpreted as integration against
probability measures in ‘Probability Theory I’) but also for more general integrals.

(d) We will tacitly use the convention 0 ¨ 8 “ 0 from now on.

Proof. If one of the factors on the right-hand side of (1.9.11) is infinite or 0, then the statement is trivial.
Indeed, if we have e.g. Er|X |ps “ 0, then this implies that PpX “ 0q “ 1 (exercise). Thus, ErXY s “ 0
as well, and the desired inequality holds true again. If, on the other hand, none of the factors of the
right-hand side is zero, but one of them is infinity, then the inequality is obvious as well.
Thus, assume without loss of generality that both factors are finite and positive, and, again without loss
of generality, we can even assume that both factors are 1, by considering

X
`
Er|X |ps

˘ 1
p

instead of X , and similarly for Y . Using Lemma 1.9.14 we deduce

Er|XY |s ď E

” |X |p
p

` |Y |q
q

ı
“ 1

p
E
“
|X |p

‰
` 1

q
E
“
|Y |q

‰
“ 1,

which finishes the proof.

Definition 1.9.18. For X P L1, the quantity

VarpXq :“ E
“
pX ´ ErXsq2

‰
P r0,8s

is called the variance of X.

From the expression on the left-hand side it is clear that the variance is always non-negative, since the
random variable in the expectation on the left-hand side is non-negative. Furthermore, this expression
shows that the variance gauges the expected quadratic deviation of X from its expectation ErXs. It is
a simple measure for how strongly the random variable X fluctuates around its mean.
Using the generalized linearity of expectation given in Remark 1.9.8, we can rewrite the variance as

VarpXq “ E
“
pX ´ ErXsq2

‰
“ ErX2s ´ 2ErXsErXs ` ErXs2 “ ErX2s ´ ErXs2,

which holds true in the case ErX2s “ 8 as well. Thus, we immediately obtain the following corollary.

Corollary 1.9.19. For X P L1, we have VarpXq ă 8 if and only if ErX2s ă 8.

Definition 1.9.20. The covariance of two random variables X,Y P L1 is defined as

CovpX,Y q “ E
“
pX ´ ErXsqpY ´ ErY sq

‰
“ ErXY s ´ 2ErXsErY s ` ErXsErY s “ ErXY s ´ ErXsErY s

(1.9.12)
if the right-hand side is well-defined in r´8,8s.
The two random variables are called uncorrelated if CovpX,Y q “ 0.

Again we note that variance and covariance only depend on the random variables involved through their
corresponding distributions.
In some sense the covariance CovpX,Y q tells us how strongly X and Y are correlated, i.e., how strongly
they change together. If both X and Y tend to take values above their expectation on the same subset
of Ω, and also tend to take values below their expectations on similar sets, then according to (1.9.12)
this should imply that their covariance is positive; on the other hand, if X tends to take values above
its expectation on subsets of Ω where Y tends to take values below its expectation, and vice versa, then
this would suggest that their covariance is negative. Therefore, if X and Y are independent one might
possibly guess that CovpX,Y q vanishes. This is indeed the case as part (c) of Proposition 1.9.21 below
shows. Note, however, that the converse is not generally true as will be asked to show in Exercise 1.9.22.
We now collect some properties of covariances and variances in the following result.



1.9. EXPECTATION 37

Proposition 1.9.21. Let X and Y be random variables in L2 and let a, b, c, d P R. Then

(a)
CovpaX ` b, cY ` dq “ acCovpX,Y q;

in particular,
VarpapX ` bqq “ a2 VarpXq; (1.9.13)

(b)

|CovpX,Y q| ď
a
VarpXqVarpY q;

(c) if X and Y are independent, then they are uncorrelated;

Proof. (a) Using the linearity of expectation we get

CovpaX ` b, cY ` dq “ E
“
paX ` b ´ EraX ` bsqpcY ` d ´ ErcY ` dsq

‰

“ acE
“
pX ´ ErXsqpY ´ ErY sq

‰
“ acCovpX,Y q.

(b)

|CovpX,Y q| “ E
“
|X ´ ErXs| ¨ |Y ´ ErY s|

‰
ď E

“
pX ´ ErXsq2

‰ 1
2E

“
pY ´ ErY sq2

‰ 1
2

“
a
VarpXqVarpY q,

where the inequality is a consequence of the Cauchy Schwarz inequality.

(c) Since X,Y P L2 Ă L1, we use Proposition 1.9.7 to get ErXY s “ ErXsErY s from which the
statement follows immediately.

Exercise 1.9.22. Find an example of real random variables X,Y which are uncorrelated but not inde-
pendent.

We now compute some variances of distributions we got to know earlier in this course.

Example 1.9.23. • Let X „ N pµ, σ2q with µ P R and σ2 P p0,8q. Then we get using Proposition
1.9.10 that

VarpXq “ E
“
pX ´ ErXsq2

‰
“

ż 8

´8
px ´ µq2 1?

2πσ2
e´ px´µq2

2σ2 dx

x ÞÑσx`µ“ 1?
2π

ż 8

´8
pσxq2e´ x2

2 dx “ σ2

?
2π

´
´xe´ x2

2

ˇ̌
ˇ
8

x“´8looooooomooooooon
“0

`
ż 8

´8
e´ x2

2 dx
loooooomoooooon

“
?
2π

¯
“ σ2,

where we used integration by parts for the penultimate equality. Hence, we observe that the second
parameter in N pµ, σ2q denotes the variance of the random variable. In particular, this means that
the normal distribution is completely distributed by its expectation and its variance.

Furthermore, we deduce that the standard normal distribution from Example 1.8.25 (c) has mean
0 and variance 1.

• Let X „ Geop for p P p0, 1q. We first compute ErXs and for this purpose we take advantage of the
following useful trick. For q P p´1, 1q, the formula for the geometric series supplies us with

8ÿ

j“1

qj “ q

1 ´ q
.

Since the left-hand side defines a power series that is absolutely convergent for q P p´1, 1q, we recall
from basic calculus lectures that its derivative can be computed term by term. Thus, differentiating
both sides of the equation gives

8ÿ

j“1

jqj´1 “ p1 ´ qq ´ qp´1q
p1 ´ qq2 “ 1

p1 ´ qq2 . (1.9.14)
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Using this identity for q “ 1 ´ p we can compute

ErXs “
8ÿ

j“1

jPpX “ jq “
8ÿ

j“1

jpp1 ´ pqj´1 “ p

p2
“ 1

p
. (1.9.15)

We now have to compute ErX2s. For this purpose we differentiate (1.9.14) once again (and again,
the left-hand side can be differentiated term by term on p´1, 1q due to its absolute convergence) to
obtain

8ÿ

j“2

jpj ´ 1qqj´2 “ 2

p1 ´ qq3 . (1.9.16)

Thus, we get using the change of variable formula that

ErX2s “
8ÿ

j“1

j2PpX “ jq “
8ÿ

j“1

j2pp1 ´ pqj´1

“ pp1 ´ pq
8ÿ

j“1

jpj ´ 1qp1 ´ pqj´2 ` p

8ÿ

j“1

jp1 ´ pqj´1 “ 2p1 ´ pq
p2

` 1

p
“ 2 ´ p

p2
,

where we took advantage of (1.9.15) and (1.9.16) to get the third equality. As a consequence, we
can compute

VarpXq “ ErX2s ´ ErXs2 “ 2 ´ p

p2
´ 1

p2
“ 1 ´ p

p2
.

If we want to compute the variance of the sum of random variables, the following result turns out to be
useful by decomposing it into a sum of variances and corresponding covariances.

Proposition 1.9.24. Let X1, . . . , Xn be random variables in L2. Then

Var
´ nÿ

j“1

Xj

¯
“

nÿ

j“1

VarpXjq `
ÿ

1ďi,jďn,i‰j

CovpXi, Xjq.

Proof. Due to Proposition 1.9.21 (a), without loss of generality, we can assume ErXis “ 0 for all 1 ď i ď
n. Using the linearity of expectation we get

Var
´ nÿ

j“1

Xj

¯
“ E

”´ nÿ

j“1

Xj

¯2ı
´

´
E

” nÿ

j“1

Xj

ı¯2

looooooomooooooon
“0 by assumption

“
nÿ

i,j“1

ErXiXjs

“
nÿ

i“1

VarpXiq `
ÿ

1ďi,jďn,i‰j

CovpXi, Xjq.

Note that
Er|XiXj|s ď

`
ErX2

i s
˘ 1

2
`
ErX2

j s
˘ 1

2 ă 8

due to Hölder’s inequality with p “ q “ 1
2 , hence all expectations in the above equations are well-defined,

and so are all the sums.

If the random variables in the above result turn out to be uncorrelated, all covariances in the above result
vanish and the computation of the variance becomes significantly simpler. The corresponding result is
used so often that it deserves its own name.

Corollary 1.9.25 (Bienaymé formula (Irénée-Jules Bienaymé (1796–1878), French probabilist and statis-
tician)). Let X1, . . . , Xn be uncorrelated random variables in L2. Then

Var
´ nÿ

j“1

Xj

¯
“

nÿ

j“1

VarpXjq.

Example 1.9.26. (a) Let X „ N pµ1, σ
2
1q and Y „ N pµ2, σ

2
2q be independent random variables. Then

X ` Y „ N pµ1 ` µ2, σ
2
1 ` σ2

2q.
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Note that it follows from the linearity of expectations and Bienaymé’s lemma that X `Y has mean
µ1 ` µ2 and variance σ2

1 ` σ2
2 . However, it is not clear that X ` Y is normally distributed. To

check the latter, assume without loss of generality that µ1 “ µ2 “ 0 and use the fact that X ` Y is
a continuous real random variable with density given by the convolution ̺X`Y “ ̺X ˚ ̺Y (we use
this identity without proof, since the proof requires some measure theory). Thus,

̺X`Y pzq “
ż 8

´8
̺Xpxq̺Y pz ´ xqdx “ 1a

2πσ2
1

a
2πσ2

2

ż 8

´8
e

´ x2

2σ2
1 e

´ pz´xq2

2σ2
2 dx

“ 1a
2πσ2

1

a
2πσ2

2

ż 8

´8
exp

!
´ σ2

2x
2 ` σ2

1pz ´ xq2
2σ2

1σ
2
2

)
dx

“ 1a
2πσ2

1

a
2πσ2

2

ż 8

´8
exp

!
´

`a
σ2
1 ` σ2

2x ´ σ2
1z?

σ2
1`σ2

2

˘2 ´ σ4
1z

2

σ2
1`σ2

2
` σ2

1z
2

2σ2
1σ

2
2

)
dx

“ 1a
2πpσ2

1 ` σ2
2q

exp
!

´ pσ4
1z

2 ´ σ4
1z

2 ´ σ2
2z

2σ2
1

2σ2
1σ

2
2pσ2

1 ` σ2
2q

)

“ 1a
2πpσ2

1 ` σ2
2q

exp
!

´ z2

2pσ2
1 ` σ2

2q
)
,

where we completed the square for x in the numerator (‘quadratische Ergänzung’). This proves that
X ` Y is normally distributed with the required variance (and mean), and hence proves the claim.

(b) Let X „ Binn,p for some n P N and p P r0, 1s. In Claim 1.8.4 we had seen that X has the same
distribution as

řn
j“1 Yj , where the Yj are independent random variables distributed according to

Binp. Now VarpYjq is easy to compute since ErYjs “ p and ErY 2
j s “ p. Thus, VarpYjq “ pp1 ´ pq.

Now since VarpXq depends on X only through its distribution, we get the first equality of

VarpXq “ Var
´ nÿ

j“1

Yj

¯
“

nÿ

j“1

VarpYjq “ npp1 ´ pq,

where in the second equality we used Corollary 1.9.25.

The following lemma is interesting in its own right, but a generalization of it will play an important role
when we introduce the concept of conditional expectations (which heuristically will amount to averaging
over partial information of F only) in ‘Probability Theory I’. It can be interpreted in the sense that the
best approximation to a random variable X by a constant c is via its expectation c “ ErXs (if distance
is measured in terms of the second moment of X ´ c).

Lemma 1.9.27. Let X P L2 be a random variable. Then the function

R Q s ÞÑ ErpX ´ sq2s

is minimized at s “ ErXs, which is the strict global minimu. In particular, we have ErpX´sq2s ě VarpXq
for all s P R.

Proof. We compute using the linearity of expectation of Proposition 1.9.7 that

ErpX ´ sq2s “ ErX2s ´ 2sErXs ` s2 “ pErX2s ´ ErXs2q ` pErXs ´ sq2.

From this it is obvious that the function attains its minimum for s “ ErXs, in which case it equals
VarpXq. This finishes the proof.

1.10 Generating functions

We have seen in Example 1.9.26 (a) that we can investigate sums of independent random variables;
however, this resulted in slightly tedious computations and we give here a tool for simplifying this
procedure, at least in certain important cases of N0-valued random variables. For this purpose we
introduce the so-called ‘generating functions’ of N0-valued random variables completely characterise
their distributions, see Theorem 1.10.2 below.
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Definition 1.10.1. Let X be an N0-valued random variable. The function

GX : r´1, 1s Ñ R

s ÞÑ
ÿ

nPN0

PpX “ nq ¨ snp“ ErsX s according to Proposition 1.9.10q (1.10.1)

is called the generating function or moment generating function ofX (‘Erzeugendenfunktion’, ‘momenten-
erzeugende Funktion von X ’).

Another reason for why generating functions play an important role is that they, as well as their deriva-
tives, can often be explicitly computed and give information about the moments of the random variable.

Theorem 1.10.2. Let GX be the generating function of the N0-valued random variable X.
Then:

(a) The function GX is infinitely differentiable on p´1, 1q, and for k P N one has

lim
sÒ1

G
pkq
X psq “

8ÿ

n“k

PpX “ nq ¨ n ¨ pn ´ 1q ¨ . . . ¨ pn ´ k ` 1q.

In particular,
lim
sÒ1

G1
Xpsq “ ErXs.

(b) The distribution of X is completely determined by GX and vice versa. In particular, there is a
one-to-one correspondence between distributions on N0 and generating functions.

Proof. (a) The radius of convergence of the power series in (1.10.1) is at least 1, which can be seen
e.g. by direct inspection or an application of the root test. From the elementary theory of power
series we recall that at points in the interior of its domain of convergence, the series is differentiable
infinitely often and the derivatives of the power series are obtained by differentiating each of its
summand separately. This entails

G
pkq
X psq “

8ÿ

n“k

PpX “ nq ¨ n ¨ pn ´ 1q ¨ . . . ¨ pn ´ k ` 1q ¨ sn´k,

and taking the limit as s Ò 1 gives the desired equality.

(b) Observe that G
pkq
X p0q “ PpX “ kq ¨k ¨ pk´1q ¨ . . .¨1. Hence the distribution of X is completely deter-

mined by the sequence pGpkq
X p0qqkPN0 , and therefore in particular by GX itself. On the other hand,

random variables with different distributions give rise to different generating functions (e.g., since
two generating functions, i.e. power series around 0, whose domain of convergence includes p´1, 1q,
coincide if and only if all their coefficients coincide), and hence the one-to-one correspondence
follows.

Example 1.10.3. We compute the moment-generating function for a geometrically distributed random
variable X with success parameter p P p0, 1q, recall (1.8.2).
We get for s P p´1, 1q that

GXpsq “
ÿ

kPN0

PpX “ kqsk “
ÿ

kPN0

pp1 ´ pqk´1sk “ p

1 ´ p

p1 ´ pqs
1 ´ p1 ´ pqs “ ps

1 ´ p1 ´ pqs . (1.10.2)

Thus,

G1
Xpsq “ pp1 ´ p1 ´ pqsq ` psp1 ´ pq

p1 ´ p1 ´ pqsq2 “ p

p1 ´ p1 ´ pqsq2 ,

and we obtain using Theorem 1.10.2 that

ErXs “ lim
sÒ1

G1
Xpsq “ 1

p
.

This coincides with our previous computation in (1.9.15), but it did not require any trick pulled out of
our sleeve.
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Generating functions of sums of independent N0-valued random variables have the nice property that
they can be written as the product of the generating functions of the single summands. Also, note that
the sum of N0-valued random variables is N0-valued again.

Lemma 1.10.4. Let X and Y be independent N0-valued random variables. Then

GX`Y psq “ GXpsq ¨ GY psq @s P p´1, 1q.

Proof. We have

GX`Y psq “ ErsX`Y s “ ErsX s ¨ ErsY s “ GXpsqGY psq,

where we took advantage of the fact that if X and Y are independent random variables, then so are sX

and sY (see Remark 1.7.15), in combination with Proposition 1.9.7 (c).

One of the reasons generating functions are so useful arises from the combination of Lemma 1.10.4 with
Theorem 1.10.2 (b), as is illustrated in the following example.

Example 1.10.5. Let X „ Poipνq and Y „ Poipµq be independent random variables. We compute

GXpsq “
ÿ

nPN0

Poiνpnqsn “ e´ν
ÿ

nPN0

νn

n!
sn “ e´νp1´sq, (1.10.3)

and furthermore, using Lemma 1.10.4,

GX`Y psq “ GXpsqGY psq “ e´νp1´sqe´µp1´sq “ e´pν`µqp1´sq.

Thus, combining this equality with Theorems 1.10.2 and (1.10.3) we deduce that X ` Y „ Poipν ` µq.

We have seen that the concept of generating functions is quite powerful, and hence it is natural to ask
for a generalization to arbitrary real random variables. It turns out that in this context the concept
of so-called characteristic functions will play a similar role, and we will only completely introduce this
concept once we have a fully-fledged theory of Lebesgue integration available in ‘Probability I’.

1.11 Convergence of random variables

As in analysis, asymptotic investigations play a fundamental role in probability theory, in particular
when it comes to the limit theorems that we will be considering in Sections 1.13 and 1.15. To build a
theoretical base for this we will introduce the fundamental types of convergence that we will encounter
in probability theory and investigate their dependencies.

1.11.1 Almost sure convergence

This is one of the strongest types of convergence that we will consider.

Definition 1.11.1. Let pXnq be a sequence of real random variables defined on pΩ,F ,Pq, and let X be
a real random variable defined on pΩ,F ,Pq. We say that Xn converges almost surely (or a.s.) (‘fast
sicher’ (oder auch ‘f.s.’) to X, and we write

Xn
a.s.ÝÑ X as n Ñ 8,

or

lim
nÑ8

Xn “ X P ´ a.s.,

if

P
`
lim
nÑ8

Xn “ X
˘

“ P

´!
ω P Ω : lim

nÑ8
Xnpωq “ Xpωq

)¯
“ 1. (1.11.1)

Remark 1.11.2. (a) In order for the probabilities in (1.11.1) to be well-defined, we need that

t lim
nÑ8

Xn “ Xu P F . (1.11.2)
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Now recall from Definition 1.7.3 that BpRq contains all intervals. Therefore, and since |Xn ´ X |
is a random variable again (see Lemma 1.7.5), we obtain that t|Xn ´X | ď 1

k
u P F for all k, n P N.

Recalling the definition of the limit

!
lim
nÑ8

Xn “ X
)

“
8č

k“1

8ď

n0“1

8č

n“n0

!
|Xn ´ X | ď 1

k

)

from basic analysis lectures, we therefore get (1.11.2) using the stability of F under countable unions
and intersections. Hence we get the alternative characterization of

lim
nÑ8

Xn “ X a.s.

via

P

´ 8č

k“1

8ď

n0“1

8č

n“n0

!
|Xn ´ X | ď 1

k

)¯
“ 1. (1.11.3)

(b) (1.11.1) is equivalent to the existence of N P F with PpNq “ 0 (N is called a null set in this case)
such that for all ω P ΩzN one has

Xnpωq Ñ Xpωq as n Ñ 8, (1.11.4)

where the latter is just a statement about the convergence of a sequence of real numbers.

More generally, if there exists some N P F so that a statement (such as e.g. (1.11.4)) holds for all
ω P ΩzN, then we say that it holds P-almost surely / P-a.s. / a.s. (‘P-fast sicher’, oder ‘P-f.s.’, oder
‘f.s.’).

(c) In particular, note that if Xn converges to X pointwise, then we have almost sure convergence as
well. The reason that pointwise convergence is not so important to us is that modifications that
only effect null sets cannot be noticed from a point of view of the probability measure. Note for
example that we have seen in Remark 1.8.24 that changing a probability density in finitely many
points does not have any effect on the corresponding distribution function.

1.11.2 Convergence in Lp

This is yet another fairly strong type of convergence which in a slightly more general form plays an
important role in (functional) analysis, too.

Definition 1.11.3. Let p ą 0, let pXnq be a sequence of random variables in LppΩ,F ,Pq, and let
X P LppΩ,F ,Pq as well. Then we say that Xn converges to X in LppΩ,F ,Pq, and write

Xn
L

p

ÝÑ X

if
Er|Xn ´ X |ps Ñ 0 as n Ñ 8.

As long as we do not impose any further assumptions (which we don’t do for the time being), none of
the above two types of convergence is actually stronger than the other, but we will really only address
Lp convergence in ‘Probability I’ (or you might do so in Analysis III before).

Example 1.11.4. Consider the probability space obtained by endowing r0, 1q with the respective Borel-σ-
algebra and the probability measure P given by the uniform distribution on r0, 1q (to the extent to which
it has been introduced in Examples 1.8.21 and 1.8.25).

(a) Consider for n ě 1 and k P t0, 1, . . . , 2n ´ 1u the random variables

Xn,k :“ 1rk2´n,pk`1q2´nq

and define Y1 :“ X1,0, Y2 :“ X1,1, Y3 :“ X2,0, Y4 :“ X2,1, . . . (this is the ‘lexicographic ordering’).
Then lim supnÑ8 Yn “ 1 and lim infnÑ8 Yn “ 0, and in particular Yn does not converge almost
surely. On the other hand, for p ą 0, any n P N, and k P t0, . . . , 2n ´ 1u we have

Er|Xn,k ´ 0|ps “ Ppr0, 2´nqq “ 2´n,

and the right-hand side converges to 0 as n Ñ 8. Therefore, Yn
L

p

ÝÑ 0 as n Ñ 8.

This example shows that convergence in Lp does not imply almost sure convergence.
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(b) Fix p ą 0 and consider the random variables Xn :“ n
1
p1r0,1{ns. Then for any ω P p0, 1q fixed we

have
Xnpωq “ n

1
p1r0,1{nspωq,

and the right-hand side converges to 0 as n Ñ 8. Therefore,

 
lim
nÑ8

Xn “ 0
(

“ p0, 1q,

and since Ppp0, 1qq “ 1 this implies that limnÑ8 Xn “ 0 almost surely.

On the other hand, a moment’s thought reveals that since Xn Ñ 0 holds P-a.s. as n Ñ 8, the
only possible limit in Lp (modulo events of probability zero) would be the constant random variable
X “ 0. Now for all n P N one has

Er|Xn ´ 0|ps “ 1,

and therefore Xn does not converge to 0 in Lp.

This example shows that almost sure convergence does not imply convergence in Lp.

1.11.3 Convergence in probability

Definition 1.11.5. Let pXnq be a sequence of real random variables defined on pΩ,F ,Pq, and let X also
be a real random variable defined on pΩ,F ,Pq. We say that Xn converges in probability (‘konvergiert in
Wahrscheinlichkeit’oder ‘konvergiert stochastisch’) to X if for all ε ą 0,

Pp|Xn ´ X | ě εq Ñ 0, as n Ñ 8.

In this case we write
Xn

PÝÑ X as n Ñ 8.

1.11.4 Convergence in distribution

Definition 1.11.6. Let pµnq be a sequence of probability measures on pR,BpRqq and let µ be yet another
probability measure on pR,BpRqq. In addition, let real random variables Xn „ µn and X „ µ which can
be defined on different probability spaces pΩn,Fn,Pnq and pΩ,F ,Pq, respectively, be given. We say that
pµnq converges in weakly (‘konvergiert schwach’) to µ if for all continuous bounded functions f P CbpRq
from R to R we have

EnrfpXnqs Ñ ErfpXqs as n Ñ 8.

In this case we write
µn

wÝÑ µ as n Ñ 8,

where w stands for ‘weakly’.

Remark 1.11.7. Note that according to Remark 1.8.1, random variables Xn and X as in the above
definition exist.

Definition 1.11.8. Let pXnq be a sequence of real random variables defined on pΩ,F ,Pq, and let X also
be a real random variable defined on pΩ,F ,Pq. We say that Xn converges in distribution (‘konvergiert in
Verteilung’) to X if P ˝ X´1

n converges weakly to P ˝ X´1.

In this case we write
Xn

LÝÑ X as n Ñ 8,

or also
Xn

DÝÑ X as n Ñ 8.

Here, L and D stand for ‘law’ and ‘distribution’, respectively. Yet another very common notation is

Xn ùñ X as n Ñ 8.

Since we are mostly dealing with real random variables in this course, the following equivalent criterion
for convergence in distribution of real random variables will come in handy.

Lemma 1.11.9. Let pXnq be a sequence of real random variables defined on pΩ,F ,Pq, and let X also be
a real random variable defined on pΩ,F ,Pq. Denote the corresponding distribution functions by Fn and
F, respectively. Then the following are equivalent:
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(a)

Xn
DÝÑ X ;

(b) For all points t of continuity of F , one has

Fnptq Ñ F ptq as n Ñ 8;

Proof. ‘paq ñ pbq’:
Let t0 be a point of continuity for F and for ε ą 0 arbitrary choose ft0,ε P CbpRq with

1p´8,t0s ď ft0,ε ď 1p´8,t0`εs.

We get
lim sup
nÑ8

Fnpt0q ď lim
nÑ8

Erft0,εpXnqs “ Erft0,εpXqs ď F pt0 ` εq.

Since ε ą 0 was chosen arbitrarily and F is right-continuous, this supplies us with

lim sup
nÑ8

Fnpt0q ď F pt0q.

Similarly, choosing rft0,ε P CbpRq with

1p´8,t0´εs ď rft0,ε ď 1p´8,t0s.

and using that t0 is in fact a point of continuity of F (which implies the left-continuity of F in t0), we
obtain in a similar manner as before the inequality

lim inf
nÑ8

Fnpt0q ě F pt0q.

Combining these two inequalities supplies us with limnÑ8 Fnpt0q “ F pt0q.
‘pbq ñ paq’: Assume pbq to hold true. For ε ą 0 given we choose points of continuity t0 ă t1 ă . . . ă tmε

such that

(a) F pt0q ď ε and F ptmε
q ě 1 ´ ε;

(b) for all i P t1, . . . ,mεu,
|fptq ´ fptiq| ď ε @t P rti´1, tis. (1.11.5)

Then

ErfpXnqs “ E
“
fpXnq1Xnďt0

‰
`

mεÿ

i“1

E
“
fpXnq1XnPpti´1,tis

‰
` E

“
fpXnq1Xnątmε

‰
. (1.11.6)

Using the inequality
fpXnq1XnPpti´1,tis ď

`
inf

tPpti´1,tis
fptq ` ε

˘
¨ 1XnPpti´1,tis

(which itself is a consequence of (1.11.5)), in combination with the monotonicity property of the ex-
pectation operator and assumption pbq, the lim supnÑ8 of the right-hand side of (1.11.6) can be upper
bounded by

2ε sup
tPR

|fptq| `
mεÿ

i“1

inf
tPpti´1,tis

fptq
`
F ptiq ´ F pti´1q

˘
` ε.

This again can be upper bounded by

4ε sup
tPR

|fptq| ` 2ε ` ErfpXqs.

In a similar way we can derive

lim inf
nÑ8

ErfpXnqs ě ´4ε sup
tPR

|fptq| ´ 2ε ` ErfpXqs.

Thus, since ε ą 0 was arbitrary, all in all we get

lim
nÑ8

ErfpXnqs “ ErfpXqs

Since f P CbpRq was chosen arbitrarily, this implies (a).
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Remark 1.11.10. In contrast to the characterization of convergence in distribution through the conver-
gence of the distribution functions at the points of continuity of F given in Lemma 1.11.9, Definition
1.11.8 has the advantage that it can be easily generalized to random variables that take values in spaces
which are more general than R, since we only need to have the concept of bounded real-valued functions
on that corresponding space.

In the following section we provide some basic inequalities. These are interesting and significant in their
own right, and they will serve us to study the interdependence of the types of convergence of random
variables introduced in this section.

1.12 Some fundamental tools and inequalities

1.12.1 Markov’s and Chebyshev’s inequalities

We now introduce some fundamental inequalities. These play a central role in probability and are some
of the standard tools one has to feel comfortable to apply.

Proposition 1.12.1 (Markov’s inequality (Andrey Andreyevich Markov (1856–1922))). Let X be a real
random variable and let ε ą 0. Then, for any increasing function ϕ : r0,8q Ñ r0,8q with ϕpp0,8qq Ă
p0,8q one has

Pp|X | ě εq ď Erϕp|X |qs
ϕpεq . (1.12.1)

Proof. Since ϕ is monotone increasing we have the inequality

ϕp|X |q ě 1|X|ěεϕpεq,

and taking expectations on both sides supplies us with

Erϕp|X |qs ě Pp|X | ě εqϕpεq,

which implies (1.12.1).

Corollary 1.12.2 (Chebyshev’s inequality (Pafnuty Chebyshev (1821–1894))). Let X be in L1pΩ,F ,Pq.
Then

Pp|X ´ ErXs| ě εq ď VarpXq
ε2

. (1.12.2)

Proof. This follows from Proposition 1.12.1 by choosing the random variable in (1.12.1) as X ´ ErXs
and ϕpxq :“ x2.

Remark 1.12.3. Inequalities of the type (1.12.2) which provide upper bounds for the probability that X
deviates from a certain quantity, such as its expectation, are also referred to as ‘concentration inequali-
ties’.

1.12.2 The Borel-Cantelli lemmas

In order to prove this theorem we need some further results, which are important and of interest on their
own. For this purpose we introduce the following notation.

Definition 1.12.4. Let pΩ,F ,Pq be a probability space and assume given a sequence pAnq of events
An P F . Then the ‘limes superior’ of the sequence pAnq is defined as

lim sup
nÑ8

An :“
8č

n“1

8ď

k“n

Ak.

The ‘limes inferior’ of the sequence pAnq is defined as

lim inf
nÑ8

An :“
8ď

n“1

8č

k“n

Ak

Exercise 1.12.5. Show the following identities:
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•
lim sup
nÑ8

An “
 
ω P Ω : ω P An for infinitely many n

(
;

•
lim inf
nÑ8

An “
 
ω P Ω : such that Dn0 P N with ω P An @n ě n0

(
;

Lemma 1.12.6 (Borel-Cantelli lemma (French mathematician and politician Émile Borel (1871–1956),
Italian mathematician Francesco Paolo Cantelli (1875–1966)). Let pΩ,F ,Pq be a probability space and
assume given a sequence pAnq of events An P F .

(a) If ÿ

nPN
PpAnq ă 8, (1.12.3)

we have
P
`
lim sup
nÑ8

An

˘
“ 0.

(b) If ÿ

nPN
PpAnq “ 8,

and if in addition the pAnq are independent, then

P
`
lim sup
nÑ8

An

˘
“ 1.

Proof. (a) For any k P N we have

lim sup
nÑ8

An Ă
8ď

n“k

An,

and therefore

P
`
lim sup
nÑ8

An

˘
ď P

´ 8ď

n“k

An

¯
ď

8ÿ

n“k

PpAnq., (1.12.4)

Now due to (1.12.3) we get that

8ÿ

n“k

PpAnq Ñ 0 as k Ñ 8.

Therefore, since (1.12.4) was valid for any k, we get

P
`
lim sup
nÑ8

An

˘
“ 0.

(b) The usual proof considers the probability of the complement and takes advantage of De Morgan’s
rule that

plim sup
nÑ8

Anqc “
´ 8č

n“1

8ď

k“n

Ak

¯c

“
8ď

n“1

8č

k“n

Ac
k.

Now observe that using the independence of the family pAnq in combination with the continuity
from above of probability measure, we infer for N ą k the identity

P

´ 8č

k“n

Ac
k

¯
“ lim

MÑ8
P

´ Mč

k“n

Ac
k

¯
“ lim

MÑ8

Nź

k“n

P
`
Ac

k

˘
¨ P

´ Mč

k“N`1

Ac
k

¯
“

Nź

k“n

P
`
Ac

k

˘
¨ P

´ 8č

k“N`1

Ac
k

¯
.

Combining the above, we therefore obtain

P
`
plim sup

nÑ8
Anqc

˘
ď

8ÿ

n“1

P

´ 8č

k“n

Ac
k

¯
“

8ÿ

n“1

lim
NÑ8

Nź

k“n

P
`
Ac

k

˘
P

´ 8č

k“N`1

Ac
k

¯
ď

8ÿ

n“1

8ź

k“n

P
`
Ac

k

˘

“
8ÿ

n“1

8ź

k“n

p1 ´ PpAkqq ď
8ÿ

n“1

exp
!

´
8ÿ

k“n

PpAkq
loooomoooon

8

)
“ 0,

where we used that for t ě 0 we have e´t ě 1 ´ t.
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Remark 1.12.7. It is important to note here that the independence assumption in part (b) of Lemma
1.12.6 cannot be dropped. To see this, consider for example a single fair coin toss modeled on a probability
space pΩ,F ,Pq, and denote for all n P N by An the event that the coin shows tails. Then PpAnq “ 1

2 for
all n P N, so

ř
nPN0

PpAnq “ 8, but Pplim supnÑ8 Anq “ PpAnq “ 1
2 ‰ 1.

Example 1.12.8. A popular application is the so-called ‘infinite monkey theorem’. It states that a
monkey which is randomly hitting keys (in an i.i.d. fashion, and such that any key, lower and upper
case, has a positive probability of being hit) of a computer keyboard will almost surely type any given text,
such as e.g. Tolstoy’s ‘War and Peace’. It is left to the reader to make this statement more precise.

1.12.3 Jensen’s inequality

Theorem 1.12.9 (Jensen’s inequality (Danish mathematician Johan Jensen (1859 – 1925))). Let X be
a real random variable in L1 and let ϕ : R Ñ R be a convex function (if X is a non-negative random
variable, then it is sufficient for ϕ to be a convex function defined on r0,8q). Then

ϕpErXsq ď ErϕpXqs P p´8,8s. (1.12.5)

In particular, if in addition ϕ is strictly convex and PX is not concentrated in a single point (i.e., there
does not exist any a P R such that PXptauq “ 1), then the inequality in (1.12.5) is strict.

Proof. Since ϕ is convex, we get that for all x0 P R the one-sided derivatives

ϕ1
´px0q :“ lim

hÓ0

ϕpx0q ´ ϕpx0 ´ hq
h

and ϕ1
`px0q :“ lim

hÓ0

ϕpx0 ` hq ´ ϕpx0q
h

exist (since the corresponding functions are monotone in h) and that ϕ1
´px0q ď ϕ1

`px0q. Therefore,
choosing any slope spx0q P rϕ1

´px0q, ϕ1
`px0qs, we get for all x P R that

ϕpxq ě ϕpx0q ` spx0qpx ´ x0q.

Taking x0 :“ ErXs P p´8,8q and x “ Xpωq we obtain

ϕpXpωqq ě ϕpErXsq ` spErXsqpXpωq ´ ErXsq. (1.12.6)

Taking expectations on both sides yields (1.12.5), where the finiteness of the expectation on the right-
hand side of (1.12.6) implies ErϕpXqs P p´8,8s.
In the case of ϕ being strictly convex, the inequality in (1.12.6) is strict once Xpωq ‰ ErXs. If now in
addition PX is not concentrated in a single point, then tω P Ω : Xpωq ‰ ErXsu has positive probability
and the desired strict inequality in (1.12.5) follows.

Remark 1.12.10. (a) If rϕ is a concave function on R, then ´rϕ is a convex function, hence Theorem
1.12.9 yields

rϕpErXsq ě ErrϕpXqs
for X P L1.

(b) This immediately supplies us with another proof for the inclusion Lq Ă Lp for q, p P p0,8q with

q ą p which we had derived in (1.9.8). Indeed, since the function rϕpxq :“ x
p
q is concave on r0,8q

and since |X | is non-negative, we get for X P Lq that

8 ą rϕpEr|X |qsq ě Errϕp|X |qqs “ Er|X |ps.

Thus, Er|X |ps ă 8 which implies X P Lp.

Example 1.12.11. Let X P L1.

(a) Consider the absolute value function ϕpxq :“ |x| and check that it is convex. Thus, Jensen’s
inequality yields |ErXs| ď Er|X |s.

(b) Choosing the convex function ϕpxq :“ x2, Jensen’s inequality supplies us with

Er|X |s2 ď ErX2s.
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1.13 Interdependence of types of convergence of random vari-
ables

Having introduced all the above types of convergence, it is natural to try to order them in terms of
strength. As we have seen in Example 1.11.4, there are no general implications between convergence
in LppΩ,F ,Pq and P-almost sure convergence. However, for the remaining ones we have the following
hierarchy.

Theorem 1.13.1. Let Xn, X be real random variables on pΩ,F ,Pq, and let p ą 0.

(a) If either limnÑ8 Xn “ X almost surely, or if X, Xn P Lp and Xn
L

p

ÝÑ X, then

Xn
PÝÑ X. (1.13.1)

(b) If Xn
PÝÑ X, then

Xn ùñ X. (1.13.2)

(c) If 0 ă p ă q ă 8 and if pXnq and X are in Lq such that Xn
L

q

ÝÑ X, then Xn
L

p

ÝÑ X as well.

(d) If

for all ε ą 0 one has
8ÿ

n“1

Pp|Xn ´ X | ě εq ă 8, (1.13.3)

then limnÑ8 Xn “ X P-a.s.13

In particular, if Xn
PÝÑ X, then there exists a subsequence pXnk

q of pXnq such that

Xnk
ÝÑ X P ´ a.s.

Proof. (a) Assume that limnÑ8 Xn “ X almost surely first, and for ε ą 0 define the decreasing
sequence of sets

Bn,ε :“
 

Dm ě n : |Xm ´ X | ě ε
(
, n P N.

Denoting by N the null set introduced in the context of P-a.s. convergence in Remark 1.11.2 (b),
we get č

nPN
Bn,ε Ă N. (1.13.4)

Thus,
lim sup
nÑ8

Pp|Xn ´ X | ě εq ď lim sup
nÑ8

PpBn,εq ď PpNq “ 0,

where the last inequality follows from (1.13.4) and the continuity of P from above (recall Proposition
1.3.9 (g)). This implies (1.13.1).

Next, assume that instead of almost sure convergence we have X, Xn P Lp and Xn
L

p

ÝÑ X. Then
using Markov’s inequality from Proposition 1.12.1 with ϕpxq :“ |x|p supplies us with

Pp|Xn ´ X | ě εq ď Er|Xn ´ X |ps
|ε|p Ñ 0 as n Ñ 8.

Thus, (1.13.1) holds true.

(b) Fix an arbitrary f P CbpRq and set M :“ supxPR |fpxq| ă 8. Since the probability measure P˝X´1

is continuous from above, for given ε ą 0 we find Nε P N such that

PpX P r´Nε, Nεscq ď ε.

Since f is uniformly continuous on r´Nε ´ 1, Nε ` 1s, we find δ P p0, 1q such that for all x, y P
r´Nε ´ 1, Nε ` 1s with |x ´ y| ď δ we have

|fpxq ´ fpyq| ď ε. (1.13.5)

13If (1.13.3) holds true one says that Xn converges fast or almost completely to X.
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As a consequence, using the triangle inequality we obtain

|ErfpXnqs ´ ErfpXqs| ď
ˇ̌
ˇE
“
fpXnq ´ fpXq; X P r´Nε, Nεs, |Xn ´ X | ă δ

‰ˇ̌
ˇlooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

(1.13.5)

ď ε

` 2M ¨ PpX P r´Nε, Nεscq ` 2M ¨ Pp|Xn ´ X | ě δq.

Taking the lim supnÑ8 on both sides, we get that the resulting right-hand side is upper bounded
by

ε ` 4Mε.

Since ε ą 0 was chosen arbitrarily small, this implies

lim
nÑ8

ErfpXnqs “ ErfpXqs,

and hence, since f P CbpRq was chosen arbitrarily, (1.13.2) follows.

(c) Jensen’s inequality 1.12.9 applied with the convex function ϕpxq :“ |x|q{p supplies us with

ϕpEr|Xn ´ X |psq ď Erϕp|Xn ´ X |pqsq ď Er|Xn ´ X |qs.

As n Ñ 8, the right-hand side converges to 0 by assumption, and therefore so does the left-hand

side, which implies Xn
L

p

ÝÑ X as n Ñ 8.

(d) From (1.13.3) we can infer the existence of a subsequence Xnk
such that

8ÿ

m“nk

Pp|Xm ´ X | ě 2´kq ď 2´k

for all k P N.

Setting

Ak :“
8ď

m“nk

 
|Xm ´ X | ě 2´k

(

we thus get

PpAkq ď
8ÿ

m“nk

Pp|Xm ´ X | ě 2´kq ď 2´k.

The first part of the Borel-Cantelli lemma then supplies us with

Pplim sup
kÑ8

Akq “ 0,

which implies that there exists a null set N Ă F such that for each ω P ΩzN there exists Nω P N

with the property that

ω P
8č

n“Nω

Ac
k,

and this again means that Xnpωq Ñ Xpωq as n Ñ 8. Therefore, limnÑ8 Xn “ X P-a.s.

If, on the other hand, Xn converges in probability to X, then we can choose a subsequence Xnk
of

Xn such that Yk :“ Xnk
fulfills

P

´
|Yk ´ X | ě 1

k

¯
ď 1

k2

and hence condition (1.13.3), and due to the first part one then has Xnk
Ñ X P-a.s. as k Ñ 8.

Exercise 1.13.2. Show that the converses of the convergence implications given in Theorem 1.13.1 (a)
to (c) do not hold true in general.
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1.14 Laws of large numbers

One central topic in probability theory is the asymptotic analysis of random systems and one of the
simplest and more or less realistic situations to imagine is arguably a very long (or, possibly slightly less
realistic, an infinite) sequence of independent coin tosses or dice rolls. For the sake of simplicity let’s
have a look at the situation of independent fair coin tosses, and define for n P N a random variable Xn

on pΩ,F ,Pq that takes the value 1 if the coin of the n-th toss shows heads, whereas it takes the value
´1 if the coin shows tails, i.e., the Xn are Rademacher-distributed. Now we know that ErXns “ 0, and
also for the sum

Sn :“
nÿ

j“1

Xj (1.14.1)

we have ErSns “ 0 by the linearity of expectation.

Definition 1.14.1. The sequence Sn as defined in (1.14.1) is also called simple random walk (SRW)
(‘einfache Irrfahrt’)

Oftentimes, instead of investigating the expectation, one is interested e.g. in realizationwise statements,
or statements concerning probabilities of certain events. In our current setting for example, one might
want to ask what values Snpωq ‘typically’ takes. Now, although ErSns “ 0 for all n P N, it is obvious that
Snpωq “ 0 can only hold true if n is even. And in fact, even when n is even, 0 is not the typical value for
Sn to take, in the sense that it would be realized with a high probability or at least with a probability
that is bounded away from 0 as n Ñ 8. Indeed, for n “ 2k even we get with Stirling’s formula that

PpS2n “ 0q “
ˆ
2n

n

˙´1
2

¯2n

„ p2n{eq2n
?
2π ¨ 2n

`
pn{eqn

?
2πn

˘2 2´2n “ 1?
nπ

, (1.14.2)

where for sequences panq and pbnq of positive real numbers we write an „ bn if limnÑ8 an{bn “ 1.

Exercise 1.14.2. Using an explicit computation as in (1.14.2), show that although PpSn “ 0q Ñ 0 due
to (1.14.2), for any n P N, the function Z Q m ÞÑ PpS2n “ mq is maximised for m “ 0.

Thus (1.14.2) tells us that PpSn “ 0q goes to zero at the order of n´ 1
2 . One might therefore be tempted

to guess that if instead of just considering 0, we were replacing it by intervals of the type r´c
?
n, c

?
ns,

then we would obtain a non-trivial limiting probability for Sn to take values in such intervals. This is
indeed the case (and not only if the Xn describe coin tosses, but for far more general distributions of
X) as will be established in the central limit theorem (see Theorem 1.15.1 below). For the time being,
however, we start with having a look at a simpler result at cruder scales.

1.14.1 Weak law of large numbers

We will start with investigating the so-called empirical mean.

Definition 1.14.3. Given a realization X1pωq, . . . , Xnpωq of random variables, its empirical mean is
defined as

1

n
Snpωq “ 1

n

nÿ

j“1

Xjpωq. (1.14.3)

Remark 1.14.4. According to Lemma 1.7.5, the empirical mean 1
n
Sn defined in (1.14.3) is a random

variable again.

In order to be able to prove something meaningful about the empirical mean, we will take advantage of
Chebyshev’s inequality introduced in Corollary 1.12.2 above.
As suggested by (1.14.2) and the heuristics developed subsequently, we might guess that the empirical
mean defined in (1.14.3) will converge to 0 under suitable assumptions on the sequence pXnq.

Definition 1.14.5. A sequence pXnq of elements of L1pΩ,F ,Pq satisfies a weak law of large numbers if

1

n

´ nÿ

j“1

Xj ´ ErXjs
¯

PÝÑ 0 as n Ñ 8. (1.14.4)
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Historically, a weak law of large numbers had first been rigorously derived by Jakob Bernoulli in [Ber13].
Nevertheless, the intuition for such a statement must have been around at that time already since in
a correspondence Jakob Bernoulli writes to Gottfried Wilhelm Leibniz in October 1703 [vdWB75, pp.
509–513]: ‘Obwohl aber seltsamerweise durch einen sonderbaren Naturinstinkt auch jeder Dümmste ohne
irgend eine vorherige Unterweisung weiss, dass je mehr Beobachtungen gemacht werden, umso weniger die
Gefahr besteht, dass man das Ziel verfehlt, ist es doch ganz und gar nicht Sache einer Laienuntersuchung,
dieses genau und geometrisch zu beweisen.’

Theorem 1.14.6 (Weak law of large numbers). Let pXnq be a sequence of pairwise uncorrelated random
variables in L2pΩ,F ,Pq and let pαnq be a sequence of real numbers such that

řn
j“1 VarpXjq

α2
n

Ñ 0. (1.14.5)

Then for all ε ą 0,

P

´ˇ̌
ˇ
řn

j“1pXj ´ ErXjsq
αn

ˇ̌
ˇ ě ε

¯
ď

řn
j“1 VarpXjq

α2
nε

2
Ñ 0 as n Ñ 8. (1.14.6)

In particular, if the sequence pXnq is even i.i.d., then it satisfies a weak law of large numbers.

Proof. We set

Yn :“
řn

j“1pXj ´ ErXjsq
αn

and apply Bienaymé’s formula from Corollary 1.9.25 in combination with (1.9.13) to get the equality in

VarpYnq “ 1

α2
n

nÿ

j“1

VarpXjq Ñ 0 as n Ñ 8,

where we used (1.14.5) to get the convergence. Plugging this bound into Chebyshev’s inequality of
Corollary 1.12.2, we obtain

Pp|Yn| ě εq ď VarpYnq
ε2

“
řn

j“1 VarpXjq
α2
nε

2
Ñ 0 as n Ñ 8.

This establishes (1.14.6).
If the pXnq are in addition i.i.d., then

nÿ

j“1

VarpXjq “ nVarpX1q

with VarpX1q ă 8, so (1.14.5) holds true with any αn such that αn{?
n Ñ 8. In particular, this is the

case for αn “ n, and thus the validity of (1.14.6) implies the law of large numbers for the sequence pXnq.
and hence finishes the proof.

Example 1.14.7. Let a sequence the pXnq as in Definition 1.14.1 of simple random walk be given. Then
the sequence pXnq satisfies a weak law of large numbers.
Indeed, by assumption the pXjq are centered, i.i.d., and in L2. Thus, the assumptions of the last part of
Theorem 1.14.6 are satisfied and in particular

1

n

nÿ

j“1

Xj
PÝÑ 0,

so the sequence pXnq satisfies a weak law of large numbers.

Example 1.14.8 (Monte-Carlo integration). Assume we want to evaluate the integral

ż 1

0

fpxqdx,
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where f : r0, 1s Ñ R is a sufficiently nice (say continuous) function. If we now choose an i.i.d. sequence
pXnq or random variables with Xn being uniformly distributed on r0, 1s, then we have

ż 1

0

fpxqdx “ ErfpX1qs,

and hence the weak law of large numbers Theorem 1.14.6 supplies us with

P

´ˇ̌
ˇ 1
n

nÿ

j“1

fpXjq ´
ż 1

0

fpxqdx
ˇ̌
ˇ ě ε

¯
ď nVarpfpX1qq

n2ε2
“ VarpfpX1qq

nε2
Ñ 0, as n Ñ 8. (1.14.7)

In this sense, 1
n

řn
j“1 fpXjq becomes a better and better approximation of

ş1
0
fpxqdx as n Ñ 8.

Monte-Carlo integration is particularly useful in high dimensions. The reason for this is that näıve
deterministic methods usually result in error bounds that grow exponentially in the dimension, whereas
(1.14.7) is independent of the dimension. There is a whole branch of research dedicated entirely to Monte-
Carlo integration and improving Monte-Carlo algorithms leading to more sophisticated algorithms such
as e.g. ‘importance sampling’ or ‘Quasi Monte Carlo methods’.

It occurs quite frequently in probability theory that triangular arrays pXn,kq, 1 ď k ď n, of random
variables play an important role. In this setting we get the following generalization of Theorem 1.14.6.

Theorem 1.14.9. Let pXn,kq, 1 ď k ď n, n P N be a triangular array of random variables in L2pΩ,F ,Pq
such that for each n P N, the random variables Xn,1, . . . , Xn,n are pairwise uncorrelated. Furthermore,
let pαnq be a sequence of real numbers such that setting

Sn :“
nÿ

j“1

Xn,j,

we have that
VarpSnq

α2
n

Ñ 0. (1.14.8)

Then
Sn ´ ErSns

αn

PÝÑ 0 as n Ñ 8.

This result will e.g. be useful in Homework sheet 9, where you find another problem concerning the
Pinana stickers.

Proof of Theorem 1.14.9. Applying Chebyshev’s inequality to the elements of the sequence of random
variables

Sn ´ ErSns
αn

, n P N,

we obtain for ε ą 0 arbitrary that

P

´ˇ̌
ˇSn ´ ErSns

αn

ˇ̌
ˇ ě ε

¯
ď VarpSnq

α2
nε

2
Ñ 0 as n Ñ 8,

where the convergence follows from (1.14.8).

1.14.2 Strong law of large numbers

Definition 1.14.10. A sequence pXnq of elements of L1pΩ,F ,Pq satisfies the strong law of large numbers
if

P

´
lim sup
nÑ8

ˇ̌
ˇ 1
n

nÿ

j“1

`
Xj ´ ErXjs

˘ˇ̌
ˇ “ 0

¯
“ 1,

which is the same as saying that

lim
nÑ8

1

n

nÿ

j“1

`
Xj ´ ErXjs

˘
“ 0 P ´ a.s.
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Theorem 1.14.11 (Strong law of large numbers). Let pXnq be a sequence of independent identically
distributed random variables in L4pΩ,F ,Pq. Then pXnq satisfies a strong law of large numbers.

Proof. Possibly replacing Xi by Xi ´ ErXis we can assume without loss of generality that ErXis “ 0.
Setting Sn :“ řn

i“1 Xi, according to Theorem 1.13.1 (d) it is sufficient to show that for each ε ą 0 we
have

8ÿ

n“1

Pp|n´1Sn| ě εq ă 8. (1.14.9)

For this purpose, we apply Markov’s inequality with the function ϕpxq “ x4, which entails

Pp|n´1Sn| ě εq ď Ern´4S4
ns

ε4
. (1.14.10)

Now

ErS4
ns “

ÿ

1ďi,j,k,lďn

ErXiXjXkXls.

Using that the pXnq are independent we deduce that ErXiXjXkXls can be non-zero only if each of the
indices i, j, k, l appears at least twice among i, j, k, l. We can therefore continue the above equality to get

ErS4
ns “

nÿ

i“1

ErX4
i s ` 2

nÿ

i,j“1
i‰j

ErX2
i X

2
j s “ nErX4

1 s ` 6npn ´ 1qErX2
1 s2.

Plugging this into (1.14.10) we get

Pp|n´1Sn| ě εq ď nErX4
1 s ` 6npn ´ 1qErX2

1 s2
n4ε4

,

which is summable over n P N since ErX2
1 s,ErX4

1 s ă 8. Therefore, (1.14.9) follows which finishes the
proof.

Remark 1.14.12. (a) The implications of Theorem 1.14.11 also hold if we replace the condition X P
L4pΩ,F ,Pq by X P L1pΩ,F ,Pq. This has been proven by Etemadi [Ete81]; the proof is elementary
and you should feel encouraged to read it (the article is available online through the university
network at http: // link.springer.com/ article/10. 1007% 2FBF01013465)

(b) As the name suggests, if pXnq satisfies a strong law of large numbers, it also satisfies a weak
law of large numbers. This is a direct consequence of Theorem 1.13.1 (a) applied to the sequence
pn´1

řn
i“1 Xiq of random variables and where the limiting random variable in Theorem 1.13.1 (a)

is given by the constant 0.

The converse is not necessarily true, as you will be asked to show in the homework problems.

Example 1.14.13. (a) Let p P p1{2, 1q and let pXnq be a sequence of independent identically dis-
tributed random variables on some probability space pΩ,F ,Pq such that

PpX1 “ 1q “ p, PpX1 “ ´1q “ 1 ´ p.

Then Sn :“ řn
i“1 Xi is called a random walk with drift.

Since obviously Xn P L4pΩ,F ,Pq for all n P N, the strong law of large of large numbers supplies us
with

lim
nÑ8

1

n
Sn ´ ErX1sloomoon

“2p´1

“ 0 P ´ a.s.,

so

lim
nÑ8

1

n
Sn “ 2p ´ 1 ą 0 P ´ a.s.

Therefore, we have ‘Sn Ñ 8’ P-a.s., or, more formally, Pplim infnÑ8 Sn ě Mq “ 1 for all M P R.

http://link.springer.com/article/10.1007%2FBF01013465
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(b) Consider a sequence pXnq of discrete i.i.d. random variables defined on pΩ,F ,Pq and taking values
in the finite set E such that πpxq :“ PpX1 “ xq ą 0 for all x P E. Then π is the law of X1 on E,
and the common interpretation is that pXnq describes a sequence of random signals taking values
in the alphabet E.

Due to the independence of the Xn, for any ω P Ω, the probability of having observed
X1pωq, . . . , Xnpωq in the first n trials is given by

nź

j“1

πpXjpωqq.

Taking logarithms and applying the strong law of large numbers we get that P-a.s.,

´ lim
nÑ8

1

n

nÿ

j“1

lnpπpXjpωqqq “ ´ErlnpπpX1qqs “ ´
ÿ

xPE
πpxq ln πpxq,

where we took advantage of the fact that the lnpπpXnqq form an independent family of random
variables. The right-hand side of this expression is called the entropy of the probability measure π,
and it is a measure for the amount of information or complexity that is inherent to the distribution
π.

1.14.3 Are we investigating unicorns?

In the previous sections we have investigated the asymptotic behaviour of (infinite) sequences of inde-
pendent (and sometimes identically distributed) random variables in depth. In particular, it seemed like
we took for granted the fact that there exist such sequences in the first place. Is this a fair thing to do?

In Example 1.6.6 we have seen that a finite number of independent experiments can be modelled on a
corresponding product space (in that setting, if we consider the n-fold product, one can choose Xk to be
a random variable depending on the k-th coordinate of Ω1 ˆ . . . ˆ Ωn only, and in this case the random
variables would be independent random variables on the product space given in (1.6.6)).

A self-evident choice for modeling an infinite number of independent experiments (such as independent
rolls of a fair die) would be to try considering a corresponding infinite product space. However, it turns
out that we run into difficulties defining a probability measure on an infinite space like t1, 2, 3, 4, 5, 6uN
(endowed with a suitable σ-algebra) in such a way that for ω “ pω1, ω2, . . .q P t1, 2, 3, 4, 5, 6uN the
coordinates projections Xjpωq “ ωj are independent random variables and give the right probabilities
(recall that this was not hard to accomplish in the case of finitely many die rolls). This issue will only
be formally and positively resolved in the lecture ‘Probability Theory I’. For the time being we tacitly
assume that there are probability spaces on which we can find an infinite sequence of independent random
variables, each of which is distributed according to a given distribution.

1.15 Central limit theorem

Besides the laws of large numbers from the previous section, the central limit theorem is the second main
result of this course. On the one hand, it provides more precise information of the fluctuations of the
sum of well-behaved random variables than the results we know from the laws of large numbers. On
the other hand, it plays an important role in statistics since it justifies using the normal distribution in
many models. This exemplifies how it has been given its name, which in fact is due to the ‘central’ role
it plays in probability theory.

To motivate the central limit theorem, let us get back to (1.14.2) where we had shown that for simple
random walk Sn,

PpS2k “ 0q „ 1?
kπ

.

In fact, in this setting it is not hard to show that not only the probability of finding simple random walk
in 0 at time 2k has a square root decay in k, but also the probabilities of finding simple random walk at
a distance of order

?
k at time 2k (we restrict ourselves to even times for simplicity). Indeed, we obtain
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for any constant c P Rzt0u, setting ck :“ tc
?
ku for brevity, that

PpS2k “ 2ckq “
ˆ

2k

k ` ck

˙
2´2k

„ pk{eq2k
?
2π ¨ 2k

pk ` ckqk`ckpk ´ ckqk´ck
a
4π2pk ` ckqpk ´ ckq

d
k

πpk ` ckqpk ´ ckq

“ exp
!
2k ln k ´ pk ` ckq lnpk ` ckqloooooooooomoooooooooon

“pk`ckqpln k`lnp1`ck{kqq

´pk ´ ckq lnpk ´ ckq
)d 1

πkp1 ´ c2k{k2q

“ exp
!

´ ckpln k ` lnp1 ` ck{kqq ´ k lnp1 ` ck{kq ` ckpln k ` lnp1 ´ ck{kqq ` k lnp1 ´ ck{kq
)

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
„rcPp0,8q

ˆ
d

1

πkp1 ´ c2k{k2q „ rc
c

1

πk
,

where we used Stirling’s formula in the second line to obtain the first asymptotics.
Thus, we have shown that, at least for simple random walk, we have the same order of decay for all
probabilities of the form Pp2k “ ckq with ck as above. As a consequence, if we are looking for a rescaling
of Sn by some scale function ϕpnq such that Sn{ϕpnq might converge in distribution to a non-trivial
limiting distribution, then the above suggests that

?
n should be the correct order of ϕpnq.

Yet another motivation for the central limit theorem can be derived from the laws of large numbers:
From those we know that under suitable assumptions on a sequence of i.i.d. random variables we have

lim
nÑ8

´ 1

n
Sn ´ ErX1s

¯
“ 0.

To obtain information on a finer scale than in the central limit theorem we can now ask if there exists
an exponent β P p0,8q such that the sequence nβp 1

n
Sn ´ ErX1sq might hopefully converge to a non-

trivial limiting random variable instead of 0. The first motivational thread via the investigation of simple
random walk then suggests that β “ 1{2. Indeed, this always has to be the case as long as the Xn are
assumed to have finite variance since due to Bienaymé’s formula we have

Var
´
nβpn´1Sn ´ ErX1sq

¯
“ n2β 1

n2
n “ n2β´1,

which can only converge to a non-trivial limit if β “ 1
2 .

While the central limit theorem will not give us any information on probabilities of finding e.g. simple
random walk at single points, it does indeed imply that the right scale for rescaling is

?
n; and not only

does it do so for simple random walk, but for a very general class of distributions.

Theorem 1.15.1 (Central limit theorem). Let a sequence pXnq of independent identically distributed
random variables with expectation µ “ ErX1s and finite positive variance σ2 :“ VarpX1q be given. Then
the sequence of random variables defined via

Yn :“
řn

i“1pXi ´ µq?
σ2n

, n P N, (1.15.1)

converges in distribution to a N p0, 1q distributed random variable, i.e., for any t P R, (recall (1.8.7))

PpYn ď tq Ñ Φptq “ 1?
2π

ż t

´8
e´x2{2 dx as n Ñ 8.

There are at least two essentially different strategies to prove the central limit theorem. The first one
is a more or less self-contained and direct proof taking advantage of the characterization of convergence
in distribution given in Definition 1.11.8. A proof along these lines can e.g. be found as the proof
of [Geo09, Theorem 5.28]. The second one uses the technique of characteristic functions. It has the
disadvantage that for us it is less self-contained; it is, however, more robust under variations of the
very setting given in Theorem 1.15.1 and can be generalized without too much effort to more general
situations, such as different state spaces or dependencies between the random variables Xn. We refer
to [Kle14, Section 15.5] for further detail.



56 CHAPTER 1. PROBABILITY THEORY

Remark 1.15.2. (a) The Yn are shifted and rescaled in such a way that ErYns “ 0 and VarpYnq “ 1,
so expectation and variance already coincide with those of a N p0, 1q-distributed variable.

(b) It is surprising that, as long as the Xn have finite second moments the limiting distribution is the
normal distribution, independent of the specific distribution of the Xis. This type of phenomenon
is also called universality (of the normal distribution).

(c) There is a plethora of other, more general conditions which imply the validity (1.15.1). In particular,
similarly to the case of the weak law of large numbers Theorem 1.14.9, there is a version of the
central limit theorem for triangular arrays as well.

(d) The finiteness of the second moment is in fact essential in Theorem 1.15.1. If it is not assumed,
however, then one can still obtain other types of convergence results to non-trivial distributions
(so-called α-stable distributions) for different rescalings than the division by

?
n in (1.15.1).

(e) It can be shown that the strongest type of convergence in Theorem 1.15.1 indeed is already given by
convergence in distribution (and not e.g., in probability).

Almost sure convergence can be excluded setting An :“ tYn ě 1u and Bn :“ tYn ď ´1u. Then
PpAnq,PpBnq Ñ Φp´1q ą 0, so the first part of Borel Cantelli yields

Exercise 1.15.3. For a sequence of random variables pXnq as in the assumption of Theorem 1.15.1, the
central limit theorem implies the validity of a weak law of large numbers for pXnq.
Indeed, since the distribution function Φ of the standard normal distribution (see (1.8.7)) is continuous,
Theorem 1.15.1 implies that for arbitrary M ą 0 we have

P

´ řn
i“1pXi ´ µq?

σ2n
R p´M,M s

loooooooooooooooomoooooooooooooooon
An,M

¯
Ñ Φp´Mq ` p1 ´ ΦpMqq. (1.15.2)

Now for any M P p0,8q and ε ą 0 there exists N P N such that for all n ě N one has

Bn,ε :“
!ˇ̌
ˇ
řn

i“1pXi ´ µq
n

ˇ̌
ˇ ą ε

)
Ă An,M .

As a consequence, we obtain for any such M and ε, in combination with (1.15.2), that

lim sup
nÑ8

PpBn,εq ď Φp´Mq ` p1 ´ ΦpMqq.

Since M was arbitrary and limMÑ8 Φp´Mq ` p1 ´ ΦpMqq “ 0, this implies

lim
nÑ8

PpBn,εq “ 0.

As in addition ε ą 0 was arbitrary, this implies the desired weak law of large numbers for pXnq.

Example 1.15.4. Using the (e.g., weak) law of large numbers, we have seen in Example 1.14.13 that
for a random walk with drift (i.e., Sn “

řn
j“1 Xj where the Xj are i.i.d. with PpX1 “ 1q “ p, PpX1 “

´1q “ 1 ´ p, and p P p1{2, 1q) one has that for all ε ą 0,

Pp|Sn ´ np2p ´ 1q| ě nεq Ñ 0.

Therefore, the first order (i.e. linear in n) term of the position of Sn at time n will asymptotically be
given by 2p ´ 1. In order to obtain a better understanding, it is of course tempting to ask for the lower
order corrections. For this purpose we apply the central limit theorem; using that the variance of Xn is
given by

VarpXnq “ ErX2
ns ´ ErXns2 “ 1 ´ p2p ´ 1q2 “ 1 ´ 4p2 ` 4p ´ 1 “ 4pp1 ´ pq :“ σ2

we obtain
Sn ´ np2p ´ 1q?

σ2n

LÝÑ N p0, 1q.

In particular, this implies that the ‘typical’ fluctuations of Sn around its expected value np2p ´ 1q are of
the order

?
n.
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1.16 Markov chains

So far we have mainly been focusing on the investigation of sequences of independent random variables
(with the prime examples of independent dice rolls or coin flips). It turns out, however, that in order
to model slightly more complicated situations one should admit at least a certain degree of dependence
among random variables. As an example, consider a very simple stochastic model of weather forecasting.
While experience probably tells you that modeling whether a day will be sunny or cloudy by independent
(possibly biased) coin flips seems too simplistic, another approach might be to say that tomorrow has a
higher probability to be sunny than cloudy if we already know that today is sunny.

Alternatively, assume that each minute you were scanning the traffic situation at a certain part of
a highway. There could be three states, namely ‘traffic jam’, ‘slow-moving traffic’, and ‘well-moving
traffic’. Again, experience tells us that, empirically, if there is a traffic jam at present, then in the
next minute the probability of still seeing a traffic jam is higher than if there was well-moving traffic at
present, and similarly for the other possible states of the road. In particular, it does not seem to be a
good idea to try to model the states of the highway using i.i.d. random variables.

This exemplifies of the easiest types of dependence in sequences of random variables, and this type of
dependence is so important that this class of sequences has been given a name on its own, namely the
class of Markov chains. Intuitively, a sequence of random variables is called a Markov chain (or is said
to have the Markov property) if, at any time n, the transition probabilities for its state at time n ` 1
only depend on the value of Xn, and neither on the values of X1, . . . , Xn´1 nor on the specific value of
n (the latter property is also referred to as homogeneity in time).

In what follows for a finite or countable set S we will denote by RSˆS the set of real matrices whose
rows and columns are indexed by the elements of S.

Definition 1.16.1. Let S be a finite or countable set. A sequence of random variables pXnq on pΩ,F ,Pq
is called a (time homogeneous) Markov chain with state space S and transition matrix P “ pP px, yqqx,yPS
if for all n P N0 and x0, x1, . . . , xn`1 P S, one has

P pxn, xn`1q “ PpXn`1 “ xn`1 |Xn “ xnq
“ PpXn`1 “ xn`1 |X0 “ x0, X1 “ x1, . . . , Xn “ xnq, (1.16.1)

whenever PpX0 “ x0, X1 “ x1, . . . , Xn “ xnq ą 0.

Thus, the probability that a (time homogeneous) Markov chain jumps from x to y from time n to time
n ` 1 depends only on x and y and is given by the entry P px, yq of the transition matrix.

Definition 1.16.2. A real n ˆ n matrix P P RSˆS with the following property is called stochastic: For
each x P S, one has that P px, ¨q is a probability distribution on pS, 2Sq, i.e., P px, yq ě 0 for all y P S,

and ÿ

yPS
P px, yq “ 1.

In particular, transition matrices are stochastic matrices. Vice versa, for any stochastic matrix P P RSˆS

one can define a Markov chain pXnq that has transition matrix P.

Example 1.16.3. (a) Simple random walk on Z (see Definition 1.14.1) and random walk with drift
Z (see Example 1.14.13) are both Markov chains with state space S “ Z. Their transition matrices
are given by

P px, yq :“
"

1
2 , for each y P Z with |x ´ y| “ 1,
0, otherwise.

and

P px, yq :“

$
&
%

p, if y “ x ` 1,
1 ´ p, if y “ x ´ 1,

0, otherwise.

respectively.
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(b) Random walks on graphs:

A finite (undirected) graph G “ pV,Eq consists of a finite set of vertices V and a set of edges
E Ď ttx, yu : x, y P V u. We say that x, y P V are neighbors if tx, yu P E, and in this case one
usually writes x „ y. The degree dpxq of a vertex x P V is defined as the number of its neighbors

dpxq :“ |ty P V : x „ yu|.

Assume dpxq ă 8 for all x P V. Then simple random walk on G is the Markov chain with state
space S “ V and transition probabilities given by

P px, yq :“
" 1

dpxq , if y „ x,

0, otherwise.

I.e., when at vertex x at time n, the probability of its position at time n`1 is distributed uniformly
over the neighbors of y.

A specific example is the simple random walk on Z that we had introduced in Example 1.14.1, but
much more is covered by this general setting, such as simple random walk on the complete graph
of n P N vertices, which is the graph consisting of a state space S with |S| “ n and edges between
any two vertices, i.e., the edge set is ttx, yu : x, y P V u.

In the context of Markov chains it will frequently turn out useful to apply tools from linear algebra.
Therefore, probability measures on pS, 2Sq will oftentimes be interpreted as possibly infinite row (or
column) vectors (called probability vectors), and similarly we will switch between interpreting elements of
RS as (row / column) vectors and as functions from S to R without further mentioning. In particular, for
the distribution of a Markov chain pXnq at time n we introduce the shorthand notation µnpxqxPS P r0, 1sS
via

µnpxq :“ PpXn “ xq, @x P S, n P N0. (1.16.2)

A priori, given the setting of Definition 1.16.1, the initial distribution of the Markov chain, i.e., its
distribution at time 0, is given by the distribution of X0 and thus equal to µ0pxq, x P S. The probability
that the chain is in state y at time 1 is then given by

µ1pyq “ PpX1 “ yq “
ÿ

xPS
PpX1 “ y, X0 “ xq “

ÿ

xPS
PpX0“xqą0

PpX1 “ y |X0 “ xqPpX0 “ xq

“
ÿ

xPS
µ0pxqP px, yq “ pµ0 ¨ P qpyq.

(1.16.3)

Hence, the entire distribution of the chain at time 1 is given by the vector

µ1 “ µ0 ¨ P, (1.16.4)

where the right-hand side is the product of a row vector with an element of RSˆS . I.e., starting from
today’s distribution of the chain we obtain tomorrow’s distribution by multiplying the former to the right
by the matrix P. Inductively we get

µn “ µ0 ¨ Pn, (1.16.5)

where, Pn denotes the n-th power of the matrix P.

Remark 1.16.4. We should note here that even in the case of S being infinite (in which case it will
be countable due to our previous assumptions), the product of two stochastic matrices P,Q P RSˆS is
well-defined in the same simple way it is defined in linear algebra: For any x, y P S we set

pP ¨ Qqpx, yq :“
ÿ

zPS
P px, zqQpz, yq, (1.16.6)

and in this case the right-hand side is a well-defined since the sum is over non-negative numbers only.

Exercise 1.16.5. If P,Q P RSˆS are stochastic matrices, then P ¨Q again is a stochastic RSˆS matrix.
Indeed, it is obvious that as a sum over non-negative terms, pP ¨ Qqpx, yq is non-negative again. In
addition, since both P and Q are stochastic matrices, we have for the row sum of the row indexed by x

that ÿ

yPS
pP ¨ Qqpx, yq “

ÿ

yPS

ÿ

zPS
P px, zqQpz, yq “

ÿ

zPS
P px, zq

ÿ

yPS
Qpz, yq

looooomooooon
“1

“ 1,

where the sums could be interchanged since all summands are non-negative.
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In what comes below, we will separate the initial distribution µ0 of the Markov chain from the transition
dynamics induced by the transition matrix P . Therefore, if we want to stress the initial distribution, we
will use the notation Pµ0 for P. Similarly, for any time n P N0 and any function f : S ÞÑ R we write Eµ0

for E in order to stress the initial distribution:

Eµ0 rfpXnqs “ ErfpXnqs “
ÿ

yPS
fpyqPpXn “ yq “

ÿ

yPS
fpyqµnpyq

as long as

either
ÿ

yPS
pfpyq _ 0qPpXn “ yq ă 8 or

ÿ

yPS
pfpyq ^ 0qPpXn “ yq ą ´8 (1.16.7)

(which guarantees that the right-hand side is well-defined in r´8,8s). In this case, bearing in mind
that XnpΩq Ă S and taking advantage of (1.16.5), we can rewrite the expectation as

Eµ0 rfpXnqs “
ÿ

yPS
pµ0P

nqpyq ¨ fpyq “ µ0 ¨ Pn ¨ f, (1.16.8)

where all multiplications appearing on the right-hand side are to be interpreted as matrix multiplications.
The nice thing about the formula on the right-hand side of (1.16.8) is that we have clearly separated
the influence of the three parameters initial distribution µ0, transition dynamics P , and the functional
f. Hence, in the same vein as multiplication of a probability distribution µ on pS, 2Sq from the right by
P gives the distribution of the Markov chain after one time step with initial distribution µ (cf. (1.16.4)),
formula (1.16.8) can be interpreted in the way that multiplication of a function f : S Ñ R (considered
as a vector in RS) from the left by P corresponds to taking the expectation of fpX1q.
In particular, although we have noted that in the context of Definition 1.16.1, the initial distribution
of a Markov chain is already characterized by the distribution of X0, using (1.16.8) we can think of a
Markov chain started under any arbitrary initial probability distribution rµ0 on S by demanding that its
distribution at time n be given by rµ0 ¨ Pn.

Indeed, we would then want to have

PpXi “ xi @ 0 ď i ď nq “ rµ0px0q
nź

i“1

P pxi´1xiq. (1.16.9)

We do not have the tools yet to rigorously deduce the existence of a sequence of random variables pXnq
which has the desired properties (in the sense that it constitutes a Markov chain with the desired initial
distribution and transition dynamics); for doing so, we refer to the theorem of Ionescu-Tulcea or, more
generally, Kolmogorov’s existence and uniqueness theorem, which is to be covered in probability theory
I.

Remark 1.16.6. The finite dimensional distributions of a Markov chain are the distributions of all
the vectors of discrete random variables pXi1 , Xi2 , . . . , Xinq taking values in pSn, 2S

nq, for n P N and
1 ď i1 ă i2 ă . . . ă in with ij P N for all 1 ď j ď n.

Then, due to (1.16.9), the finite dimensional distributions are indeed completely determined by the initial
distribution rµ0 and the transition matrix P.

Nevertheless, we note the following without proof.

Claim 1.16.7. Let S ‰ H be finite or countable. Then there is a bijection between the set
!

pµ, P q : µ a distribution on S, and P a stochastic S ˆ S matrix
)
,

and the set of distributions of time homogeneous Markov chains with state space S.

As a shorthand in the context above, if µ0 “ δx (recall the Dirac measure introduced in Definition 1.3.8),
then we write Px and Ex as shorthands.

1.16.1 Stationary distribution

Definition 1.16.8. A probability distribution π on pS, 2Sq is called a stationary distribution / invariant
distribution / equilibrium distribution / steady state for a transition matrix P if one has

π “ π ¨ P. (1.16.10)

(i.e., if π is a left eigenvector of P with eigenvalue 1)
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This means that starting a Markov chain with transition matrix P from its stationary distributions
µ0 :“ π, one has µn “ π for all n P N0.

Remark 1.16.9. Note that a real m by n matrix M has left eigenvector v and corresponding eigenvalue
λ if and only if MT has right eigenvector vT and eigenvalue λ.

Stationary distributions are a very important topic in Markov chains: Under reasonable assumptions, the
Markov chain converges towards its (unique?) stationary distribution, and it is interesting and important
to understand how fast this convergence happens (think of how often you will have to shuffle a deck of
cards in order for the cards to be distributed ‘sufficiently random’).

Example 1.16.10. (a) For random walk on a finite graph pV,Eq as introduced in Example 1.16.3 (b),
a stationary distribution is given by

πpxq :“ dpxq
2|E| . (1.16.11)

Indeed, for any y P S we have

pπ ¨ P qpyq “
ÿ

xPV
πpxq ¨ P px, yq “

ÿ

xPV, tx,yuPE

dpxq
2|E| ¨ 1

dpxq “ 1

2|E|
ÿ

xPV, tx,yuPE
1

loooooomoooooon
“dpyq

“ dpyq
2|E| “ πpyq.

In addition we have that π has mass 1, i.e.,

ÿ

xPV
πpxq “

ÿ

xPV

dpxq
2|E| “ 1

2|E|
ÿ

xPV
dpxq “ 1,

where the last equality follows since any edge is counted twice in the sum over
ř

xPV due to the fact
that each of the two vertices it contains is counted.

(b) For d P N, d-dimensional simple random walk on Zd is defined as the sequence Sn “ řn
j“1 Xj,

where the Xj are i.i.d. with

PpX1 “ eq “
"

1
2d , if }e}1 “ 1,
0, otherwise.

Show that d-dimensional simple random walk on Zd and random walk with drift on Z do not have
a stationary distribution.

Show that, nevertheless, defining the counting measure π on pZd, 2Z
dq via πpAq :“ |A| for A P 2Z

d

we have
πP “ π,

if P denotes the transition matrix of random walk with drift on Zd. This shows that, although
there might not exist a stationary distribution, one might still be able to find a so-called stationary
measure which then has infinite mass.

We start with showing that a stationary distribution does not exist (in the case of simple random
walk). For purpose, assume to the contrary that π is a stationary distribution for simple random
walk on Zd. In particular, since π is non-negative and

ÿ

xPZd

πpxq “ 1,

we deduce that M :“ maxxPZd πpxq P p0, 1s exists. We can then find xM P Zd such that

(a) πpxM q “ M , and

(b) there exists y P Zd with }xM ´ y}1 “ 1 with πpyq ă πpxM q.

As a consequence,

pπP qpxM q “
ÿ

zPZd : }z´xM }1“1

1

2d
πpzq ă πpxM q.
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In particular, π cannot be a stationary distribution for simple random walk on Zd.

On the other hand, denoting by π the counting measure on Zd we deduce for any y P Zd that

pπ ¨ P qpyq “
ÿ

xPZd : }x´y}1“1

1

2d
πpxq “ 1,

which equals πpyq “ 1. Thus, at least we have π “ π ¨ P, and π is a stationary measure for simple
random walk on Zd.

For the case of random walk with a drift the corresponding results are proven in a similar fashion.

(c) For p P p0, 1q and N P N, random walk with absorption on t0, 1, . . . , Nu (and drift) is defined as
the Markov chain with transition matrix

P “

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
1 ´ p 0 p 0 ¨ ¨ ¨ 0

0
. . .

. . .
. . . 0 0

0 0
. . .

. . .
. . . 0

0 ¨ ¨ ¨ ¨ ¨ ¨ 1 ´ p 0 p

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 1

˛
‹‹‹‹‹‹‹‹‚

One interpretation of this Markov chain is as follows. At time 0, two players A and B have a
capital of CA, CB P N such that CA `CB “ N. They then start playing a sequence of (independent)
matches that player A wins with probability p and loses with probability 1 ´ p (hence, the matches
are called fair if p “ 1{2, and not fair otherwise), and the player winning a match pays one unit
to her opponent. The sequence stops once one of the two players is bankrupt. If Xn denotes the
Markov chain at time n (i.e., the capital of player A after n matches), then, if it hits N before
hitting 0, player A has won the sequence of matches, whereas otherwise player B has won the
sequence.

Show that the stationary distributions for random walk with absorption on t0, 1, . . . , Nu are exactly
the probability measures λδ0 ` p1 ´ λqδN , for any λ P r0, 1s.

(d) For p P p0, 1q and N P N, random walk with reflection on t0, 1, . . . , Nu (and drift) is defined as the
Markov chain with transition probabilities

P “

¨
˚̊
˚̊
˚̊
˚̊
˝

0 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
1 ´ p 0 p 0 ¨ ¨ ¨ 0

0
. . .

. . .
. . . 0 0

0 0
. . .

. . .
. . . 0

0 ¨ ¨ ¨ ¨ ¨ ¨ 1 ´ p 0 p

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 1 0

˛
‹‹‹‹‹‹‹‹‚

(e) For p P p0, 1q random walk with reflection on t0, 1, 2, . . .u (and drift) is defined as the Markov chain
with transition probabilities given by the infinite matrix

P “

¨
˚̊
˚̊
˚̊
˚̊
˝

0 1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ¨ ¨ ¨
1 ´ p 0 p 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
0

. . .
. . .

. . . 0 0 ¨ ¨ ¨
0 0

. . .
. . .

. . . 0 ¨ ¨ ¨
0 ¨ ¨ ¨ ¨ ¨ ¨ 1 ´ p 0 p ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

˛
‹‹‹‹‹‹‹‹‚

According to (1.16.10), a probability vector π P r0, 1sN0 is invariant for P if

π ¨ P “ π,
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which is equivalent to the system

p1 ´ pqπp1q “ πp0q (1.16.12)

πp0q ` p1 ´ pqπp2q “ πp1q (1.16.13)

pπpi ´ 1q ` p1 ´ pqπpi ` 1q “ πpiq for all i ě 2, (1.16.14)

of difference equations, where the last equation can be rewritten as

pπpi ´ 1q ´ πpiq ` p1 ´ pqπpi ` 1q “ 0. (1.16.15)

We observe that (1.16.12) implies that

πp1q “ πp0q
1 ´ p

, (1.16.16)

which inserted in (1.16.13) yields

πp2q “ πp1q ´ πp0q
1 ´ p

“ pπp0q
p1 ´ pq2 . (1.16.17)

Plugging the previous two equations into (1.16.14) we deduce

πp3q “ πp2q ´ pπp1q
1 ´ p

“ pπp0q ´ pp1 ´ pqπp0q
p1 ´ pq3 “ p2πp0q

p1 ´ pq3 . (1.16.18)

We can now try to guess the general solution from these considerations and prove it using complete
induction.

An alternative approach to solving the above system of equations is to use the Ansatz πpiq “ λi,
which plugged into (1.16.15) yields

pλi´1 ´ λi ` p1 ´ pqλi`1 “ 0,

and, as is done in a similar fashion for linear ordinary differential equations (‘gewöhnliche Dif-
ferentialgleichungen’) with constant coefficients, solve the corresponding characteristic polynomial
which is obtained from the previous display via division by λi´1 to get

λ ÞÑ p ´ λ ` p1 ´ pqλ2 “ 0

for which we deduce the solutions

λ1 “ 1 and λ2 “ p

1 ´ p
.

Therefore, we obtain the solutions

πpiq “ C1 ` C2i, if p “ 1 ´ p “ 1

2
, (1.16.19)

and

πpiq “ C1 ` C2

´ p

1 ´ p

¯i

, if p ‰ 1

2
. (1.16.20)

As a consequence we deduce that for p ě 1{2 there exists no stationary (probability) distribution.
For p P p0, 1{2q, in order to have πpiq ě 0 for all i P N0 and

ÿ

iPN0

πpiq “ 1, (1.16.21)

we need C1 “ 0 and C2 ě 0. In particular, we deduce

πpiq “ C2

´ p

1 ´ p

¯i

, i ě 1, (1.16.22)

which plugged into (1.16.12) yields

πp0q “ p1 ´ pqC2
p

1 ´ p
“ C2p. (1.16.23)
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Thus, (1.16.21) becomes

1
!“ C2

´
p `

ÿ

iě1

´ p

1 ´ p

¯i¯
“ C2

´
p ` p{p1 ´ pq

1 ´ p{p1 ´ pq
¯

“ C2
2pp1 ´ pq
1 ´ 2p

,

hence

C2 “ 1 ´ 2p

2pp1 ´ pq ,

which in combination with (1.16.22) and (1.16.23) completely determines the stationary distribu-
tion.

The definition of a stationary distribution in (1.16.10) states that a stationary distribution is a fixed
point of the right multiplication by P. One might therefore be tempted to hope that the distributions
µn “ µ0 ¨ Pn of the Markov chain at time n could possibly converge towards a stationary distribution
of the Markov chain. As a consequence, and since there are numerous applications to this, one of the
principal things we will investigate is the question of convergence of the distribution µn to the stationary
distribution of the Markov chain. It is therefore of course helpful to know criteria which ensure that a
Markov chain has a stationary distribution, and also under which condition such a stationary distribution
might be unique. One of the easiest results in this context and with least assumptions is the following.

Proposition 1.16.11. Every Markov chain with finite state space has at least one stationary distribution.

Proof. Let S denote the state space and

K :“
!

pπpxqqxPS P RS : πpxq ě 0 @x P S,
ÿ

xPS
πpxq “ 1

)
,

which can be identified with the simplex of probability measures on S (recall Exercise 4 on the second
homework sheet). Choose an arbitrary initial distribution µ0 (which is an element of K by definition),
and denote by P the transition matrix of the Markov chain. Then the sequence of its distributions pµnq
is a sequence whose elements take values in K, and the same applies to the so-called Cesàro means

νm :“ 1

m

m´1ÿ

n“0

µn.

Since K is a compact subset of RS (check!), the sequence pνmq has an accumulation point ν P K; i.e.,
there exists a subsequence νmk

, k P N0, such that limkÑ8 νmk
“ ν P K. Hence, we get

ν ¨ P “ p lim
kÑ8

νmk
q ¨ P “ lim

kÑ8
pνmk

¨ P q

“ lim
kÑ8

´` 1

mk

mk´1ÿ

n“0

µn

˘
¨ P

¯
“ lim

kÑ8

` 1

mk

mk´1ÿ

n“0

µn`1

˘ check!“ ν,
(1.16.24)

where in the second equality we used that matrix multiplication is a continuous mapping. Thus, ν is an
invariant distribution.

Remark 1.16.12. The equalities in (1.16.24) are of course equalities of vectors, and the limits taken
in that display are to be understood as pointwise limits. Observe that this is the same as interpreting
the vectors as probability measures (in the same spirit as outlined before (1.16.2)) and interpreting the
limits of probability measures in (1.16.24) as weak limits (recall (1.11.6)) if we endow the space S with
the metric dpx, xq “ 0 for all x P S and dpx, yq “ 1 if x ‰ y (note that this ensures that any function
f : S Ñ R is continuous).
Indeed, if pµnq is a sequence of vectors in RS such that µnpxq ě 0 for all x P S and

ř
xPS µnpxq “ 1 (and

the same for µ) then this implies the following: If f : S Ñ R is any bounded (continuous) function, and
Xn and X are S-valued random variables distributed according to µn and µ, respectively, we have

lim
nÑ8

ErfpXnqs “ lim
nÑ8

ÿ

xPS
fpxq ¨ PpXn “ xq “

ÿ

xPS
fpxq ¨ lim

nÑ8
PpXn “ xq

“
ÿ

xPS
fpxq ¨ PpX “ xq “ ErfpXqs,
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where interchanging the limits to obtain the second equality is justified since f is bounded and since for
any n we have that the PpXn “ xq, x P S, are non-negative and sum to 1 over x P S (later on the fact that
this interchange is allowed will be generalized to integrals and it will be called ‘dominated convergence’).
Thus, the above equality implies that Xn converges in distribution to X, and hence µn converges weakly
to µ.

Assume now, on the other hand, that the probability measures µn on pS, 2Sq converge weakly to a probabil-
ity measure µ. Denote by Xn and X random variables taking values in S that are distributed accordingly
to µn and µ. Then, since for any x P S, the function 1txu is bounded and continuous, we get

µnpxq “ Er1txupXnqs Ñ Er1txupXqs “ µpxq,

as n Ñ 8. Thus, in particular we have for all x P S that µnpxq Ñ µpxq as n Ñ 8.
This establishes the above claim.

The following questions immediately arise from our previous observations: Is the stationary distribution
unique? Since one stationary distribution is given by the limit of the Cesàro means of the µ0P

n and
since we have the fixed point interpretation of the stationary distribution from (1.16.10), might µ0P

n

even converge to it?
Without further assumptions, these hopes turn out to be false.

Exercise 1.16.13. Find a Markov chain on a finite state space such that

(a) there are several stationary distributions for this Markov chain;

(b) the sequence pµ0P
nq of distributions does not converge weakly (or, if we interpret µ0P

n as a vector,
pointwise, which is the same according to Remark 1.16.12).

The considerations of Example 1.16.13 lead us to the following definition:

Definition 1.16.14. A transition matrix P is called irreducible if for any x, y P S there exists m P N0

such that Pmpx, yq ą 0.

In words, this means that for any x, y P S there exists a finite time m such that if the chain is in x at
time 0, then there is a positive probability that the chain moves from x to y in m time steps. It turns
out that this is already sufficient to get the uniqueness of the stationary distribution as is shown in the
following result.

Proposition 1.16.15. Let P be an irreducible transition matrix of a Markov chain on a finite state
space. Then there exists a unique stationary distribution π for P.

In order to prove Proposition 1.16.15 we need to introduce some notation and the auxiliary result Lemma
1.16.17.

Definition 1.16.16. For an at most countable set S and P a transition matrix, a function h : S Ñ R

is called harmonic (with respect to P ´ I) if pP ´ Iqh “ 0, i.e., Ph “ h, so h is a right eigenvector to
P with eigenvalue 1.
If the matrix P is clear from the context, we also just call h harmonic, and we call it harmonic at x if
pPhqpxq “ hpxq.

Heuristically, a harmonic function can be interpreted in the following way: If we start the Markov chain
at an arbitrary site x P S, then the expected value of h ˝ Xn is constant in n P N0; i.e., we have
hpxq “ ExrhpXnqs (alternatively, hpxq “

ř
yPS P px, yqhpyq, and inductively hpxq “

ř
yPS P px, yqhpyq)

for all n P N. It is immediate that constant functions are harmonic, and the following lemma even tells
us that these are the only functions which are harmonic, as long as P is irreducible and the state space
is finite.

Lemma 1.16.17. If h : S Ñ R is harmonic with respect to the irreducible transition matrix P ´ I on
the finite state space S, then h is constant.

Proof. Let M :“ maxxPS hpxq (in particular, note that the maximum is well-defined since we assume S

to be finite) and let x0 P S be such that M “ hpx0q. Then, since h is harmonic, we get

hpx0q “
ÿ

xPS
P px0, xqhpxq.
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Since the P px0, xq are non-negative and sum to 1 over x P S, and since hpx0q “ M, we deduce that
hpxq “ hpx0q for all x such that P px0, xq ą 0. Using induction, we obtain that hpxq “ hpx0q for all x P S

for which there exists n P N such that Pnpx0, xq ą 0. Since we have assumed that P is irreducible,
the latter is the case for all x P S, which implies hpx0q “ hpxq for all x P S, and in particular h is
constant.

Exercise 1.16.18. Give an example which shows that the conclusion of Lemma 1.16.17 fails to hold in
general if one does not assume that S is finite or that P is irreducible.

Proof of Proposition 1.16.15. Lemma 1.16.17 implies that the kernel of the linear map P ´ I has dimen-
sion 1. Since the column rank and row rank of a matrix coincide, the kernel of pP ´ IqT “ PT ´ I also
has dimension 1, and this implies that there is at most one vector π whose entries are non-negative, sum
to 1, and that satisfies πP “ π. Thus, in combination with Proposition 1.16.11 we conclude that there
exists exactly one stationary distribution.

Wrapping things up we observe that so far we have conditions for the existence and uniqueness of a
stationary distribution. A central issue in applications to real world problems is to get information
about convergence to it. In order to understand this topic a little bit better, again we introduce some
more relevant notation.

1.16.2 Classification of states

The context of this subsection is interesting in its own right and will also be useful in applying the
Perron-Frobenius theorem (Theorem 1.16.30 below) to transition matrices in order to prove our main
convergence result for Markov chains (Theorem 1.16.39 below)

Definition 1.16.19. For a Markov chain with state space S, transition matrix P, and for states x, y P S,

we say that y can be reached from x if there exists n P N0 such that Pnpx, yq ą 0, where P 0 is defined
as the identity matrix in RSˆS. In this case we write x ù y. We write x ú y if x ù y and y ù x.

Lemma 1.16.20. The relation ú defines an equivalence relation on the state space S.

Proof. Exercise.

Exercise 1.16.21. Convince yourself that it is necessary to take n P N0 instead of n P N here in order
to get an equivalence relation on S.

Corollary 1.16.22. A transition matrix P P RSˆS is irreducible if and only if S has only one equivalence
class with respect to ú .

Proof. If P is irreducible, then by definition, for any x, y P S there exist m,n P N0 such that
Pmpx, yq, Pnpy, xq ą 0. In particular, x ú y. Since x and y were chosen arbitrarily, this means
that there is exactly one equivalence class with respect to the relation ú.
To prove the reverse direction, assume we have only one equivalence class with respect to ú. As a
consequence, for any x, y P S there is n P N0 with Pnpx, yq ą 0, and this implies that P is irreducible.

Definition 1.16.23. A state x is called essential (‘wesentlich’) if for all y, x ù y implies y ù x.

Otherwise x is called inessential (‘unwesentlich’).

Claim 1.16.24. Let x P S be arbitrary. Then:

(a) If x is essential then y is essential for all y P S with x ú y.

(b) If x is inessential then y is inessential for all y P S with x ú y.

Proof. Exercise

Definition 1.16.25. For a transition matrix P and a state x P S, the period of x is defined as

px :“ gcdtn P N : Pnpx, xq ą 0u.

A state x is called aperiodic if px “ 1.
The transition matrix P (and the induced Markov chain) is called aperiodic if for all x P S one has
px “ 1.



66 CHAPTER 1. PROBABILITY THEORY

Lemma 1.16.26. The period is a class property of the equivalence relation induced by ú. I.e., x ú y

implies px “ py.

Proof. Exercise.

Remark 1.16.27. Often aperiodic chains are easier to deal with than periodic ones. One way to make
a Markov chain P aperiodic is by considering its lazy version which has transition matrix P`I

2 (check
that this defines a transition matrix also). Intuitively, the difference of the corresponding Markov chain
to the original one is that each time this chain tosses an extra coin to decide whether it moves in the
first place or not. Many characteristics of the original chain are preserved by the lazy chain (like e.g.
the equivalence classes induced by the relation ú, or the law of its infinite trace and hence properties
such as recurrence or transience), but it is often easier to investigate due to its aperiodicity.

1.16.3 The Perron-Frobenius theorem

Definition 1.16.28. The spectral radius ̺pAq of a square matrix A P Rnˆn is defined as the maximum
of the moduli of its eigenvalues:

̺pAq :“ max
 

|λ| : λ is an eigenvalue of A
(
.

Remark 1.16.29. It might be useful to note here that if A is a real square matrix, then ̺pAq “ ̺pAT q
due to Remark 1.16.9.

Theorem 1.16.30 (Perron-Frobenius theorem; Oskar Perron ((1880–1975) and Ferdinand Frobenius
(1849 –1917))). Let M be a non-negative n ˆ n matrix such that M r ą 0 some r P N (i.e., M rpi, jq ą 0
for all i, j P t1, . . . , nu).
Then

(i) the spectral radius ̺pMq P p0,8q is a simple eigenvalue of M (recall that ‘simple’ means its algebraic
multiplicity is 1);

(ii) there is a strictly positive left eigenvector and a strictly positive right eigenvector of M with eigen-
value ̺pMq;

(iii) for any eigenvalue λ ‰ ̺pMq one has |λ| ă ̺pMq.
Proof. Since the proof is long and not probabilistic at its core, we omit it here and refer the interested
reader to [Sen06, Theorem 1.1] for example.

Remark 1.16.31. The proof of Theorem 1.16.30 is relatively long and technical. Therefore, it is worth to
note here that Proposition 1.16.15, which has been obtained using relatively neat and simple arguments,
is not too far off from the statement of Theorem 1.16.30 applied to a stochastic matrix P . In fact,
Proposition 1.16.15 provides us with the fact that P has a left eigenvector with eigenvalue 1, which has
non-negative entries only; in fact, due to the irreducibility it has positive entries only.14 Furthermore,
the proof of Proposition 1.16.15 immediately yields that the geometric multiplicity of the eigenvalue 1 is
1.
In addition, it is easy to obtain that ̺pP q “ 1.15

Comparing the above to Theorem 1.16.30 applied to a stochastic matrix P , we see that the only relevant
properties which we have not derived so far via our previous results are the following:

• 1 is a simple eigenvalue;

• |λ| ă ̺pP q “ 1 for all eigenvalues λ different from the eigenvalue 1.
14Indeed, for irreducible P we get that π has positive entries only: Choose x P S with πpxq ą 0. For any y P S, since P

is irreducible, we obtain that there exists nx,y P N such that Pnx,y px, yq ą 0. Thus, since π “ πP “ πPnx,y we deduce
that πpyq “ pπPnx,y qpyq “

ř
zPS πpzqPnx,y pz, yq ą πpxqPnx,y px, yq ą 0.

15We know that 1 is a left eigenvalue, so it remains to show that ̺pP q ď 1. Assume to the contrary that ̺pP q ą 1. Then
there exists a left eigenvalue λ with

|λ| ą 1 (1.16.25)

to a left eigenvector w ‰ 0. As a consequence, wPn “ λnw. Since Pn is a stochastic matrix again (see Exercise 1.16.5), we
get that

}wPn}8 ď }w}8 ¨ |S|. (1.16.26)

On the other hand, we have
}λnw}8 “ |λ|n}w}8. (1.16.27)

Now for n Ñ 8, the left-hand side of (1.16.26) stays bounded, whereas the expression in (1.16.27) tends to infinity due to
(1.16.25). In particular, they cannot be equal for all n, and therefore we must have |λ| ď 1, which implies ̺pP q ď 1 since
the eigenvalue λ was chosen arbitrarily.
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1.16.4 Quantitative convergence of Markov chains to equilibrium

We start with a basic equality for Markov chains which is a generalization of (1.16.3).

Proposition 1.16.32 (Chapman-Kolmogorov equation (Sydney Chapman (1888–1970), Andrey Kol-
mogorov (1903–1987))). Let a Markov chain pXnq with state space S and transition matrix P be given.
Then for any m,n P N0 and all x, y P S we have

Pm`npx, yq “
ÿ

zPS
Pmpx, zqPnpz, yq.

Proof. This is a direct consequence of the fact that Pm`n “ PmPn, which even if S is infinite countable
follows in the same way from the associativity of matrix multiplication of stochastic matrices as it does
in the case of S finite (see also (1.16.6)).

The following lemma is an auxiliary result for showing that if P is the transition matrix of an irreducible
aperiodic Markov chain on a finite state space, then there exists n P N such that Pn ą 0. Essentially, it
will give us a condition which ensures that the assumptions of the Perron-Frobenius theorem are fulfilled.

Lemma 1.16.33. Let Λ Ă N be nonempty and set d :“ gcdpΛq, the greatest common divisor of all
elements of Λ.
If d is finite, then there exist m P N, λ1, . . . , λm P Λ, and N0 P N, such that for all n ě N0 there exist
coefficients α1,n, . . . , αm,n P N with

nd “
mÿ

j“1

αj,nλj .

Proof. Denote by

G :“
#

mÿ

j“1

rjλj : m P N, r1, . . . , rm P Z, λ1, . . . , λm P Λ

+

the smallest additive subgroup of Z that contains Λ, and denote by d1 the smallest positive element of
G. We start with showing that d1 “ d.

Since d is a divisor of λ (write d|λ) for all λ P Λ, it follows that d|g for all g P G, and hence d|d1, i.e., in
particular

d ď d1. (1.16.28)

On the other hand, each g P G can be written as g “ rd1 ` s for some s with

0 ď s ă d1. (1.16.29)

Now s “ g ´ rd1 P G, and since d1 was the minimal positive element in G we obtain from (1.16.29) that
s “ 0. Thus, d1 divides each g P G and hence in particular each λ P Λ, which implies that d1|d and
therefore d1 ď d. Thus, in combination with (1.16.28) we deduce d1 “ d.

As a consequence, we find λ1, . . . , λm P Λ und r1, . . . , rm P Zzt0u such that

d “
mÿ

j“1

rjλj . (1.16.30)

We still have to deal with the issue that some of the r1, . . . , rm can be negative. For this purpose observe
now that we can find b1, . . . , bm P N such that

λj “ bjd for all j “ 1, . . . ,m. (1.16.31)

Write

b :“ mintbj : 1 ď j ď mu and

N0 :“
mÿ

j“1

b ¨ |rj | ¨ bj.
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Then each n ě N0 can be written as

n “ s1b1 ` ¨ ¨ ¨ ` smbm ` s (1.16.32)

with
0 ď s ă b and sj ě b ¨ |rj | @j P t1, . . . ,mu. (1.16.33)

Hence,

nd
(1.16.32)“

mÿ

j“1

sjbjd ` sd

(1.16.30), (1.16.31)“
mÿ

j“1

sjλj ` s

mÿ

j“1

rjλj

“
mÿ

j“1

psj ` srjqλj

This finishes the proof, since it follows from (1.16.33) that we have sj ` srj ě 1.

If the transition matrix P is irreducible we have that for any x, y P S there exists n P N with Pnpx, yq ą 0.
The following result implies that under the additional assumption of aperiodicity, the number n can be
chosen independently of the choice of x, y P S. In particular, this will enable us to apply the Perron-
Frobenius theorem to Markov chains with such transition matrices.

Corollary 1.16.34. Let P be the transition matrix of an irreducible and aperiodic Markov chain with
finite state space. Then for all n P N large enough, Pn ą 0.

Proof. Let S denote the state space. Since S is finite it is sufficient to show that for each x, y P S there
exists Nx,y P N such that

Pnpx, yq ą 0 @n ě Nx,y. (1.16.34)

Thus, let x, y P S be arbitrary and consider Λ :“ tn P N : Pnpy, yq ą 0u. As P is aperiodic, Lemma
1.16.26 implies that gcdpΛq “ 1, and the previous lemma implies that there exist λ1, . . . , λm P Λ and
rN P N such that for any n ě rN we find α1, . . . , αm P N with

n “
mÿ

j“1

αjλj . (1.16.35)

Since P is irreducible, we find nx,y such that

Pnx,y px, yq ą 0

We are going to show that (1.16.34) holds true for Nx,y :“ rN ` nx,y. For this purpose, observe that due
to (1.16.35), any n ě Nx,y can be written as

n “
mÿ

j“1

rαjλj ` nx,y,

some rα1, . . . , rαm P N. As a consequence of the Chapman-Kolmogorov equation Proposition 1.16.32, we
obtain

Pnpx, yq ě Pnx,ypx, yq
mź

j“1

`
Pλj py, yq

˘rαj
,

and the right-hand side is positive since by assumption we have Pnx,y px, yq ą 0 and Pλj py, yq ą 0.

Example 1.16.35. Find an example of an irreducible aperiodic Markov chain on an infinite state space
which shows that the assumption of the state space being finite is essential for the conclusion of the above
Corollary 1.16.34 to hold.
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The following corollary specialises the results that we have obtained so far to the setting of Markov
chains, in particular with a view towards proving Theorem 1.16.39.

Corollary 1.16.36. Let P be the transition matrix of an irreducible and aperiodic Markov chain with
finite state space. Then 1 is a simple eigenvalue of P and for any other eigenvalue λ of P one has
|λ| ă 1. The unique (according to Proposition 1.16.15 or otherwise according to Theorem 1.16.30) strictly
positive left eigenvector of P associated to 1, whose entries sum to one, will be denoted by π, and it is
the stationary distribution of the Markov chain associated to P.

Proof. As in Remark 1.16.31 we obtain that ̺pP q “ 1. Therefore, and since due to Corollary 1.16.34
we may apply Theorem 1.16.30, all remaining implications of the corollary follow directly from Theorem
1.16.30.

As the title of the subsection suggests, we want to study the quantitative convergence of the distribution
of a Markov chain to its equilibrium. For this purpose we need to be able to quantify the distance
between two (probability) measures.

Definition 1.16.37. Let µ, ν be probability measures on an at most countable measurable space pS, 2Sq.
The total variation distance of µ and ν is given by

}µ ´ ν}TV :“ 1

2
}µ ´ ν}1 “ 1

2

ÿ

xPS
|µpxq ´ νpxq| “ sup

AP2S
|µpAq ´ νpAq|, (1.16.36)

where } ¨ }1 is the 1-norm on the space RS.

Exercise 1.16.38. Prove the rightmost equality of (1.16.36).

For the transition matrix P of an aperiodic and irreducible Markov chain with finite state space S, denote
by λ1, λ2, . . . , λN , N ď |S|, the distinct eigenvalues of P in such a way that

1 “ λ1 ą |λ2| ě |λ3| ě . . . ě |λN |. (1.16.37)

We denote by σ :“ λ1 ´ |λ2| the so-called spectral gap. The following theorem tells us that the spectral
gap plays a prominent role in determining the speed of convergence to equilibrium.

Theorem 1.16.39 (Convergence theorem for Markov chains). Consider an irreducible and aperiodic
Markov chain on a finite state space S with transition matrix P and (unique, see Corollary 1.16.36)
stationary distribution π. Then there exists a constant C P p0,8q such that

sup
xPS

}Pnpx, ¨q ´ π}TV ď Cp1 ´ σ ` εpnqqn (1.16.38)

for all n P N, and where the error term ε is in Oplnn{nq; i.e., there exists a constant rC P p0,8q such
that |εpnq| ď C lnn{n for all n P N.

Remark 1.16.40. If one just aims for a convergence of supxPS }Pnpx, ¨q´π}TV to 0 which is exponential
in n (without a good bound on the exponential rate lnp1´σ`εpnqq as we have it on the RHS of (1.16.38)
with 1 ´ σ), then there are slightly easier proofs available, see e.g. [LPW09, Theorem 4.9].
A close look at our proof will reveal that the bound we have on the RHS of (1.16.38) is essentially optimal
(not in the constant C though)

Proof of Theorem 1.16.39. The driving idea of the proof is easier to understand once the transition
matrix is transformed to a similar Jordan matrix, which has the corresponding eigenvalues on the diagonal
(and some 1’s next to it). Theorem 1.16.30 tells us that there is a simple eigenvalue 1, and all other
eigenvalues have modulus smaller than one. Therefore, taking higher and higher powers of the transition
matrix, we can deduce that the contribution of those eigenvectors that correspond to eigenvalues with
modulus smaller than one vanishes exponentially. Furthermore, since at each time the distribution of
the Markov chain is a probability vector, that means that ‘more and more mass’ will be put on the
stationary distribution π.

Formally: We recall that using a basis transformation, P can be written as

P “ TJT´1, (1.16.39)
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where the matrix T “ pu1, u2, . . . , u|S|q consisting of the column vectors u1, . . . , u|S|, is invertible in

RSˆS , its inverse is T´1, and J is a matrix in Jordan normal form, i.e., we have

J “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

1 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 λ2 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 1 λ2 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0

. . .
. . .

. . . 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 ¨ ¨ ¨ . . .

. . . λ2 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 ¨ ¨ ¨ ¨ ¨ ¨ . . . 1 λ2 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ . . . 0 λ3 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ . . . 1 λ3 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ . . .

. . .
. . . 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ . . .
. . . λ3 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ . . . 1 λ3 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ . . .

. . . ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 λN 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 λN

. . . ¨ ¨ ¨ ¨ ¨ ¨
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ . . .

. . .
. . . ¨ ¨ ¨

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ . . . λN 0
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 λN

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

,

where without loss of generality we still assume the eigenvalues to be ordered in such a way that (1.16.37)
holds.
The nice feature that we will be taking advantage of is that powers of Jordan blocks are easily computed
and, for blocks corresponding to eigenvalues other than λ1, they are nicely upper bounded in their ‘total
contributions’ to the matrix power. In fact, as you may either know from linear algebra or otherwise
prove using induction, in the n-th power of a Jordan block (say the one corresponding to eigenvalue λ2)
we will see λn

2 ’s on the diagonal,
`
n
1

˘
λn´1
2 ’s on the lower diagonal,

`
n
2

˘
λn´2
2 ’s on the diagonal below the

lower diagonal, and so on. Now note that for any 2 ď j ď N, k P N fixed, we have that there exists a
constant Ck P p0,8q such that

ˇ̌
ˇ
ˆ
n

k

˙
λn´k
j

ˇ̌
ˇ ď Ckn

k|λj |n ď Ckp1 ´ σ ` εpnqqn (1.16.40)

for all n P N. Now for an arbitrary probability row vector w P RS (a.k.a. distribution on S), we have

w ¨ T “
|S|ÿ

j“1

pwT ¨ ujq ej , (1.16.41)

with pejq the canonical basis of RS . Taking n Ñ 8 the components in directions ej , 2 ď j ď |S|, of
w ¨ T ¨ Jn converge to 0 uniformly in j due to σ ă 1 and (1.16.40); but still we have that

w ¨ Pn “ w ¨ T ¨ Jn ¨ T´1 (1.16.42)

as well as its limit is a probability vector. This can be used to infer

pwT ¨ u1qe1 ¨ T´1 is a probability vector, and it must equal π; (1.16.43)

Indeed, the latter is true since due to (1.16.42) we have that wPn converges to

w ¨ T ¨

¨
˚̋

1 0 ¨ ¨ ¨
0 0 ¨ ¨ ¨
... ¨ ¨ ¨ . . .

˛
‹‚T´1 “ pwT ¨ u1qe1 ¨ T´1,
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and since
lim
nÑ8

wPn “ p lim
nÑ8

wPn´1q ¨ P,

we get from the uniqueness of the stationary distribution that π “ limnÑ8 w ¨ Pn. Hence,

w ¨ Pn “ π `
|S|ÿ

j“2

pwT ¨ ujqej ¨ Jn ¨ T´1.

Thus, using (1.16.39) to (1.16.43) we infer that there exists a constant C P p0,8q depending on σ and
N but not on the probability vector w, such that

}π ´ wPn}TV ď Cp1 ´ σ ` εpnqqn, (1.16.44)

Since w had been chosen to be an arbitrary probability vector on S, this finishes the proof.

Remark 1.16.41. One should note here that even in the case of the proof of the speed of convergence
in the above result, this is only asymptotic as time goes to infinity. Especially for practical purposes it
would be helpful to have non-asymptotic results available also (see so-called ‘cut-off phenomena’, which,
however, are generally much harder to prove).

An example of groundbreaking importance which shows that already on a finite state space Markov
chains can yield very important results is the PageRank algorithms for ordering webpages according to
their relevance.

Example 1.16.42 (PageRank algorithm). The original PageRange algorithm has been introduced by
Google co-founders Larry Page and Sergei Brin in [BP98] (which makes an interesting read anyway, even
though there is no rigorous mathematics in there) as an algorithm to rank the importance of websites in
the internet.
A simple description of it is as follows: Consider the directed graph whose vertex set is given by the set
of webpages S and whose edge set E is defined as follows. There is a directed edge px, yq P E from x P S

to y P S if and only if the webpage x has a link to the webpage y. For α P p0, 1q we now consider the
Markov chain on this graph whose dynamics is given as follows. If the chain is at state x at time n, then
with probability α the chain chooses one of the sites y P S for which we have px, yq P E uniformly and
jumps there at time n ` 1. With probability 1 ´ α, the chain choose a vertex y P S uniformly and jumps
there at time n ` 1.
This dynamics models the behavior of a person surfing the web who, if she is browsing a certain webpage,
with probability α chooses uniformly one of the links of this webpage and jumps to the webpage that this
link points to. With probability 1´α she gets bored and restarts the search at a webpage chosen uniformly
at random in the entire universe of webpages.
Formally, writing

dx :“
ˇ̌ 
y P S : px, yq P E

(ˇ̌

for the so-called out-degree of x P S, the transition matrix is characterized via

P px, yq “
#

α
dx

` 1´α
|S| if px, yq P E,

1´α
|S| , if px, yq R E.

Since α P p0, 1q, we see that the Markov chain thus described is irreducible and aperiodic, which makes
our results applicable. In particular, Proposition 1.16.15 now tells us that this Markov chain has a unique
stationary distribution π. The PageRank of a certain webpage x P S is now defined as πpxq, i.e., as the
weight of the webpage under the stationary distribution of the above Markov chain.
The heuristics behind is that the more links a webpage receives from other webpages, and the more
important these webpages are, the more important the original webpage should be.
As you might have noticed, the above does not include the actual search term in the computation of the
PageRank of a webpage. As a consequence, the PageRank of a vector does not yet give a useful result of
a web search, and indeed it is only one out of numerous criteria that contribute to the final result of a
web search.
Computing the PageRank of all webpages is central to ranking the webpages according to the above al-
gorithm, and it amounts to computing the stationary distribution of the above Markov chain. In theory
this issue is easy to deal with, we just have to find the solution π “ π ¨P, which according to Proposition
1.16.15 is unique if we impose that π be a probability vector. In practice, however, this means we have
to solve a huge linear system of equations (since there are a lot of webpages).
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Chapter 2

Statistics

In the first Chapter, which dealt with probability theory, we have mainly been concerned with situations
in which we assumed that certain experiments (the outcomes of which we understood to be random)
were realized according to given mechanisms that we usually were aware of (e.g., we assumed the coin of
coin tossing experiments to be fair, or otherwise that one of the two outcomes was favoured by choosing
the probabiliy p of its occurrence in p1

2 , 1q; however, we did not investigate as to whether choosing p “ 1
2

or p P p1
2 , 1q was actually a reasonable thing to do). In statistics, which is the subject of this second

Chapter, we take a different point of view which is sort of reverse to what we did before. In fact, in
statistics we are usually given observations of experiments and then want to understand in more or less
detail the mechanisms according to which these observations have been realized (by using the techniques
developed in probability theory). Thus, probability theory and statistics can be seen as complementing
each other.
We will focus on the following three topics, the precise nature of which will become clear as we investigate
them:

(a) parameter estimation;

(b) confidence intervals / regions;

(c) tests;

A standard problem in statistics is the following.

Example 2.0.1. What is the number of persons in an entire population of size N that has a certain
illness? Or, equivalently, what is the probability1 p that a person in that population is suffering from a
certain illness? One can take a sample of n persons out of the entire population and find out the number
m of sick persons among them; if n is chosen reasonably large (whatever that means for the time being),
one might be tempted to hope that for example due to the law of large numbers, m{n would be a good guess
for p (and we will investigate later on how good this guess is): If the n persons we chose for our sample
could be interpreted as independent and identically distributed samples out of the entire population, then
the law of large numbers would tell us that the ratio m{n would converge to p as n Ñ 8 (of course, m
depends on n here as well, even though this is not emphasised in the notation).

In order to be able to treat examples such as the above systematically, we introduce some suitable
definitions.

Definition 2.0.2. A statistical model (‘statistisches Modell’) is a triplet pX,A, pPϑqϑPΘq, where X is
a set called the sample space (‘Stichprobenraum’, ‘Beobachtungsraum’), A is a σ-algebra on X, and
pPϑqϑPΘ is a family of probability measures on the measurable space pX,Aq.
Since we now have several probability measures pPϑqϑPΘ at our disposal, when taking expectations we
have to specify with respect to which we want to do so – for this reason, we write Eϑr¨s for the expectation
with respect to Pϑ.

This is to be interpreted in the sense that the outcomes of the experiments we observe will be considered
elements of X, realized according to Pϑ. Usually it is not too hard to come up with a suitable measurable

1It might help intuition to recall the frequentist approach to probability that had been introduced in (1.2.1); the
probability p is then given by the number of sick people divided by the entire population size N .
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space pX,Aq (in fact, most of the times we will be in the situation that X “ Rd and A “ BpRdq, or
otherwise X P BpRdq and A “ X X BpRdq). However, it is generally more demanding to find the ‘real’ ϑ
(or a function τpϑq of ϑ which is of interest, for that matter) and hence the Pϑ according to which the
observed data has been realized.

Also recall that so far we have generally used the notation pΩ,F ,Pq to denote probability spaces. The
reason for denoting our measurable space to be endowed with the probability measures pPϑqϑPΘ by pX,Aq
instead of pΩ,Fq is the following: We assume that the data we observe is given by realizations of random
variables X : pΩ,F ,Pq Ñ pX,Aq. As we have seen in Chapter 1 on probability theory, the very structure
of pΩ,F ,Pq is oftentimes irrelevant to us – what is of interest, however, is the law P˝X´1 of the random
variable X, which describes a probability measure on pX,Aq (cf. Theorem 1.7.6). Thus, it will be our
task to find that Pϑ in the family pPϑqϑPΘ, for which we have P ˝ X´1 “ Pϑ.

2

Example 2.0.3 (Product model). We will often be in the situation that we have observed n realizations of
an experiment for which we assume that the random variables Xi, 1 ď i ď n, with Xi : pΩ,F ,Pq Ñ pE, Eq
describing the outcome of the i-th experiment, are independent and identically distributed. In that case
it lends itself to consider the corresponding product model (see e.g. the continuation of Example 2.0.1
below), i.e., the statistical model

pX,A, pPϑqϑPΘq “ pEn, Ebn, pQbn
ϑ qϑPΘq;

here, if E is an at most countable state space we have that E “ 2E and Ebn “ 2pEnq, and for a measure
Qϑ on pE, Eq (through which we hope to describe the distribution of a single Xi) we denote by Qbn

ϑ the
corresponding product measure on pE, Eq (recall (1.6.7)). On the other hand, if E P BpRdq we have
Ebn “ pE X BpRdqqbn, where the latter is a to be interpreted as the smallest σ-algebra on pRdqn such
that for any i P t1, . . . , nu, the projection

πi : pRdqn Q px̄1, . . . x̄nq ÞÑ x̄i P Rd

is an Ebn´BpRdq-measurable function (recall Definition 1.7.1). In addition, Qbn
ϑ is a probability measure

on pEn, Ebnq which corresponds to the situation that the Xi are i.i.d. and each Xi has law Qϑ; to be
more precise, Qbn

ϑ is the unique probability measure on pEn, Ebnq such that

Qbn
ϑ pA1 ˆ . . . Anq “

nź

i“1

QϑpAiq for all A1, . . . , An P BpRdq. (2.0.1)

The very existence of a measure with the properties as postulated in (2.0.1) will only be established in the
sequel class ‘Probability Theory I’; for the time being we will take its existence for granted.

Definition 2.0.4. A statistical model pX,A, pPϑqϑPΘq will be called

(a) a parametrical model (‘parametrisches Modell’), if Θ Ă Rd;

(b) a discrete model (‘diskretes Modell’), if X is finite or countable and A “ 2X; in this case we define

̺ϑpxq :“ Pϑptxuq. (2.0.2)

It is called a continuous model if X P BpRdq, A “ X X BpRdq,3 and if for each Pϑ there exists a
density ̺ϑ : Rd Ñ R such that

PϑpAq “
ż

Rd

1Apxq̺ϑpxqdx, (2.0.3)

for all A P A for which we can evaluate the right-hand side.4

2Here, a natural problem arises: If, for example, we consider a finite sequence of tosses of the same coin, then it is
impossible to say whether the coin is fair or not; indeed, for any p P p0, 1q, a coin that shows heads with probability p

and tails with probability 1 ´ p could have produced the observed realizations. Therefore, we will only be able to gauge
how probable it is to observe a certain realization, knowing that p takes a certain value. In fact, if in our finite sequence
of observed coin tosses there is a strong majority of heads, then this should somehow be an indicator that p is large for
the coin in question. The precise meaning of this is important and oftentimes leads to confusion – we will make this more
precise when we will be dealing with so-called confidence intervals.

3Recall the trace σ-algebra defined in Exercise 1.3.4.
4Since we have not introduced the Lebesgue integral yet, one might run into slight technical troubles when trying to

evaluate the integral for ‘not so nice’ A. However, most of the times A is sufficiently nice (e.g., if we have X “
śd

i“1
rai, bis

with ai ă bi for all i P t1, . . . , duq.
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We refer to the model as a standard statistical model if one of the two cases of Definition 2.0.4 (b)
occurs.

Example (Example 2.0.1 cont’d). In this context it seems to suggest itself to choose X “ t0, 1un, where
a 1 in the k-th place means that the k-th person is sick, whereas 0 means that this is not the case.
This means we are dealing with a discrete model and consequently choose A :“ 2X. Furthermore, if we
draw with replacement, then seeing a 1 in k-th place occurs with probability ϑ P r0, 1s, and this event is
independent of all events that do not depend on the k-th coordinate. As a consequence, we would choose

Θ “ r0, 1s, and Pϑpx1, . . . , xnq “ ϑ
řn

i“1 xip1 ´ ϑqn´
řn

i“1 xi , for any px1, . . . , xnq P X.

We now want to formalize the procedure of finding the right parameter ϑ P Θ.

2.1 Estimators

Definition 2.1.1. Let pΣ,Sq be a measurable space.

(a) A random variable S : pX,Aq Ñ pΣ,Sq is called a statistic (‘Statistik’).

(b) Let an arbitrary function τ : Θ Ñ Σ be given, which assigns to every parameter ϑ P Θ an element of
the set Σ. Then a statistics T : pX,Aq Ñ pΣ,Sq is called an estimator (‘Schätzer’, ‘Schätzfunktion’)
for τ .

Remark 2.1.2. (a) It seems unnecessary to introduce yet another terminology ‘statistics’ for a random
variable in Definition 2.1.1. The reason for this is to highlight a difference in interpretation:
Whereas we have used and will use the term ‘random variable’ in order to describe a random
experiment, the term ‘statistics’ is supposed to highlight the fact that such a random variable does
not naturally come as the description of a random experiment, but rather has to be constructed in
such a way that it is useful to the statistician, see also (b) below.

(b) It might seem surprising here that the definition of an estimator for τ does not depend on the
specifics of τ at all. It will indeed turn out that we will mostly be interested in estimators which
are ‘reasonable’ for τ ; in some sense, heuristically, we would consider an estimator reasonable if

for all ϑ P Θ, with high Pϑ-probability, T takes values close to τpϑq. (2.1.1)

However, in order not to curtail flexibility, this limitation is not imposed at the stage of this
definition yet.

Example (Example 2.0.1 cont’d). We now want to find the (or, more realistically, a reasonable guess
for the) ϑ that led to the realization we observed. For this purpose, we choose τpϑq “ ϑ, and we want to
construct an estimator for τ that maps into pΣ,Sq “ pΘ,Bpr0, 1sqq.
One possibility to define our estimator T would be to set

T : pt0, 1un, 2t0,1unq Ñ r0, 1s

px1, . . . , xnq ÞÑ 1

2
.

(2.1.2)

In the case ϑ “ 1
2 , according to the heuristics of (2.1.1), this would be a very good estimator since it

always recovers the real parameter ϑ “ 1
2 . However, in (2.1.1) we demand that for all ϑ P Θ, the estimator

T be close to τpϑq.
Therefore, a presumably better option for choosing this estimator might be to set

T : pt0, 1un, 2t0,1unq Ñ r0, 1s

px1, . . . , xnq ÞÑ
řn

i“1 xi

n
,

(2.1.3)

which takes into account the very specifics of τ, and which again is motivated by the law of large numbers.
On a very heuristic level the relation of the estimators defined in (2.1.2) and (2.1.3) can be compared to
that of two clocks, one of which stopped running whereas of the second clock you know that the time it
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shows deviates at most say ten minutes from the real time. Generally, you would also prefer the second
option over the first.
This example became easier to approach by our assumption that the event that the k-th person is sick was
independent (and identically distributed in the ks) from the events not depending on the k-th coordinate
since it gave rise to the fact that we could assume

Pϑ “ pϑδ1 ` p1 ´ ϑqδ0qn,

see (1.6.7) also. If we did not make this assumption, one possibility would be to choose Θ to be the space
of all probability measures on pt0, 1un, 2t0,1unq (in this case the model would not be a parametric one
anymore) This, however, would make it way harder to obtain a good guess for ϑ or Pϑ, respectively.
We already observe here a general pattern: Choosing Θ too large in relation to the observed data available,
it is hard to obtain a good guess for ϑ. On the other hand, choosing Θ too small one might run the risk
that the actual probability distribution that governs the generation of the observed data is not contained
in the family Pϑ, ϑ P Θ.

2.1.1 Properties of estimators

We have seen that Definition 2.1.1 of an estimator for a certain given function τ is quite loose. As a
consequence, it is up to us to find criteria which ensure that an estimator for τ is actually a good one.

Definition 2.1.3. An estimator T for τ is called unbiased (‘erwartungstreu’, ‘unverfälscht’) if for each
ϑ P Θ, one has

EϑrT s “ τpϑq.

Note that we need that Σ Ă Rk for some k P N in order to be able to compute EϑrT s.5

Intuitively, an unbiased estimator does not tend to systematically under- or overestimate τpϑq, and it
seems to be a good property to ask for an estimator to fulfill.

Example 2.1.4. (a) The estimator constructed in Example 2.0.1 in display (2.1.3) is unbiased. In-
deed, using Xi to denote the state of health of the i-th person, i.e., Xipx1, . . . , xnq :“ xi is the
projection on the i-th coordinate,6 we have

EϑrT s “ Eϑ

”řn
i“1 Xi

n

ı
“ 1

n

nÿ

i“1

EϑrXis “ ϑ.

(b) Consider the following setting: The sample space is given by X :“ N0, hence A :“ 2N0 . Furthermore,
set Θ :“ p0, 1q, and let Pϑ denote the Poisson distribution with parameter ´ 1

2 lnϑ.

Claim 2.1.5.

T : N0 Q n ÞÑ p´1qn (2.1.4)

is the only unbiased estimator for τpϑq :“ ϑ.

Proof. We start with showing that the estimator is unbiased. Indeed, we get that

EϑrT s “ e
1
2 lnϑ

8ÿ

k“0

p´1qk p´ 1
2 lnϑqk
k!

“
?
ϑ

8ÿ

k“0

p1
2 lnϑqk
k!

“ ϑ,

which shows that the estimator is unbiased.

5In fact, we have seen how to compute EϑrT s for k “ 1. For k ě 2, we define EϑrT s to be the vector containing the
expectations of the projections of T onto its coordinates, i.e.,

EϑrT s :“ pEϑrπ1pT qs, . . . ,EϑrπkpT qsq,

where for i P t1, 2, . . . , ku we use the notation

πi : R
k Q px1, . . . , xkq ÞÑ xi P R

for the projection on the i-th coordinate.
6We will use this notation without further mention in the following.
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On the other hand, it is the only estimator which is unbiased, for if rT was another unbiased
estimator we would obtain that for all ϑ P p0, 1q

ϑ “ EϑrrT s “ e
1
2 lnϑ

8ÿ

k“0

rT pkq p´ 1
2 lnϑqk
k!

,

hence
?
ϑ “

8ÿ

k“0

rT pkq p´ 1
2 lnϑqk
k!

.

On the other hand we have
?
ϑ “ elnp

?
ϑq “

8ÿ

k“0

plnp
?
ϑqqk

k!
,

and using the uniqueness theorem for power series we deduce from the last two displays that
rT pkq “ p´1qk as desired. This shows that T as defined in (2.1.4) is the only unbiased estimator
for τpϑq “ ϑ.

However, the estimator in (2.1.4) can hardly be considered a good one since it does not even map
into the set of parameters Θ (thus, note that in order to have that T does indeed define an estimator,
we must have that t´1, 1u Ă Σ, so choosing e.g. Σ :“ R would certainly do the job). Thus, we
observe that on its own, the property that an estimator is unbiased does not yet guarantee that it
is a reasonable estimator.

Adding insult to injury, not only do we have ‘bad’ unbiased estimators as in the previous example, but
there are also cases where no unbiased estimator exists, as the following example shows.

Example 2.1.6. For n P N, let X :“ t0, 1, . . . , nu, A “ 2X, and for Θ :“ p0, 1q and ϑ P p0, 1q, let Pϑ

denote Binn,ϑ. In addition, let the function τ be given by τpϑq :“ ϑ´1, say.

Claim 2.1.7. There is no unbiased estimator for τ.

Proof. Indeed, if T was an unbiased estimator for τ, for all ϑ P Θ we would have

1

ϑ
“ τpϑq “ EϑrT s “

nÿ

k“0

T pkq
ˆ
n

k

˙
ϑkp1 ´ ϑqn´k,

which, multiplying by ϑ and subtracting 1 amounts to

0 “
nÿ

k“0

T pkq
ˆ
n

k

˙
ϑk`1p1 ´ ϑqn´k ´ 1.

Now we observe that on the right-hand side of the last display we have a non-trivial polynomial in ϑ of
degree at most n`1. As a consequence it can have at most n`1 zeroes, which in particular implies that
the last display can hold true for at most n ` 1 values of ϑ, but certainly not for all ϑ P Θ. Therefore, T
cannot be an unbiased estimator for τ.

The following serves as another standard example.

Example 2.1.8. Assume that there is a random number generator that generates realizations of an
i.i.d. sequence of random variables X1, . . . , Xn taking values in t1, 2, . . . , Nu. However, you are not told
the value of N , but rather you are given a realization of X1, . . . , Xn generated by the random number
generator and your task is to find a good estimator for N .

Since we do not know N a priori, we have to take care of the possibility that Xi may take any value in N.

Hence, for n P N, a corresponding statistical model can be defined as pNn, 2N
n

, pPn
N qNPNq, where Θ “ N,

and Pn
N is the uniform distribution on the restriction of Nn to t1, . . . , Nun, i.e., Pn

N px1, . . . , xnq “ 1
Nn ,

for any px1, . . . , xnq P t1, . . . , Nun. As before, we then have Xipx1, . . . , xnq “ xi for i P t1, . . . , nu.
There are different kinds of reasonings that suggest themselves in order to construct an estimator for N .
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(a) We start with observing that for any choice of N , the probability under Pn
N that the maximum of

X1, . . . , Xn is strictly smaller than N is given by

´N ´ 1

N

¯n

.

Hence,
lim
nÑ8

Pn
N pmaxtX1, . . . , Xnu “ Nq “ 1, (2.1.5)

and it may seem reasonable to define the sequence of estimators

Tnpx1, . . . , xnq :“ maxtx1, . . . , xnu, n P N. (2.1.6)

(b) An alternative estimator can be constructed based on the following reasoning: If the Xi are realized
according to PN , then the law of large numbers tells us that

řn
i“1 Xi

n
Ñ En

N rX1s “ 1

N

Nÿ

i“1

i “ N ` 1

2
“ N

2
` 1

2
, as n Ñ 8.

Hence, another sequence of estimators that looks reasonable is given by

rTn :“ 2

řn
i“1 Xi

n
´ 1

´
or, which is the same, rTnpx1, . . . , xnq :“ 2

řn
i“1 xi

n
´ 1

¯
. (2.1.7)

Comparing the above estimators we observe that the estimator in (a) is biased (for N ě 2) since for
any n and N, the estimator Tn never takes values above N , but it does take values smaller than N with
strictly positive PN probability. Nevertheless, from the above we can conclude that Tn is asymptotically
unbiased in the sense that

En
N rTns Ñ N as n Ñ 8.

On the other hand, we observe that rTn is unbiased since

En
N rrTns “ En

N

”
2

řn
i“1 Xi

n
´ 1

ı
“ 2

n

nÿ

i“1

En
N rXis ´ 1 “ 2

n

npN ` 1q
2

´ 1 “ N.

Example 2.1.9 (Estimator for expectation and variance). Assume you know that the data you observe
is the realization of an i.i.d. sequence X1, . . . , Xn, and assume that you want to find unbiased estimators
for the expectation and the variance of the underlying distribution.
Due to the i.i.d. assumption we can consider the n-fold product model, which we denote as
pXn,A, pPϑqϑPΘq here.
It is not hard to check that

Tµ “ 1

n

nÿ

i“1

Xi (2.1.8)

is an unbiased estimator for the unknown expectation τpϑq “ EϑrX1s “ Eϑr 1
n

řn
i“1 Xis.

To deal with the variance, if the expectation EϑrX1s of the underlying random variables was known, a
natural candidate for an estimator of the variance would then be given by

1

n

nÿ

i“1

pXi ´ EϑrX1sq2, (2.1.9)

which can be checked to be an unbiased estimator for the variance. Now since usually the expectation is
not known either, we are tempted to replace it by its own unbiased estimator defined in (2.1.8). In this
case we get due to EϑrXi ´ Tµs “ 0 and Bienaymé’s lemma that

Eϑ

” 1
n

nÿ

i“1

pXi ´ Tµq2
ı

“ VarϑpX1 ´ Tµq “ Varϑ

´n ´ 1

n
X1 ´ 1

n

nÿ

k“2

Xk

¯

“
´´n ´ 1

n

¯2

` n ´ 1

n2

¯
VarϑpX1q “ n ´ 1

n
VarϑpX1q.

(2.1.10)



2.1. ESTIMATORS 79

This means that this estimator given in (2.1.9) is biased and we tend to underestimate the actual variance
if we used it. Hence, on usually retreats to the estimator

Tσ2 :“ 1

n ´ 1

nÿ

i“1

pXi ´ Tµq2

for the variance, which is unbiased.

Although the property of being ‘unbiased’ is usually considered a good thing to have for an estimator,
we should keep in mind the possible disadvantages we have discovered above:

• there might be no unbiased estimator (see Example 2.1.6);

• even if unbiased estimators do exist, they might not be useful (see Example 2.1.4 (b));

• the property of an estimator being unbiased is not transformation invariant in the sense that if T
is an unbiased estimator for ϑ, then generally τ ˝ T is not an unbiased estimator for τpϑq.

2.1.2 Maximum likelihood estimators

As we have seen above, the notion of an estimator being unbiased does not necessarily lead to good
estimators on its own. As a consequence, we introduce an additional idea for constructing estimators
(which oftentimes leads to unbiased or at least consistent (see (2.1.20) below) sequences of estimators).

Definition 2.1.10. Let pX,A, pPϑqϑPΘq be a statistical standard model. The function

̺ : X ˆ Θ Ñ r0,8q,
px, ϑq ÞÑ ̺ϑpxq

is called the corresponding likelihood function (‘Likelihoodfunktion’) (recall that ̺ϑ had been introduced
in (2.0.2) and (2.0.3)).
The mapping

̺x : Θ Ñ r0,8q,
ϑ ÞÑ ̺px, ϑq

is called likelihood function given the outcome x P X (‘Likelihoodfunktion zum Beobachtungswert x P X’).
In applications, an important role is played by the logarithms of the above functions which are referred
to as the corresponding log-likelihood functions, see also Example 2.1.12 below.

Definition 2.1.11. An estimator T : X Ñ Θ for τpϑq “ ϑ is called a maximum likelihood estimator
(‘Maximum-Likelihood Schätzer’) if for each x P X one has

̺px, T pxqq “ max
ϑPΘ

̺px, ϑq.

As an abbreviation a maximum likelihood estimator is also denoted as MLE.

The idea behind maximum likelihood estimators is that they characterise the parameter ϑ such that under
the corresponding Pϑ the observed data is the most likely; oftentimes, they provide us with estimators
that are unbiased (or at least unbiased asymptotically). However, since we do not have any probability
measure on the space Θ, there is nothing really compelling about them.

Example 2.1.12. Consider the statistical model given by pRn,BpRnq, pPϑqϑPRq, where Pϑ is the distribu-
tion on pRn,BpRnqq of a vector pX1, . . . , Xnq, where the Xi are i.i.d. N pϑ, σ2q-distributed and σ2 P p0,8q
is supposed to be known for the sake of simplicity of exposition (otherwise, we have seen in Example 2.1.9
how to estimate the variance in an unbiased way).
In order to find a maximum likelihood estimator for ϑ, for a given observation px1, . . . , xnq P Rn we have
to find that ϑ P R for which the density

̺ϑpxq “
nź

i“1

1?
2πσ2

exp
!

´ pxi ´ ϑq2
2σ2

)
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is maximized for given x. Observing that a function attains a maximum at a certain argument if and
only if the same applies to the logarithm of that function. Thus, we compute

B
Bϑ pln ̺px, ϑqq “

nÿ

i“1

B
Bϑ

´
´ pxi ´ ϑq2

2σ2

¯
“

nÿ

i“1

xi ´ ϑ

σ2
,

and we get that the maximizing ϑ is given by

pϑMLpxq “ 1

n

nÿ

i“1

xi.

In particular, we may check that this MLE is unbiased.

Example (Example 2.1.8 cont’d). For px1, . . . , xnq P t1, . . . , Nu and ϑ P N with ϑ ě Tnpxq “
maxtx1, . . . , xnu we have that

̺px, ϑq “ Pn
ϑppx1, . . . , xnqq “

´ 1

ϑ

¯n

.

Thus, we see that the argument ϑ P Θ maximising this expression is given by ϑmax :“ Tnpxq “
maxtx1, . . . , xnu (since for ϑ ă Tnpxq the probability of observing px1, . . . , xnq under Pn

N vanishes).
Hence,

̺px, Tnpxqq “ max
ϑPΘ

̺px, ϑq,

and we see that Tn is an MLE for τpϑq “ ϑ.

2.1.3 Fisher information and the Cramér-Rao inequality

This is yet another part of our endeavour to try to understand what it means for an estimator to be
a good one. Although we have seen above that unbiased estimators do not necessarily provide us with
what we want, they still do enjoy a lot of desirable properties. Therefore, and since it facilitates our
investigations below, we will restrict ourselves to unbiased estimators in this subsection.

Yet another criterion to compare estimators is to consider their variance.

Definition 2.1.13. Let pX,A, pPϑqϑPΘq be a statistical model and let a function τ : Θ Ñ Σ be given.
An unbiased estimator T for τ is called (uniformly) minimum-variance unbiased estimator (UMVUE or
MVUE) (‘varianzminimierend’ oder ‘(gleichmäßig) bester Schätzer’) if for any other unbiased estimator
S for τ , and any ϑ P Θ we have

VarϑpT q ď VarϑpSq.

Since for unbiased estimators S we have that

VarϑpSq “ EϑrpS ´ τpϑqq2s,

in this case the variance is a measure for the fluctuations of T around τ. The function pS ´ τpϑqq2 is
an example of a loss function (‘Verlustfunktion’) which measures the ‘loss’ that we incur if we estimate
the real parameter τpϑq by S. There are different kinds of loss functions, but in the same way that
the variance plays a prominent role in probability theory, the loss function pS ´ τpϑqq2 is important in
statistics.

Example (Example 2.1.8 cont’d). We recall

VarN pTnq “ EN rT 2
ns ´ EN rTns2 (2.1.11)
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and thus compute

EN rT 2
ns “

Nÿ

k“1

k2 ¨ PN pTn “ kq

“
Nÿ

k“1

k2
`
PN pmaxtXi : 1 ď i ď nu ď kq ´ PN pmaxtXi : 1 ď i ď nu ď k ´ 1q

˘

“
Nÿ

k“1

k2
`
PN pX1 ď kqn ´ PN pX1 ď k ´ 1qn

˘

“
Nÿ

k“1

k2
ˆ´ k

N

¯n

´
´k ´ 1

N

¯n
˙

“ 1

Nn

Nÿ

k“1

k2
`
kn ´ pk ´ 1qn

˘
.

Note that for all k ď N ´ 2, kn P onppN ´ 1qnq, where for any functions f we say that an error term g

‘is in onpfq’ if we have gpnq{fpnq Ñ 0 as n Ñ 8, and the subscript n is to emphasize which variable we
are sending to infinity. We thus obtain

EN rT 2
ns “ 1

Nn

`
Nn`2 ´ N2 ¨ pN ´ 1qn ` pN ´ 1qn`2 ` on

`
pN ´ 1qn

˘˘

“ N2 `
ˆ
N ´ 1

N

˙n

p1 ´ 2N ` onp1qq .

Similarly we obtain

EN rTns “ 1

Nn

Nÿ

k“1

kpkn ´ pk ´ 1qnq

“ 1

Nn

`
Nn`1 ´ NpN ´ 1qn ` pN ´ 1qn`1 ` on

`
pN ´ 1qn

˘˘

“ N `
ˆ
N ´ 1

N

˙n

p´1 ` onp1qq

and thus

EN rTns2 “ N2

ˆ
1 ` 1

N

ˆ
N ´ 1

N

˙n

p´1 ` onp1qq
˙2

“ N2

ˆ
1 ` 2

N

ˆ
N ´ 1

N

˙n

p´1 ` onp1qq
˙
.

As a consequence, in combination with (2.1.11) we deduce that

VarN pTnq “
ˆ
N ´ 1

N

˙n

p1 ´ 2N ` 2N ` onp1qq “
ˆ
N ´ 1

N

˙n

p1 ` onp1qq.

On the other hand, for the estimator rTn, we obtain in combination with Bienaymé’s lemma that

VarN prTnq “ Var

ˆ
2

řn
i“1 Xi

n
´ 1

˙
“ 4

n2
nVarpX1q,

hence,

VarN p rTnq “ C

n

for some constant C “ CpNq P p0,8q. In particular, this implies that the variance of Tn decays signif-

icantly faster as n Ñ 8 than that of rTn. Note that Tn is however biased, but we have EN rTns Ñ N as
n Ñ 8.
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We have seen in the above example two sequences of unbiased estimators, and we have been able to
show that the variances of one of the sequences decays asymptotically faster than that of the other. This
immediately leads to the question of how small the variance of (unbiased) estimators can possibly be.

For this purpose, we start with introducing some further information.

Definition 2.1.14. Let a one parameter standard model pX,A, pPϑqϑPΘq be given. The model is called
regular if the following conditions are satisfied:

(a) Θ Ă R is an open interval;

(b) the likelihood function ̺ is strictly positive on X ˆ Θ, and continuously differentiable in ϑ P Θ.

In particular the so-called score function Uϑ defined via

Uϑpxq :“ B
Bϑ ln ̺px, ϑq “ ̺1

xpϑq
̺xpϑq (2.1.12)

exists.

(c) For each ϑ P Θ the variance

Ipϑq :“ VarϑpUϑq (2.1.13)

exists in p0,8q, and the following interchange of differentiation and integration is valid:

ż B
Bϑ̺px, ϑqdx “ d

dϑ

ż
̺px, ϑqdx; (2.1.14)

(this is for the case of a continuous model; in the discrete case the integrals in (2.1.14) have to be
replaced by sums).

The function I defined in (2.1.13) is called the Fisher information (English statistician Sir R. Fisher
(1890–1962)). It is one way to measure the information that a random variable X distributed according
to Pϑ contains about ϑ.

Remark 2.1.15. (a) You might have seen rules of when an equality of the type (2.1.14) is certainly
valid; for example and essentially due to the bounded convergence theorem, it holds true when ̺1

x

is continuous and for some ε ą 0 as well as all ϑ P Θ we have

ż
sup
ϑ1PΘ

|ϑ1´ϑ|ďε

|̺1
xpϑ1q| dx ă 8.

(b) (2.1.14) implies that the random variable Uϑ is centred. Indeed, in the continuous case, since we
are in the setting of a standard model, (2.0.3) in combination with the definition of Uϑ in (2.1.12)
implies

EϑrUϑs “
ż

̺1
xpϑq

̺xpϑq ¨ ̺xpϑqdx (2.1.14)“ d

dϑ

ż
̺px, ϑqdx

loooooomoooooon
“1

“ 0. (2.1.15)

The discrete case is left as an exercise.

Definition 2.1.16. An unbiased estimator T for τ is called regular (‘regulär’) if for all ϑ P Θ,

ż
T pxq B̺

Bϑpx, ϑqdx “ d

dϑ

ż
T pxq̺px, ϑqdx.

Exercise 2.1.17. The Fisher-information is additive in the following sense: Given a standard statisti-
cal model pX,A, pPϑqϑPΘq with Fisher information I, then the Fisher-information of the product model
pXn,Abn, pPbn

ϑ qϑPΘq is given by Ibn “ nI.

We are now in the position to prove the following result, which provides a bound for how small the
variance of an unbiased estimator can get.
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Theorem 2.1.18 (Information inequality / Cramér-Rao inequality (Swedish mathematician Harald
Cramér (1893–1985) and Indian-American statistician Calyampudi Radhakrishna Rao (born 1920)).
Assume a regular statistical model pX,A, pPϑqϑPΘq to be given. Furthermore, let τ : Θ Ñ R differentiable
be given and let T be an unbiased regular estimator for τ. Then for all ϑ P Θ:

VarϑpT q ě τ 1pϑq2
Ipϑq . (2.1.16)

Proof. Using that EϑrUϑs “ 0 (see (2.1.15)) we obtain the first equality in

CovϑpT, Uϑq “ EϑrTUϑs “
ż

X

T pxq̺
1
xpϑq

̺xpϑq ¨ ̺px, ϑqdx “
ż

X

T pxq B
Bϑ̺px, ϑqdx

“ d

dϑ

ż

X

T pxq̺px, ϑqdx
loooooooooomoooooooooon

“EϑrT s“τpϑq

“ τ 1pϑq,

where the last equality follows from the assumption that T is an unbiased estimator for τ. Applying
Hölder’s inequality to |CovϑpT, Uϑq| we deduce in combination with the above that

VarϑpT q 1
2 Ipϑq 1

2 ě |τ 1pϑq|,

which implies (2.1.16).

Theorem 2.1.18 gives a lower bound for the variance of certain unbiased estimators. In fact, in the case of
a product model satisfying the assumptions of Theorem 2.1.18, we obtain in combination with Exercise
2.1.17 that

VarϑpTnq ě 1

n

τ 1pϑq2
Ipϑq ,

where Tn is any unbiased estimator for the product model, and I is the Fisher information for any of
the n factors constituting the product model.
In particular, we cannot find any better such estimators, and therefore the ones that attain this bound
deserve their own name.

Definition 2.1.19. If for an estimator T of τ one has equality in (2.1.16), then T is called (Cramér-Rao)
efficient (‘(Cramér-Rao) effizient’).

2.1.4 Consistency of estimators

Already in Example 2.1.8 we have observed the situation that a sequence pTnq of estimators consisted
of biased estimators, but that in at least an asymptotic sense one could observe an unbiased limiting
behavior. In this section we are going to formalize this concept.
Consider the case of a statistical product model as described in Example 2.0.3. We want to have a
sequence of estimators pTnq for τ such that Tn : Rn Ñ Σ, and one criterion that on the one hand would
be desirable to have, and on the other hand is reasonable to demand, too, would be that TnpX1, . . . , Xnq
converges to τpϑq as n Ñ 8 (where, as before, the X1, . . . , Xn denote the different coordinates of the
entire observation, i.e. Xi : R

N Q pxnqnPN ÞÑ xi). As seen before, there are different kinds of convergence
that are of importance to us.
When introducing the next definitions it turns out to be useful to consider all the Xn to be defined on
the product space pRN,BpRNqq (recall that we argued at the end of Section 1.14.3 that we are actually
allowed to do so). If pXnq is an i.i.d. sequence such that each Xn has law Pϑ on pR,BpRqq, then we
denote by P8

ϑ the probability measure on pRN,BpRNqq such that P8
ϑ ppXk1 , . . . , Xkm

q P ¨q is the law of
the vector pXk1 , . . . , Xkm

q for any admissible choice of indices k1, . . . , km (if you feel uncomfortable with
the infinite product measure P8

ϑ you can also most of the time just continue working with Pn
ϑ, where you

have to keep adjusting the n according to the context).

Definition 2.1.20. (a) A sequence of estimators pTnq for τ is called strongly consistent if for all ϑ P Θ
we have that P8

ϑ -almost surely,

TnpX1, . . . , Xnq Ñ τpϑq as n Ñ 8.
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(b) A sequence of estimators pTnq for τ is called weakly consistent if for all ϑ P Θ we have that for all
ε ą 0,

P8
ϑ

`ˇ̌
TnpX1, . . . , Xnq ´ τpϑq

ˇ̌
ě ε

˘
Ñ 0 as n Ñ 8.

It is apparent that the above two definitions are inspired by the weak and strong laws of large numbers,
in terminology as well as in their very definitions.
.

Theorem 2.1.21. If a sequence pTnq of estimators is strongly consistent, then it is also weakly consistent.

Proof. Exercise

Example 2.1.22. We revisit the setting of Example 2.1.8. Although we have seen that the pTnq of
Example 2.1.8 (a) defined in (2.1.6) are biased, they (as well as their unbiased version T ˚ defined in
(2.1.7)) form a strongly consistent sequence for τpNq “ N . Indeed, as seen before in (2.1.5), we have for
any ε ą 0 that

P8
N p|TnpX1, . . . , Xnq ´ N | ą εq ď P8

N pmaxtX1, . . . , Xnu ă Nq “
´N ´ 1

N

¯n

.

Since the RHS of this display is summable in n P N, Theorem 1.13.1 (d) tells us that PN -a.s.,

lim
nÑ8

TnpX1, . . . , Xnq “ τpNq “ N.

Furthermore, Theorem 2.1.21 supplies us with the fact that the sequence is weakly consistent as well.
Also the prTnq of Example 2.1.8 (a) form a strongly consistent sequence, for the strong law of large numbers
supplies us with

rTnpX1, . . . , Xnq “ 2

řn
i“1 Xi

n
´ 1

nÑ8ÝÑ 2
N

2
“ N, P8

N ´ a.s.

As above, we can use Theorem 2.1.21 to argue that the sequence prTnq is weakly consistent,

In fact, we are able to establish consistency for much more general sequences of estimators.

Theorem 2.1.23. Assume that the sequence pXnq denotes the coordinates in the infinite product model
(as before, the generalization of Example 2.0.3 to the infinite context as introduced at the beginning of
Section 2.1.4, and with the same notation P8

ϑ ). In addition, assume that each factor in the product model
is of the form pE, Eq “ pR,BpRqq and that for each ϑ P Θ we have that EϑrX1s as well as VarϑpX1q exist.

We denote by Tn :“ 1
n

řn
i“1 Xi and rTn :“ 1

n´1

řn
i“1pXi ´ Tnq2 the two sequences of canonical unbiased

estimators for the expectation EϑrX1s (or, more precisely, for the function τ : Θ Ñ R, ϑ ÞÑ EϑrX1s) as
well as for the variance VarϑpX1q (analogously; cf. also Examples 2.1.4 (a) and 2.1.9)

Then pTnq and prTnq form strongly consistent sequences of estimators.

Proof. The strong law of large numbers implies that for all ϑ P Θ we have P8
ϑ -a.s.,

Tn “ 1

n

nÿ

i“1

Xi Ñ EϑrX1s, as n Ñ 8,

and hence pTnq is a strongly consistent sequence.

To prove that prTnq defines a strongly consistent sequence for the variance, we rewrite

1

n ´ 1

nÿ

i“1

pXi ´ Tnq2 “ 1

n ´ 1

nÿ

i“1

´
pXi ´ EϑrXisq2 ` 2pXi ´ EϑrXisqpEϑrX1s ´ Tnq ´ pEϑrX1s ´ Tnq2

¯

“ 1

n ´ 1

nÿ

i“1

pXi ´ EϑrXisq2
looooooooooooooomooooooooooooooon
ÑVarϑpX1q P8

ϑ
´a.s. as nÑ8

` 1

n ´ 1

nÿ

i“1

´
2pXi ´ EϑrXisqpEϑrX1s ´ Tnq ´ pEϑrX1s ´ Tnq2

¯

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon
Ñ0 P8

ϑ
´a.s. as nÑ8

,

where the first convergence follows from the strong law of large numbers, and the second from the fact
that pEϑrX1s ´Tnq Ñ 0 P8

ϑ -a.s. in combination with the fact that pTnq is a strongly consistent sequence
and the strong law of large numbers.
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Yet another important class of estimators is that of maximum likelihood estimators.

Theorem 2.1.24. Let a one parameter standard model as in Theorem 2.1.23 be given. Furthermore,
assume the following conditions to be fulfilled:

(a) Θ Ă R is an open interval;

(b)

for all ϑ1, ϑ2 P Θ with ϑ1 ‰ ϑ2 : Pϑ1 ‰ Pϑ2 ; (2.1.17)

(c) for each n P N and all x P Rn, the function

Θ Q ϑ ÞÑ ̺bnpx, ϑq :“
nź

i“1

̺pxi, ϑq

is unimodal;7 in particular, there is a unique maximum likelihood estimator Tnpxq :“ ϑpxq P Θ for
τpϑq “ ϑ such that for all ϑ P Θ with ϑ ‰ Tnpxq we have

̺bnpx, ϑq ă ̺bnpx, Tnpxqq.

Then the sequence pTnq is weakly consistent for τpϑq “ ϑ.

Remark 2.1.25. It follows from the computations of Example 2.1.12 that the conditions of the Theorem
(and in particular the unimodality) are fulfilled in the case of the Xn being i.i.d. Gaussian.

In order to prove this result, we have to introduce another fundamental concept of statistics, namely
that of relative entropy, and some of its properties.

Definition 2.1.26. Let P and Q be two discrete or continuous probability measures on pR,Bq (with
densities p and q; or in the discrete case, these functions denote the one point probabilities). Their
relative entropy or Kullback-Leibler distance8 is defined as

HpP |Qq :“
#

EP

”
ln
´

p
q

¯ı
, if P pq “ 0q “ 0,

8, otherwise.

A very nice and simple introduction to the concept of relative entropy, which also highlights its importance
in statistics, is given in [Geo03].

Claim 2.1.27. In the context of Definition 2.1.26,

(a) If P pq “ 0q “ 0, then

HpP |Qq “ EQ

”p
q
ln
´p
q

¯ı
“

ż
ppxq ln

´ppxq
qpxq

¯
dx,

with 0 ln 0 :“ 0.

Exercise 2.1.28. Do we necessarily have HpP |Qq ă 8 in this case? (non-trivial)

(b) For all probability measures P and Q on pR,Bq as in Definition 2.1.26,

HpP |Qq ě 0;

(c) HpP |Qq “ 0 if and only if P “ Q.

Proof sketch. (a) This is essentially a consequence of the change of variable formula Proposition 1.9.10.

7A function f : Θ Ñ R is called ‘unimodal’ if there exists m P Θ such that f is increasing on p´8,mq, decreasing on
p´8, mq, and fpmq is the unique global maximum. The value of m is referred to as the mode.

8Note, however, that d defined via dpP,Qq :“ HpP |Qq does not denote a metric on the set of probability measures (on

a particular space); in fact, it is not symmetric, and even the symmetrisation rHpP |Qq :“ pHpP |Qq ` HpQ |P qq{2 does
not satisfy the triangle inequality.
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(b) Jensen’s inequality applied with the convex function ϕ : r0,8q Q x ÞÑ x lnx implies

EQ

”p
q
ln
´p
q

¯ı
ě ln

´
EQ

”p
q

ı¯
“ lnpEP r1sq “ 0.

(c) If P “ Q, then P -a.s. we have p “ q, so p{q “ 1, hence HpP |Qq “ 0 by definition. If, on the
other hand, P ‰ Q, then Qptx P R : ppxq ‰ qpxquq ą 0. Using the representation HpP |Qq “
EQ

”
p
q
ln
´

p
q

¯ı
established before, we can now apply the strict version of Jensen’s inequality (cf.

Theorem 1.12.9). Indeed, we check (e.g. by differentiating twice to get that its second derivative
is strictly positive) that the function p0,8q Q x ÞÑ x lnx is strictly convex and the underlying
probability measure Q is not concentrated in a single point. Thus, Jensen’s inequality is strict and
we infer HpP |Qq ą 0 in this case.

Proof of Theorem 2.1.24. Let the fixed parameter ϑ P Θ be given and choose ε ą 0 sufficiently small
such that rϑ ´ ε, ϑ ` εs Ă Θ.

Using (2.1.17) in combination with Claim 2.1.27 (c) we deduce that there exists δ ą 0 such that

HpPϑ |Pϑ´εq ^ HpPϑ |Pϑ`εq ą δ. (2.1.18)

We start with observing that if

̺bnpx, ϑ ´ εq ă ̺bnpx, ϑq (2.1.19)

as well as

̺bnpx, ϑ ` εq ă ̺bnpx, ϑq, (2.1.20)

then, since ̺bnpx, ¨q is unimodal, its maximum must be attained within the interval pϑ ´ ε, ϑ ` εq. In
particular, since Tnpxq is a maximum-likelihood estimator, this implies Tnpxq P pϑ ´ ε, ϑ ` εq.
In particular, (2.1.19) and (2.1.20) are fulfilled for

x P
!
y P Rn :

1

n
ln

̺bn
ϑ pyq

̺bn
ϑ`εpyq ą 0

)č!
y P Rn :

1

n
ln

̺bn
ϑ pyq

̺bn
ϑ´εpyq ą 0

)
, (2.1.21)

whence it is sufficient to show that the probability of the right-hand side of the previous display under
P8
ϑ (or Pn

ϑ if you prefer) converges to 1 as n Ñ 8.

The strong law of large numbers tells us that P8
ϑ -a.s.,

1

n
ln

̺bn
ϑ

̺bn
ϑ`ε

Ñ Eϑ

”
ln
´ ̺ϑ

̺ϑ`ε

¯ı
“ HpPϑ |Pϑ`εq ą δ if Pϑp̺ϑ`ε “ 0q “ 0,

and similarly

1

n
ln

̺bn
ϑ

̺bn
ϑ´ε

Ñ Eϑ

”
ln
´ ̺ϑ

̺ϑ´ε

¯ı
“ HpPϑ |Pϑ´εq ą δ if Pϑp̺ϑ´ε “ 0q “ 0.

In the case Pϑp̺ϑ`ε “ 0q ą 0 we obtain

Pn
ϑ

´ 1

n
ln

̺bn
ϑ

̺bn
ϑ`ε

“ 8
¯

“ 1 ´ p1 ´ Pϑp̺ϑ`ε “ 0qqn Ñ 1,

and similarly for Pn
ϑ

´
1
n
ln

̺
bn
ϑ

̺
bn

ϑ´ε

“ 8
¯
.

Hence, in combination with (2.1.18) we deduce that the Pn
ϑ-probability of the right-hand side of (2.1.21)

converges to 1, which implies the desired weak consistency of the sequence pTnq.

We will see an application of the above results in the exercise classes.
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2.2 Confidence regions

In the previous section we have mainly been concerned with trying to find estimators (or sequences of
estimators) for τpϑq with more or less desirable properties such as being unbiased, having small variance,
or being consistent. The hope was that these estimators gave us the ‘correct’ value of τpϑq.
In most situations, however, an estimator which is a function of finitely many observations will not
provide the correct value anyway. Indeed, recall the estimator of Example 2.0.1 defined in (2.1.3). If we
had chosen a different sample of the population, the estimator would presumably have given us a value
different from that of the first sample. However, the underlying ϑ (or the number of sick persons in the
entire population for that matter) would still have been the same.
Therefore, given some observed data, oftentimes, rather than trying to find the one right value τpϑq, one
is interested in finding a subset (depending on the observed data) of Σ such that (in some sense) one can
be confident that the correct τpϑq is actually contained in this subset.
In fact, Example 2.1.17 even tells us that under suitable assumptions any unbiased estimator in the
n-fold product model has variance bounded below by c

n
, some constant c P p0,8q, as n Ñ 8.

This leads us to the following definition.

Definition 2.2.1. Let pX,A, pPϑqϑPΘq be a statistical model, τ : Θ Ñ Σ an arbitrary function, and
α P p0, 1q. A confidence region for τ with error level α (‘Konfidenzbereich für τ zum Fehlerniveau α’) is
a mapping C : X Ñ 2Σ such that9

inf
ϑPΘ

Pϑ

`
x P X : τpϑq P Cpxq

˘
ě 1 ´ α. (2.2.1)

If for all x P X, the set Cpxq is actually an interval, then C is called ‘confidence inter-
val’(‘Konfidenzintervall’) instead of ‘confidence region’.

Remark 2.2.2. (a) The condition in (2.2.1) is certainly fulfilled if we choose the constant confidence
region Cpxq ” Σ. This, however, would not be of too much use to us. In fact, we aim for choosing
Cpxq as small as possible as this gives us more information on the real value of τpϑq (with high
probability).

(b) It is important to interpret (2.2.1) in the right way: If we choose e.g. α :“ 0.05 “ 5%,10 then,
given an outcome x P X, (2.2.1) does not tell us that in 95% of the cases ϑ is contained in Cpxq
(in fact, ϑ is not known, it is fixed nevertheless, and we do not have a probability distribution on
Θ either; so it does not make sense to say that in 95% of the cases ϑ has a certain property).

Rather, (2.2.1) is to be interpreted in the following way: No matter what the real value of ϑ is, in
at least 95% of the realizations x that we observe under Pϑ, we will have that τpϑq P Cpxq (i.e., the
probability of those observations x for which we have τpϑq R Cpxq is bounded from above by 5%).

2.2.1 One recipe for constructing confidence regions

While there are of course many ways to choose confidence regions, there is a sort of canonical procedure
that suggests itself in the standard model. We will illustrate it for

τpϑq “ ϑ (2.2.2)

for the sake of simplicity:
Let α P p0, 1q be given.

(a) For any ϑ P Θ, choose Cϑ P A in such a way that

PϑpCϑq ě 1 ´ α.

In the case of a standard model where we have (2.0.3) and a density ̺ϑ at our disposal, one
possibility is to choose

Cϑ :“ ̺´1
ϑ prs˚,8qq,

where

s˚ :“ sup
!
s P R :

ż
1̺ϑpxqěspxq ¨ ̺ϑpxqdx

loooooooooooooomoooooooooooooon
PϑpxPX : ̺ϑpxqěsq

ě 1 ´ α
)

9In particular, for the probability in (2.2.1) to be well-defined, we need tx P X : τpϑq P Cpxqu P A.
10typical values for α are e.g. 0.05 and 0.01;
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(and where in the discrete case the integral is as always replaced by a sum); this choice of Cϑ means
that we choose Cϑ in such a way that

• it consist of the highest possible values of ̺ϑ, and

• at the same time is as small as possible (in terms of the Pϑ-probability of subsets of X).
(However, we could as well have chosen any other Cϑ P A such that PϑpCϑq ě 1 ´ α.)

(b) We now define

Cpxq :“ tϑ P Θ : x P Cϑu, (2.2.3)

which does the job.

Remark 2.2.3. The Reader may convince herself that if τ is not of the form as in (2.2.2), then the
mapping

X Ñ 2Σ

x ÞÑτpCpxqq

with Cpxq as in (2.2.3) still provides us with a confidence region for τ with error level α. However,
one might at times be able to devise ‘better’ confidence regions which take into consideration the specific
structure of τ.

In the literature you find formulae and computations for confidence intervals for common distributions
and different error levels. We will not go into those details but rather present another approach for
computing confidence intervals of the median (which is independent of the underlying distribution!).

2.2.2 Order statistics

Although we have seen that the Central Limit Theorem (Theorem 1.15.1) implies that the normal distri-
bution takes a pre-eminent role under distributions, it might not always be the case that it is reasonable
to assume that certain data are obtained as realization of normally distributed random variables, or
of any other preselected distribution: We might want to be able to obtain some reasonable statements
without the assumption that the data observed has been obtained according to a fixed distribution.
For the purpose of introducing order statistics, it seems reasonable to get acquainted to the following
definition. For the sake of simplicity it suggests itself to

assume that the law according to the observations X1, . . . , Xn on pRn,BpRnqq (2.2.4)

is realized has a continuous distribution. (2.2.5)

This is not really necessary but keeps overly technical details out of our focus.

Definition 2.2.4. The order statistics (‘Ordnungsstatistik’) X1:n, X2:n, . . . , Xn:n of the random variables
X1, . . . , Xn is defined recursively as

X1:n :“ mintX1, . . . , Xnu,

and given X1:n, . . . , Xj:n for some j P t1, . . . , n ´ 1u, we define

Xj`1:n :“ mintXk : Xk ą Xj:nu.

The assumption of (2.2.4) ensure that almost surely with respect to the underlying probability measure,

X1:n ă X2:n ă . . . ă Xn:n.

As you might imagine, without any further assumptions (in particular on the tails of the distribution
of the Xi) one might have a hard time trying to reasonably estimate central parameters such as the
expectation with a guaranteed probability (e.g. in the sense of confidence regions – which is hard to
realise here since we do not have a parametric family of potential probability measures at our disposal);
even more so, it is not even clear whether the expectation of the underlying distribution exists at all.
There is, however, another characteristic quantity of the underlying distribution which is of significant
relevance and which is less prone to the occurrence of outliers in sample data: the median.
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Definition 2.2.5. Let a probability measure P on pR,BpRqq be given. For α P p0, 1q, any real number q

with the property that

Ppp´8, qsq ě α and simultaneously Pprq,´8qq ě 1 ´ α

is called an α-quantile of P (‘α-Quantil von P’). An 1
2 -quantile is called median (‘Median’) (often denoted

mpPq) and the quantiles at level 1
4 and 3

4 are called lower (‘unteres’) and upper quantile (‘oberes Quantil’),
respectively.

For a real random variable X defined on a probability space pΩ,F ,Pq and α P p0, 1q, the α-quantile of X
is defined as the α-quantile of its distribution P ˝ X´1. The median of X is often denoted by mpXq.

Exercise 2.2.6. Show that in the setting of Definition 2.2.5, for any α P p0, 1q, the α-quantile exists.

Example 2.2.7. (a) For p P p0, 1q consider the Bernoulli distribution with parameter p. If p ą 1
2 ,

then its median is given by 1, whereas for p ă 1
2 its median is 0. For p “ 1

2 , any number in r0, 1s
is a median.

(b) Quantiles of a N pµ, σ2q distributed random variable play important roles in statistics (e.g. in con-
fidence regions or tests). Since they are non-trivial to compute there are quantile tables which
containing the quantiles for wide ranges of parameters. The median, however, is easy to compute
since it just coincides with is expectation (and is uniquely determined) µ.

The very definition of the median and the fact that we have a total order on R ensure that it can be
estimated nicely using the binomial distribution lurking behind. For this purpose we denote

qnpαq :“ max
 
k P t1, . . . , nu : Binn, 12 pt0, . . . , k ´ 1uq ď α

(
.

Theorem 2.2.8. Let pXnq be a sequence of i.i.d. real random variables with a continuous distribution
P on pR,BpRqq. Then for n P N and α P p0, 1q we have that

rXqnp α
2 q:n, Xn´qnp α

2 q:ns

is a confidence interval for the median mpX1q of X1 with error level α.

Proof. Using the standard product model notation, from the very definition of the median we obtain
that

Pn
`
mpXq ă Xqnp α

2 q:n
˘

“ Binn, 12 pt0, . . . , qnpα{2q ´ 1uq ď α{2,

where the last inequality follows from the definition of qnpα{2q. Similarly for Pn
`
mpXq ą Xn´qnp α

2 q:n
˘
,

which completes the proof.

In a slightly more complicated manner than what is done in the proof of Theorem 2.2.8, we can obtain
confidence intervals not only for the median but also for other quantiles of a distribution on pR,BpRqq
(and again, these confidence intervals are independent of the underlying distribution P).

2.3 Tests

In the previous sections we have devoted our investigations to estimating parameters as well as finding
confidence regions (depending on certain observed data) such that if a value τpϑq P Σ was not contained
in the corresponding confidence region, then the observed data was unlikely to be observed under Pϑ.

In this section, instead of trying to understand the underlying distribution Pϑ, we are just interested in
accepting or rejecting certain hypotheses. Again, as we have seen before e.g. in the context of estimators,
a statistician does have some freedom in how to choose the tests she applies, and usually different choices
will have different pros and cons. It is part of the statistician’s job to try to figure out what’s suited best
to her current needs.

In order to be able to accept or reject hypotheses, we have to fix a model as well as a couple of parameters.
This is illustrated in the following example.
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Example 2.3.1. Assume you are a retailer and have ordered a sizeable amount of light bulbs. The
contract you signed with the manufacturer demands that at most 1% of the bulbs delivered may be dys-
functional. If the proportion of dysfunctional light bulbs in the batch exceeds 1%, then the manufacturer
is obliged to pay you a penalty for non-performance. Therefore, the question you might want to resolve
could be of the following type: What is the number x of broken light bulbs that you do have to accept in a
small sample of size n of the entire batch (the latter having size N " n), such that if you see more than
x dysfunctional light bulbs in this sample and you claim the non-performance penalty, you will be right
in at least 95% of the cases (i.e., in at least 95% of the realizations with at least x bad light bulbs in the
sample, the proportion of defect light bulbs in the entire batch is more than 1%).

(a) We can fit this context into the following statistical model: X “ t0, 1, . . . , nu (where n is the size of
the sample, N ě n is the size of the delivery batch) and Θ “ t0, 1, . . . , Nu is the set in which the
number of defect light bulbs contained in the batch can take its values. For ϑ P Θ the probability Pϑ

can then be defined via
Pϑ :“ HN,ϑ,n,

where the hypergeometric distribution HN,ϑ,n has been introduced in Example 1.8.10 in such a way
that for k P t0 _ n ` ϑ ´ N, . . . , n ^ ϑu one has

HN,ϑ,npkq “
`
N´ϑ
n´k

˘`
ϑ
k

˘
`
N
n

˘ .

(b) We now partition the space Θ in two components Θ0 and Θ1 in such a way that if ϑ P Θ0, then
we should accept the batch of bulbs as is (which is deemed the standard case, cf. Remark 2.3.5),
whereas if ϑ P Θ1 we could claim a penalty from the manufacturer (the exceptional case). In our
case, due to the contract outlined above, we immediately arrive at

Θ0 :“ t0, 1, . . . , tN{100uu,

and
Θ1 :“ ttN{100u ` 1, tN{100u ` 2, . . . , Nu.

Once we have this decomposition, the usual wording is to refer to the case ϑ P Θ0 as the null
hypothesis (‘Nullhypothese’) , whereas the case ϑ P Θ1 is referred to as alternative (‘Alternative’).

(c) We now have to choose a significance level (‘Signifikanzniveau’) α P p0, 1q (this is very much in spirit
of the confidence regions introduced in the previous section). In our example it translates to the
following: We want to keep the probability reasonably small (say smaller than some level α P p0, 1q)
that after having inspected our sample of size n, we do claim a penalty from the manufacturer, but
that at the same time the real ϑ is contained in Θ0 (i.e., we are claiming a penalty although we
are not entitled to do so since the total proportion of dysfunctional light bulbs does not exceed 1%).
Such an error of a false rejection of the null hypothesis is called a type I error. The other possible
type of error would be a false acceptance of the null hypothesis which is called a type II error.

(d) The last task is to find a rule which tells us in dependence on the observed data x P X whether or not
to accept the null hypothesis. Such a rule is usually devised in terms of a statistic T : X Ñ r0, 1s,
which is to be interpreted such that if for the observed data x P X we have T pxq “ 0, then the null
hypothesis would be accepted, whereas if T pxq “ 1, then the null hypothesis should be rejected in
favour of the alternative. If T pxq P p0, 1q, then an additional experiment should be performed which
with probability T pxq tells you to go for the alternative.

The following setting has been shortly looked at in Homework sheet 8, exercise 1 c). We can now perform
a more structured analysis of the situation.

Example 2.3.2. Consider a sequence of i.i.d. coin flips X1, X2, . . . , Xn with a coin that has probability
ϑ P r0, 1s “: Θ to show heads (corresponding to 1, and tails corresponding to 0). We are interested in
whether the coin is fair (ϑ “ 1

2) or not. Therefore, we can choose X “ t0, 1un, A “ 2X, and

Pϑpx1, . . . , xnq “ ϑ
řn

i“1 xip1 ´ ϑqn´
řn

i“1 xi

(see Example 1.8.2).
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As null hypothesis we choose the case that the coin is fair, hence Θ0 :“ t 1
2u and Θ1 :“ p0, 1{2q Y p1{2, 1q,

and for the significance level we could e.g. choose α “ 0.05 “ 5% as an upper bound for committing a
type I error.
Using a normal approximation and the fact that Var 1

2
přn

i“1 Xiq “ nVar 1
2

pX1q “ np1
2 ´ 1

4 q “ n
4 , we can

approximate

P 1
2

´ˇ̌
ˇ

nÿ

i“1

Xi ´ n

2

ˇ̌
ˇ ě cn

¯
“ P 1

2

´ˇ̌
ˇ

nÿ

i“1

Xi ´ n

2

ˇ̌
ˇ{
c

n

4
ě cna

n
4

¯
« 2Φ

´
´ cna

n
4

¯
,

with Φ denoting the cumulative distribution function of a N p0, 1q distributed random variable. Solving
for

2Φ
´

´ cna
n
4

¯
!“ 0.05,

e.g. by using a quantile table for the normal distribution which supplies us with Φp1.96q « 0.975, we
obtain cn « 0.98

?
n. Thus, if we have a sample of n coin tosses of a fair coin, then we only see ‘extreme

realizations’ for which

|
nÿ

i“1

Xi ´ n{2| ě 0.98
?
n (2.3.1)

with a probability of less than 5% (modulo the errors incurred in the above approximations). Therefore,
if we have a significance level α “ 5%, we might reject the null hypothesis if we observe such realizations.
For the sake of example, in the case of n “ 100, (2.3.1) corresp either more than 59 or less than 41
heads.

Formalizing the above we arrive at the following.

Definition 2.3.3. Let a statistical model pX,A, pPϑqϑPΘq and a partition of Θ into the null hypothesis
Θ0 and the alternative Θ1 be given.

(a) A statistic T : X Ñ r0, 1s is called a test of Θ0 against Θ1. The subset T´1pt1uq of X is called
rejection region (‘Ablehnungsbereich, Verwerfungsbereich, kritischer Bereich’). On the other hand,
if an observation x is contained in T´1pt0uq, the null hypothesis should be accepted.

If x P T´1pp0, 1qq, an additional random experiment (independent from everything else) should lead
to a rejection of the null hypothesis with probability T pxq.

(b) Among all ϑ P Θ0, the smallest upper bound on the probability of committing a type I error is given
by

sup
ϑPΘ0

EϑrT s;

the latter quantity is also called the size (‘Umfang’) or effective level (‘effektives Niveau’) of T. A
test T is said to be a test of significance level (‘Signifikanzniveau’) α P p0, 1q if

sup
ϑPΘ0

EϑrT s ď α. (2.3.2)

(c) The power function (‘Macht, Stärke’) of a test T at ϑ P Θ1 is defined as EϑrT s. The function

GT : Θ Ñ r0, 1s
ϑ ÞÑ EϑrT s

is called the power function of T (‘Gütefunktion von T ’).

Thus, for ϑ P Θ0 the quantity GT pϑq is the probability of a type I error, whereas for ϑ P Θ1 it
provides us with the probability of a (correct) rejection of the hypothesis.

Remark 2.3.4. One reason for having T map to r0, 1s instead of just t0, 1u in Definition 2.3.3 (a) is
the following. Assume that you not only want to construct a test with significance level α P p0, 1q, but
rather you want equality in (2.3.2) to hold. I.e., you are really prepared to possibly be embarrassed in
a proportion exactly α of cases (if the underlying ϑ happens to be the one for which the supremum in
(2.3.2) is attained for the test you choose to apply).
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For instance, in Example 2.3.1 we see that Θ0 is a finite set and therefore EϑrT s, ϑ P Θ0, takes finitely
many values only. In particular, for all but finitely many choices of α the inequality in (2.3.2) would be
strict for all of the finitely many tests T : X Ñ t0, 1u. Thus, one way to achieve equality in (2.3.2) is to
admit so-called randomised tests T : X Ñ r0, 1s.
In fact, assume that in Example 2.3.1 we do have

sup
T

sup
ϑPΘ0

EϑrT s ă α, (2.3.3)

where the first supremum is taken over all tests T : X Ñ t0, 1u with significance level α. We now
construct a randomised test T that satisfies equality in (2.3.2). For this purpose, we choose the minimal
k P X “ t0, 1, . . . , nu such that11

c :“ sup
ϑPΘ0“t0,1,...,t N

100 uu
Pϑptk, k ` 1, . . . , nuq ď α,

which, as you may convince yourself, amounts to

c “ Pt N
100 uptk, k ` 1, . . . , nuq ď α.

and furthermore (2.3.3) then implies that the inequality in the above display is strict. Thus, we can define
the test

T pxq “

$
’&
’%

1, if x P tk, k ` 1, . . . , nu,
α´c

P
t N
100

u
ptk´1uq ą 0, if x “ k ´ 1,

0, if x P t0, 1, . . . , k ´ 2u.
Hence, if one observes x “ k ´ 1, then an additional independent experiment is conducted that leads to
rejection of the null hypothesis with probability exactly α ´ c. We check that indeed we have

sup
ϑPΘ0

EϑrT s “ Et N
100 urT s “ Pt N

100 uptk, k ` 1, . . . , nuq ` Pt N
100 uptk ´ 1uq α ´ c

Pt N
100 uptk ´ 1uq

“ c ` α ´ c “ α.

Remark 2.3.5. Given a problem such as the above, oftentimes a partition Θ “ Θ1 9YΘ2 suggests itself
(in this case one of the two sets Θ1 and Θ2 should consist of the ‘acceptable’ values for the numbers
of defect bulbs, the other one should consist of those values that are not acceptable and hence lead to
a breach of contract). Slightly more difficult is the task to determine which of the two sets Θ1 and Θ2

should correspond to the null hypothesis, and which one should be the alternative.
Given the nature of a test (i.e., that the null hypothesis is discarded only if the data one has as an
observation is reasonably unlikely with a probability smaller than α, the latter one often being chosen as
0.01 or 0.05) it suggests itself to choose those values of Θ for the null hypothesis that imply acceptance
of the batch; otherwise, if we chose the null hypothesis to consist of those values of Θ that would make us
claim a penalty for non-performance, we would generally claim a non-performance fee and only accept
the delivered batch as is if the observed data had a probability less than α under all PN,ϑ,n, where ϑ P Θ1,

for which the batch would be rejected. In particular, you would most probably very quickly loose your
credibility toward the manufacturer since you’d often claim a non-performance fee although the ratio of
dysfunctional bulbs in the batch did not exceed 1%.

We recall here that in Definition 2.1.13 we had introduced the concept of best unbiased estimators for
some function τ ; i.e., among all unbiased estimators for τ, we considered those the best for which the
variance was minimised. In a similar fashion we now define what we consider best tests of Θ0 against
Θ1 (where the latter two sets are assumed to be given, in the same way that the function τ to estimate
was given for defining best estimators).

Definition 2.3.6. Let a statistical model pX,A, pPϑqϑPΘq, α P p0, 1q, and a partition Θ0 9YΘ1 “ Θ be
given. A test T of Θ0 against Θ1 is called uniformly most powerful (UMP) test at level α (‘gleichmäßig
bester Test zum Niveau α’), if T is a test of Θ0 against Θ1 at level α, and at the same time for any

other test rT of Θ0 against Θ1 at level α, one has

GT pϑq ě G rT pϑq @ϑ P Θ1. (2.3.4)
11There are of course many tests T which satisfy (2.3.2), and our approach here is not mandatory, i.e., we could as

well choose a rejection region that is not of the form tk, k ` 1, . . . , nu; however, choosing a rejection region of the form
tk, k ` 1, . . . , nu corresponds to the heuristics that ‘the higher the observed number of dysfunctional bulbs in the sample,
the higher the tendency to discard the null hypothesis’.
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Now even though we can define the notion of a best test of Θ0 against Θ1 at level α, it might still not
be clear how to actually define a useful test. For example, we should certainly choose a reasonable value
of α, and the smaller we choose α, the smaller the power of the test gets – we have to strike a balance
here!

2.4 Testing for alternatives (‘Alternativtests’)

A reasonably simple setting is that of observing data of which you know that it has been obtained as
a realization according to one of two possible candidate distributions P0 and P1 – it is your task to
determine whether to accept the null hypothesis that the data has been realized according to P0, or
whether to reject the null hypothesis and opt for the alternative P1.

We will deal with the case of a standard model, i.e., there exist corresponding likelihood functions
̺0, ̺1 : X Ñ r0,8q for P0 and P1. Following the maximum-likelihood heuristics that led us to define
maximum likelihood estimators in Definition 2.1.11, one may arrive at the idea to consider the ratio

Rpxq “
#

̺1pxq
̺0pxq , if ̺0pxq ą 0,

8, if ̺0pxq “ 0.
(2.4.1)

of the two densities for a given observation x P X. Intuitively, the larger this quotient, the more one
should tend to reject the null hypothesis that the underlying distribution is P0.

Definition 2.4.1. A test T of the form12

T pxq “
"

1, if Rpxq ą c,

0, if Rpxq ă c,
(2.4.2)

for some constant c P p0,8q and with R as in (2.4.1), is called a Neyman-Pearson test (Polish-US
statistician Jerzy Neyman (1894–1981), Egon S. Pearson (1895–1980)).

The following result tells us that in the above context of two alternative hypotheses, Neyman-Pearson
tests are in fact the best you can get.

Theorem 2.4.2 (Neyman-Pearson lemma). Assume a statistical standard model pX,A,P0,P1q as well
as a level α P p0, 1q be given (P0 will be the probability distribution under the null hypothesis, P1 the
probability distribution of the alternative).

(a) There exists a Neyman-Pearson test T such that

E0rT s “ α. (2.4.3)

(b) Any such Neyman-Pearson test T satisfying (2.4.3) is a best test at level α.

Proof. (a) Let α P p0, 1q be given. The only tasks we have to solve is to find the right c and then
possibly randomise on the set tR “ cu in order to get the desired equality in (2.4.3).

Define
c :“ inf

 
s P R : P0pR P ps,8qq ď α

(
.

Thus, for any s ă c, by definition we have

P0 ˝ R´1pps,8qq ą α.

Since probability measures are continuous from above (recall Proposition 1.3.9 (g)) we deduce that

P0 ˝ R´1prc,8qq ě α.

as well as
P0 ˝ R´1ppc,8qq ď α.

Therefore, if P0pR “ cq “ 0, then in combination with the two previous displays we deduce

P0pR ě cq “ α, (2.4.4)

12The case Rpxq “ c is not specified here in order to leave sufficient leeway to construct Neyman-Pearson tests that
attain any given significance level α P p0, 1q, i.e., corresponding to equality in (2.3.2).
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and hence we define

T pxq “
"

1, if Rpxq ě c,

0, if Rpxq ă c,

which due to (2.4.4) is a Neymann-Pearson test at level α as desired.

If, on the other hand, P0pR “ cq ą 0, then we set

T pxq “

$
&
%

1, if Rpxq ą c,
α´P0pRącq
P0pR“cq , if Rpxq “ c,

0, if Rpxq ă c,

which again is a Neymann-Pearson test at level α as desired.

(b) Let T be a Neyman-Pearson test with E0rT s “ α as in the assumptions, and let rT be any other
test at level α. We have to show that

GT p1q ě G rT p1q @ϑ P Θ1. (2.4.5)

Denote as before by c the constant from the definition of the Neyman-Pearson test T as in (2.4.4).

We have

GT p1q ´ G rT p1q “ E1rT s ´ E1rrT s “
ż

X

1
T pxq´ rT pxqą0pxq pT pxq ´ rT pxqq ¨ ̺1pxqdx

`
ż

X

1
T pxq´ rT pxqă0pxq pT pxq ´ rT pxqq ¨ ̺1pxqdx.

Now since T is a Neyman-Pearson test with constant c, on tT ´ rT ą 0u we must have T ą 0 and

hence ̺1 ě c̺0. On the other hand, on tT ´ rT ă 0u we must have T ă 1 and therefore in particular
̺1 ď c̺0. As a consequence, we get

E1rT s ´ E1r rT s ě c

ż

X

pT pxq ´ rT pxqq ¨ ̺0pxqdx “ cpE0rT s ´ E0rrT sq ě 0.

This shows that T is a best test at level α.

Exercise 2.4.3. Convince yourself that there might be cases that satisfy the assumptions of Theorem
2.4.2, and for which we have P0pR “ cq ą 0.

Remark 2.4.4. The previous Theorem 2.4.2 tells us how to construct UMP tests under the assumption
that we do have two one-element sets Θ0 and Θ1 via Neyman-Pearson tests. Under certain monotonic-
ity assumptions on the underlying distributions, this technique extends to obtain UMP tests for more
interesting sets Θ0 and Θ1 of parameters.
For instance, have another look at Example 2.3.1 and recall that Θ0 “ t0, 1, . . . , t N

100 uu and Θ1 “
tt N

100 u, t N
100 u ` 1, . . . , Nu. In particular, we want to show that the test T constructed in Remark 2.3.4 is

a UMP test of Θ0 against Θ1 at level α.
The principal observation now is that for ϑ1 ą ϑ0 the quotients

Rpxq :“ HN,ϑ1,npxq
HN,ϑ0,npxq are increasing in x P t0, 1, . . . , nu (2.4.6)

(with Rpxq :“ 8 for all x ą ϑ0 ), as is easy to check; indeed, it follows from

HN,ϑ,npxq
HN,ϑ`1,npxq “ pϑ ` 1qpN ´ ϑ ´ n ` xq

pϑ ` 1 ´ xqpN ´ ϑq ,

for x from the corresponding adequate range.
Display (2.4.6) implies that T is a Neyman-Pearson test of tϑ0u (with ϑ0 “ t N

100 u) against tϑ1u at level

α, for any ϑ1 P tt N
100 u ` 1, . . . , Nu. As a consequence, Theorem 2.4.2 tells us that T is a UMP test of

tt N
100 uu against tϑ1u at level α; hence, it satisfies (2.3.4) for Θ1 “ tϑ1u; but since ϑ P tt N

100 u ` 1, . . . , Nu
was chosen arbitrarily, T also is a UMP test of tt N

100 uu against Θ1 :“ tt N
100 u ` 1, . . . , Nu at level α.



2.4. TESTING FOR ALTERNATIVES (‘ALTERNATIVTESTS’) 95

The only thing we still have to show is that even as a test of Θ0 against Θ1, the test T still has level α.
For this purpose it is sufficient to prove that

EϑrT s ď Et N
100 urT s (2.4.7)

for all ϑ P t0, 1, . . . , t N
100 u ´ 1u. But using (2.4.6) again, we get that T is a Neyman-Pearson test of tϑu

against t N
100 u, hence it is a UMP test of tϑu against t N

100 u at level β :“ EϑrT s. Thus, it is at least as

powerful as the constant test pT :“ β, and therefore we obtain the last inequality in

EϑrT s “ β “ Et N
100 urpT s ď Et N

100 urT s,

which establishes (2.4.7) and hence finishes the proof.
Note that this procedure of extending the UMP property from Neyman-Pearson tests to more general null
hypotheses and alternatives is not limited to this example. Once you have a property of the type (2.4.6),
you’re in business to extend Θ1 to sets of more than one element. Furthermore, you would also need to
show that supϑPΘ0

EϑrT s “ Eϑ0 rT s in order to extend tϑ0u to Θ0.

2.4.1 Chi-square test of goodness of fit (‘Chiquadrat-Anpassungstest’)

In Example 2.3.2 we have seen an easy way to construct a test of the null hypothesis of a fair coin
(against the alternative of an unfair coin) at an arbitrary level α. While this was a pretty simple case, in
more general state spaces it is usually harder to check whether or not some given data has been realized
according to a certain distribution (which will be the null hypothesis) or not (alternative). For the time
being we will focus on (discrete) distributions in this setting.
As in the setting of the coin flips we will assume that the data observed has been produced as a realization
of i.i.d. experiments, so we will work in the infinite product model, where each coordinate takes a value
in a finite set E. I.e., the model is given by

pEN, p2EqbN, pPbN
ϑ qϑPΘq,

where Pϑ is the distribution of any of the coordinates.
For notational convenience, we denote by Θ the space of probability measures on pE, 2Eq. We are going
to test the null hypothesis that the coordinates have a certain distribution given by ̺ P Θ against the
alternative Θ1 :“ Θzt̺u. (In the context of a presumably fair coin we would have taken E “ t0, 1u and
̺p0q “ ̺p1q “ 1

2 ).
To the first n coordinates (i.e., observations) we can associate a probability measure as follows. For
x P E denote

ℓnpxq :“ |t1 ď k ď n : Xk “ xu|
the frequency of x during the first n observations. We then define the probability measures

LnpAq :“ 1

n

ÿ

xPA
ℓnpxq, A P 2E ,

on pE, 2Eq. It is often referred to as the empirical distribution.
As done several times before already, again we are guided by the maximum likelihood heuristics and
define for any probability measure ϑ P Θ the quotient

Rnpϑq :“
ś

xPE ϑpxqℓnpxq
ś

xPE ̺pxqℓnpxq .

Taking logarithms, we obtain with ϑ “ Ln that

lnRnpLnq “ n
ÿ

xPE
Lnpxq ln Lnpxq

̺pxq “ nHpLn | ̺q,

where H is the relative entropy that we have introduced in Definition 2.1.26. Since we have seen that the
relative entropy is always non-negative as well as that HpQ |Qq “ 0 (cf. Proposition 2.1.27), it suggests
itself to introduce tests of the form13

TnpLnq “
"

1, if nHpLn | ̺q ą c,

0, if nHpLn | ̺q ď c.

13While it suggests itself to discard the null hypothesis if the quantity HpLn | ̺q takes large values, there is some seemingly
arbitrary element in choosing nHpLn | ̺q as the quantity to test against c. This can, however be motivated e.g. by the use
of so-called ‘large deviation principles’, which show that in quite general situations the probability of observing Ln roughly
decays like e´nHpLn | ̺qp1`op1qq.
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(Also recall that HpLn |Qq was called the Kullback-Leibler distance, so in some sense we will discard
the null hypothesis if the distance of Ln to Q is ‘large’.) Denote

Dn,̺ :“ n
ÿ

xPE
̺pxq

´Lnpxq
̺pxq ´ 1

¯2

. (2.4.8)

Definition 2.4.5. Any test of the null hypothesis H0 : ϑ “ ̺ against the alternative H1 : ϑ ‰ ̺

with rejection region of the form tDn,̺ ą cu, some c P p0,8q, is called a χ2-test of goodness of fit
(‘χ2-Anpassungstest’) after n observations.

The reason for this terminology will be given in Theorem 2.4.8 below.

Theorem 2.4.6.

nHpLn | ̺q ´ Dn,̺{2
converges to 0 in distribution under Pϑ (and hence in Pϑ-probability as well, since the limit is a constant).

Proof. The proof can be found as the proof of Proposition 11.10 in [Geo09].

Definition 2.4.7. Let X1, . . . , Xn be i.i.d. independent N p0, 1q distributed random variables. The dis-
tribution of the random variable

řn
i“1 X

2
i is called the χ2-distribution with n degrees of freedom (‘χ2-

Verteilung mit n Freiheitsgraden’).

The following result is due to Karl Pearson (1857–1936), the father of Egon S. Pearson whom we en-
countered in the context of the Neyman-Pearson tests.

Theorem 2.4.8. Under Pϑ, the sequence pDn,̺qnPN converges to a χ2
|E|´1 distributed random variable.

Proof. See proof of Theorem 11.12 in [Geo09].

Note by the author. It is my sincere hope that you did learn some mathematics during this class. I
would also be happy if you enjoyed it as much as I did; and if you did not, and feel that there is anything
else I could do to improve your learning experience in this class (except for modifying the exercise class
system, which we will be doing anyways), then please do let me know (drewitz@math.uni-koeln.de)!
Even though I might not always have treated you with kid gloves, I hope this ulti-
mately helps growing your independence and resilience. And if you are willing to take one
last bit of advice, heed the following: https://www.youtube.com/watch?v=D1R-jKKp3NA (see
https://www.youtube.com/watch?v=DpMwWaxoI4Y for a German version).
Acknowledgment: I would like to thank Alexis Prévost and Lars Schmitz for pointing out

various mistakes and suggestions which led to an improved version of these notes.

mailto:drewitz@math.uni-koeln.de
https://www.youtube.com/watch?v=D1R-jKKp3NA
https://www.youtube.com/watch?v=DpMwWaxoI4Y
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1969.

[Sch88] I. Schneider. Die Entwicklung der Wahrscheinlichkeitstheorie von den Anfängen bis 1933:
Einf. u. Texte. Akad.-Verlag, 1988.

97



98 BIBLIOGRAPHY

[Sen06] E. Seneta. Non-negative matrices and Markov chains. Springer Series in Statistics. Springer,
New York, 2006. Revised reprint of the second (1981) edition [Springer-Verlag, New York;
MR0719544].

[vdWB75] B.L. van der Waerden and J. Bernoulli. Die Werke von Jakob Bernoulli: Bd. 3: Wahrschein-
lichkeitsrechnung. Die Werke von Jakob Bernoulli. Birkhäuser Basel, 1975.
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