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Chapter 1

Set functions

In the introductory course ‘Introduction to probability and statistics’ (see [Dre18]),1 a frequent
motivation was the investigation of (finitely many) dice tosses or coin flips. We have seen that
those experiments were suitably described by discrete probability spaces, see [Dre18, Section
1.2]. Also in the nice setting of probability distributions with a density we have learned how
to deal with that setting by means of the Riemann integral to some extent. However, quite
quickly we had reached the limit of that approach, since for example pointwise limits of Riemann
integrable functions were not necessarily integrable anymore, see e.g. Section [Dre18, Section
1.8.3].

As promised in the introductory class, in this course we will provide a rigorous and self-contained
introduction to the concept of Lebesgue integration, which will in particular comprise and
generalize most of the content of [Dre18] regarding random variables and expectations.

The principal goals of the first two chapters are twofold:

• Investigate measures and in particular construct the Lebesgue measure on Rd using a
general extension theorem for elementary notions of volume;

• Introduce the Lebesgue integral for suitable functions defined on arbitrary measure spaces;

Recommended references to accompany this Chapter are [Els05], [Kle14], [Kal02] and [G0̈8],
as well as [Bau92]. Further sources on measure theory are [Bil95], [Coh13], [Doo94], [Rao04],
[Hal50].

1.1 Systems of sets

1.1.1 Semirings, rings, and algebras

One of the main goals will be to measure subsets of some a priori abstract set Ω. In general,
it will not be possible to do so in an appropriate manner for all subsets of Ω (the so-called
‘Maßproblem’ and ‘Inhaltsproblem’ (see [Els05]) as well as the Banach-Tarski paradox show the
kind of problems that can arise when trying to do so; due to time constraints, we will not go
into details here).

Maßproblem: We want to construct a function µ : 2R
d Ñ r0,8s (supposed to measure subsets

of Rd) with the following properties:

(a) For any sequence pAnqnPN of pairwise disjoint subsets An Ă Rd, we have

µ
´ ď

nPN
An

¯
“

ÿ

nPN
µpAnq (σ-additivity);

1This course is not a prerequisite, however it might help intuition to have attended that course.
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6 CHAPTER 1. SET FUNCTIONS

(b) For any isometry (‘Bewegung’) T of Rd and any A Ă Rd one has

µpAq “ µpT pAqq (invariance under isometries);

(c)

µpr0, 1qdq “ 1 (normalization);

Theorem 1.1.1 (Satz v. Vitali (1905), Italian mathematician (1875–1932)). Das Maßproblem
ist unlösbar für d “ 1.

Theorem 1.1.2 (Satz v. Banach-Tarski (1924), Polish mathematicians (Stefan Banach, 1892
– 1945, Alfred Tarski, 1901 – 1983)). For d ě 1, let A,B Ă Rd be arbitrary sets with non-empty
interior. Then there exists a sequence pCnq of subsets Cn P Rd and isometries (Bewegungen)
pTnqnPN such that

A “ 9
ď

nPNCn and B “ 9
ď

nPNTnpCnq.

Therefore, a key role will be played by certain subsets of the power set 2R
d

of Rd which are
nicely behaved. In fact, it will turn out that with little additional effort we will be able to
develop a theory of measures (and subsequently integration) not only on suitable subsets of Rd,
but also of more general spaces Ω which will proves useful in many occasions.

In the following we introduce several such systems of subsets which play an integral part in the
construction of those functions (so-called measures, introduced in Definition 1.2.3 below) which
will be measuring the corresponding subsets (which will form so-called σ-algebras, see Definition
1.1.18).

The first definition is just a shorthand for systems of subsets of Ω which are closed under finite
intersection.

Definition 1.1.3. Let Ω be a non-empty set and let S Ă 2Ω. S is called a π-system (‘π-System’)
if it is closed under (finite) intersections:

A,B P S ùñ AXB P S. (1.1.1)

Remark 1.1.4. Using induction (‘vollständige Induktion’) it is not hard to show that if S is a
π-system, n P N, and A1, . . . , An P S, then

nč

i“1

Ai P S.

(see exercise classes).

To us, this property will prove particularly valuable in combination with further properties, as
will be seen in the set systems introduced below.

A standard way to construct functions which are supposed to measure many subsets of a set Ω
is to first specify how to measure certain ‘simple’ subsets of Ω. Such simple subsets oftentimes
form a semiring as introduced in the following definition.

Definition 1.1.5. Let Ω be a non-empty set. A subset S of 2Ω is called a semiring (‘Halbring’,
‘Semiring’) over Ω if the following properties are fulfilled:

(a)

H P S; (1.1.2)

(b) S is a π-system;
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(c) for any A,B P S, there exist pairwise disjoint C1, . . . , Cn P S such that

AzB “ 9
ďn

i“1
Ci.

One of the examples most relevant to us will be the following.

Example 1.1.6. Denote by
I :“

 
pa, bs : a, b P R, a ď b

(

the set of left-open right-closed intervals in R. Then I is a semiring over R.

Proof. See exercise classes.

The set of Cartesian products of elements of two semirings is a semiring again, as is stated in
the following result.

Lemma 1.1.7. Let S1 be a semiring over Ω1 and S2 be a semiring over Ω2. Then

S1 ˚ S2 :“
 
A1 ˆA2 : A1 P S1, A2 P S2

(

is a semiring over Ω1 ˆ Ω2.

Proof. We have to establish the properties of Definition 1.1.5.
Since H P S1 and H P S2, we get H P S1 ˚ S2.

Furthermore, to prove the second item let A “ A1 ˆA2, B “ B1 ˆB2 P S1 ˚ S2. Thus,

AXB “ pA1 XB1looomooon
PS1

q ˆ pA2 XB2looomooon
PS2

q P S1 ˚ S2,

since S1 and S2 are stable under intersections.
To prove the last item, again let A “ A1 ˆ A2, B “ B1 ˆ B2 P S1 ˚ S2. Then AzB can be
partitioned via

AzB “ ppA1zB1q ˆA2q 9
ď

ppA1 XB1q ˆ pA2zB2qq. (1.1.3)

Now by assumption there exist C1, . . . , Cn P S1 pairwise disjoint with

A1zB1 “ 9
ďn

i“1
Ci

and D1, . . . ,Dm P S2 pairwise disjoint with

A2zB2 “ 9
ďm

i“1
Di.

As a result, the right-hand side of (1.1.3) can be written as a pairwise disjoint union of elements
of S1 ˚ S2, which finishes the proof.

We will use the standard convention that for a, b P Rd we write a ď b if ai ď bi for all
i P t1, . . . , du, and similarly for other types of (in)equalities. In addition, for a, b P Rd with
a ď b we will use the notation pa, bq :“ Śd

i“1pai, biq “ tx P Rd : a ă x ă bu for the Cartesian
product of (one-dimensional) intervals, and analogously for other types of intervals.

Corollary 1.1.8. For any d P N, the set

Id :“
 

pa, bs : a, b P Rd, a ď b
(

(1.1.4)

of hyperrectangles (‘Hyperquader’) is a semiring over Rd.



8 CHAPTER 1. SET FUNCTIONS

Proof. We proceed by induction (‘vollständige Induktion’) over the dimension d. The case d “ 1
is Example 1.1.6.
Assume the statement holds for arbitrary d P N. Then Id`1 “ Id ˚ I, and hence Id`1 is a
semiring due to Lemma 1.1.7 and the induction hypothesis.

Definition 1.1.9. Let Ω be a non-empty set. A subset R of 2Ω is called a ring over Ω if the
following properties are fulfilled:

(a)
H P R; (1.1.5)

(b)
A,B P R implies AYB P R; (1.1.6)

(c)
for any A,B P R, one has AzB P R. (1.1.7)

Example 1.1.10. Let Ω be an arbitrary non-empty set. Then the set R of countable (we use
countable in the sense of ‘at most’ countable, i.e., a set is countable if it is finite or has a
bijection with N) subsets of Ω is a ring.

Proof. Since H is countable we have H P R. Furthermore, if A,B P R, then A and B are both
countable and hence so is AzB. In this case, also AYB is countable, and hence R is a ring.

Example 1.1.11. Let S be a semiring. Then the set

R :“
! nď

i“1

Si : n P N, Si P S @i P t1, . . . , nu
)

is a ring. It is also referred to as the ring generated by S, and it is the smallest ring containing
S.

Proof. Since H P S, we immediately get H P R.

For A,B P R we have A “ Ťm
i“1Ai, B “ Ťn

i“1Bi, with Ai, Bi P S, and we get at once that
AYB P R.

The ‘hard’ part is to show the last property. For that purpose, assume again that A,B P R and
hence that A “ Ťm

i“1Ai, B “ Ťn
i“1Bi, with Ai, Bi P S. Then

AzB “
mď

i“1

Aiz
nď

j“1

Bj “
mď

i“1

nč

j“1

AizBj.

Since S is a semiring, we deduce that

AizBj “
ni,jď

k“1

C
i,j
k ,

some ni,j P N and C
i,j
k P S for all k P t1, . . . , ni,ju. Hence,

AzB “
mď

i“1

nč

j“1

ni,jď

k“1

C
i,j
k “

mď

i“1

ď

fPŚn
j“1t1,...,ni,ju

nč

j“1

C
i,j

fpjq
looomooon

PS

,

which shows that R is a ring.
Furthermore, since rings are stable under finite unions, any ring containing S must also contain
R. Thus, R is the smallest ring containing S.
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Lemma 1.1.12. For a non-empty set Ω, a subset R Ă 2Ω is a ring if and only if one of the
following two conditions holds true:

(a)

H P R,

for any A,B P R one has A∆B P R, and

for any A,B P R one has A YB P R;

(b)

H P R,

for any A,B P R one has A∆B P R, and

for any A,B P R one has A XB P R;

Proof. Let R be a ring over Ω. Since

A∆B “ pAzBq Y pBzAq,

we deduce that (a) holds true.

Now assume that R fulfills (a). Then, since

AXB “ pAYBq∆pA∆Bq

we deduce that (b) holds true.

Now assume (b) to hold true. Then since

AzB “ A∆pA XBq,

(1.1.7) follows. Furthermore, since A Y B “ A∆pBzAq, we also deduce (1.1.6). Hence, R is a
ring.

Corollary 1.1.13. If R is a ring over a non-empty set Ω, then R is also a semiring over Ω.

Proof. This is an immediate consequence of Lemma 1.1.12 and the very definition of a semiring
and a ring.

An even stronger (cf. Lemma 1.1.16) concept than that of a ring is given in the following
definition.

Definition 1.1.14. Let Ω be a non-empty set. A subset A of 2Ω is called an algebra2 over Ω
(‘Algebra über Ω’) if the following properties are fulfilled:

(a)

Ω P A; (1.1.8)

(b)

A P A implies Ac P A; (1.1.9)

2Some authors use the term field instead of algebra, see e.g. [Bil95].
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(c)
A,B P A implies AYB P A. (1.1.10)

Lemma 1.1.15. Let Ω be a non-empty set. A subset A Ă 2Ω is an algebra over Ω if and only
if the following conditions are fulfilled:

(a)
Ω P A; (1.1.11)

(b)
A P A ùñ Ac P A; (1.1.12)

(c)
A,B P A ùñ A XB P A. (1.1.13)

Proof. Let A be an algebra. It only remains to show (1.1.13). But De Morgan’s laws imply
AXB “ pAc YBcqc, hence if A,B P A, then (1.1.10) and (1.1.9) yield that A XB P A.

Conversely assume that the system A fulfills properties (1.1.11) to (1.1.13). It remains to show
(1.1.10). But again by De Morgan’s laws we obtain A Y B “ pAc X Bcqc, and hence (1.1.12)
and (1.1.13) imply that A YB P A. Hence, A is an algebra over Ω.

Lemma 1.1.16. Let Ω be a non-empty set. A ring R over Ω is an algebra over Ω if and only
if Ω P R.

Proof. Let R be a ring over Ω with Ω P R. Then (1.1.8) immediately holds true. Choosing
A :“ Ω P R in (1.1.7), we obtain that for arbitrary B P R we have Bc “ ΩzB “ ΩzB P R,

which implies that (1.1.9) holds true as well. In addition, (1.1.10) immediately follows from
(1.1.6). Hence, R is an algebra.
Conversely, if A is an algebra, then H “ Ωc P A due to (1.1.9) and (1.1.8). Thus, (1.1.5) holds
true. Furthermore, for A,B P A we have AzB “ A X Bc, hence (1.1.7) is a consequence of
(1.1.13) and (1.1.9). Lastly, (1.1.6) is implied by (1.1.10).

As an application, we have seen in Corollary 1.1.8 that Id is a semiring over Rd, and we can
generate a ring from it as in Example 1.1.11. Still Rd is not contained in this ring, so due to
the previous lemma this is still not an algebra.
We now go for a short detour to explain the motivation of the terms ‘ring’ and ‘algebra’ in
the above context. For this purpose we recall that in (linear) algebra, a ring (‘Ring’) had been
defined as a set R endowed with operations ` : R ˆ R Ñ R (addition) and ¨ : R ˆ R Ñ R

(multiplication) such that pR,`q is an additive commutative group, and such that

(a)
@a, b, c P R : a ¨ pb ¨ cq “ pa ¨ bq ¨ c (associativity)

(b)

@a, b, c P R : a ¨ pb` cq “ a ¨ b` a ¨ c, pa ` bq ¨ c “ a ¨ c` b ¨ c (distributivity)

Furthermore, in linear algebra, one way to introduce the concept of an ‘algebra’ is to demand
it to be a ring R which in addition is a vector space over a field3 (‘Körper’) K such that in
addition, for all u, v P R and α P K one has

αpuvq “ pαuqv “ upαvq.
3Adding insult to injury, there is again a possible overlap with terms here, since as we have seen before, some

(although seemingly not too many) authors use the term ‘field’ for an algebra (in the set-theoretic sense). It
seems that for notations in German there is slightly less confusion.
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Lemma 1.1.17. Let Ω be a non-empty set.

(a) Endow the power set 2Ω with ∆ (symmetric difference) as addition and X (intersection)
as multiplication. Then p2Ω,∆,Xq is a commutative ring with a zero (‘Nullelement’) H
and a one (‘Einselement’) Ω.

(b) A subset R Ă 2Ω is a ring in the sense of Definition 1.1.9 if and only if pR,∆,Xq is a
ring.

(c) Let A Ă 2Ω be a ring or an algebra in the sense of Definition 1.1.14 or 1.1.9, respectively.
Then pA,∆,Xq is an algebra over the field t0, 1u.4 Here we define 0¨A :“ H and 1¨A :“ A

for A P A.

Proof. See exercise classes.

1.1.2 σ-algebras and Dynkin systems

The systems of sets introduced above, i.e., semirings, rings, and algebras, only involved stability
under finite operations (such as intersections and unions, for example). It turns out, however,
that we want to be able to measure not only finite but countable intersections (or unions) of
‘nice’ sets.5 As a consequence, we will introduce systems of sets that are stable under such
kinds of operations.

Definition 1.1.18. Let Ω be a non-empty set. A subset F of 2Ω is called a σ-algebra over Ω6

(‘σ-Algebra über Ω’) if the following properties are fulfilled:

(a)

Ω P F ; (1.1.14)

(b)

A P F implies Ac P F ; (1.1.15)

(c)

A1, A2, . . . P F implies
ď

nPN
An P F . (1.1.16)

Exercise 1.1.19. If F is a σ-algebra over Ω and F Ă Ω, then

FF :“ F X F :“
 
F XG : G P F

(

is a σ-algebra over F (it is called the trace σ-algebra of F in F).

Exercise 1.1.20. Let Ω be a non-empty set.

(a) Any σ-algebra F also is an algebra, i.e., it is stable under finite unions.

(b) F Ă 2Ω is a σ-algebra if and only if (1.1.14), (1.1.15), and

A1, A2, . . . P F implies
č

nPN
An P F . (1.1.17)

4Where 0 is the neutral element of addition, and 1 the neutral element of multiplication. In particular,
0 ` 1 “ 1, and 1 ` 1 “ 0.

5In ‘real life experiments’ you might e.g. want to ask whether certain properties are fulfilled by an infinite
sequence of coin tosses or dice rolls.

6Again, some authors use the term σ-field instead, see [Bil95].
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While σ-algebras play an important role not only in probability theory but also e.g. analysis,
the following concept of a Dynkins system has primarily been employed in probability theory.

Definition 1.1.21. Let Ω be a non-empty set. A subset D of 2Ω is called a Dynkin (‘Dynkin-
System’)7 system (or also λ-system (‘λ-System’)) over Ω if the following properties are fulfilled:

(a)
Ω P D; (1.1.18)

(b)
A P D implies Ac P D; (1.1.19)

(c)

If A1, A2, . . . P D is a sequence of pairwise disjoint sets, then
ď

nPN
An P D. (1.1.20)

Exercise 1.1.22. Find an example of a Dynkin system that is not a semiring.

Lemma 1.1.23. Property (1.1.19) in Definition 1.1.21 can be substituted by the following: For
any A,B P D with A Ă B one has BzA P D.

Proof. Indeed, if this property holds, then for any A P D we obtain, setting B :“ Ω P F , that

Ac “ ΩzA P D.

Conversely, if D is a Dynkin system and A,B P D with A Ă B, then we have

BzA “ pA 9YBcqc,

and the latter is contained in D since Dynkin systems are closed under disjoint unions and
complements.

We will investigate the relations between λ-systems and σ-algebras in more detail in Theorems
1.1.33 and 1.1.32 below.

Proposition 1.1.24. Let Λ be an arbitrary non-empty set, and let pAλqλPΛ be a family of
σ-algebras (or rings, or algebras, or λ-systems) over the same set Ω. Then

č

λPΛ
Aλ

is a σ-algebra (or ring, or algebra, or λ-system) over Ω again.

Proof. We only give the proof for σ-algebras, the remaining cases are proven in a similar way.
Since Ω P Aλ for all λ P Λ, we immediately get

Ω P
č

λPΛ
Aλ.

Furthermore, assume A P Ş
λPΛAλ. Then A P Aλ for all λ P Λ, therefore Ac P Aλ for all λ P Λ,

and hence
Ac P

č

λPΛ
Aλ.

Lastly, assume that pAnqnPN is a sequence of sets such that An P Ş
λPΛ Aλ for all n P N. Thus,

for each λ P Λ, we have An P Aλ for all n P N, and hence
Ť

nPNAn P Aλ. As a consequence,
ď

nPN
An P

č

λPΛ
Aλ

for each λ P Λ, too, which finishes the proof.
7In honor of Eugene Dynkin (1924–2014)
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Exercise 1.1.25. Show that Proposition 1.1.24 does not hold true anymore if one replaces
‘σ-algebra’ by ‘semiring’.

The following is a generalization of the very specific Example 1.1.11.

Definition 1.1.26. Let Ω be a non-empty set, and let E Ă 2Ω. Proposition 1.1.24 implies that

δpEq :“
č

D is a λ-system over Ω
DĄE

D

is a λ-system again. It is called the λ-system generated by E .

Similarly,
σpEq :“

č

F is a σ-algebra over Ω
FĄE

F

is a σ-algebra again. It is called the σ-algebra generated by E .

In an analogous way, one can define rings and algebras generated by subsets of 2Ω.

Note that it follows the previous definition that the σ-algebra σpEq is at the same time the
smallest σ-algebra containing E (and similarly for the remaining set systems).

Remark 1.1.27. For simpler set systems such as algebras and rings it is possible to explicitly
represent their elements using by applying finitely many combinations of elementary set func-
tions to elements of their generators (see Example 1.1.11, problem 1 on the first homework sheet,
or also [Els05, Ch.1, §4]). For σ-algebras this is generally not possible anymore, see the Section
‘Constructing σ-fields’ in [Bil95] pp. 30. However, for many purposes it is actually sufficient
to consider the generator of σ-algebras or Dynkin systems instead of the entire set system.

An prominent role will be played by the Borel-σ-algebra (French mathematician and politician
Émile Borel (1871–1956)).

Definition 1.1.28. Let Ω be a non-empty set. A set τ Ă 2Ω is called a topology (‘Topologie’)
if the following hold true:

(a)
H,Ω P τ ;

(b) if pOλqλPΛ is an arbitrary family of sets Oλ P τ, then
ď

λPΛ
Oλ P τ ;

(c) if O1, O2 P τ, then
O1 XO2 P τ.

The pair pΩ, τq is called a topological space. The elements of τ are called open sets, and the
elements of  

C Ă Ω : Cc P τ
(

are called closed sets.

This definition can be motivated by having a closer look at metric spaces. (E.g., consider Rd

endowed with the Euclidean metric defined via dpx, yq :“
břd

i“1pxi ´ yiq2, for x, y P Rd.) In

fact, for a metric space pX,dq a subset O Ă X had been defined to be open if for each x P O
there exists r P p0,8q such that

Brpxq :“
 
y P X : dpx, yq ă r

(
Ă O.
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It can be shown without too much effort that defining τ as the set of all open sets of the metric
space pX,dq, it fulfills the properties of a topology as defined in Definition 1.1.28.
We will mostly be dealing with metric spaces (and, in fact, most of the times with Rd endowed
with the Euclidean metric), but the following definition does not come at any additional cost
in its fully-fledged generality.
In the following, instead of τ for topology we write O to denote the topology (inspired by the
wording ‘open’ sets).

Definition 1.1.29. For an arbitrary topological space pX,Oq, the σ-algebra

BpXq :“ σpOq “
č

F is a σ-algebra over Ω
FĄO

F

generated by the open subsets of X is called the Borel-σ-algebra (‘Borel-σ-Algebra’) on Ω. The
sets B P BpXq are called Borel sets or Borel-measurable sets.

Example 1.1.30. (a) Most often we will be interested in the case X “ Rd, d P N, and O the
set of open subsets of Rd (in the topology induced by the Euclidean metric), i.e., in the
σ-algebra BpRdq.

(b) It will also turn out useful to consider the Borel-σ-algebra BpRq of the two point com-
pactification R :“ R Y t´8,8u of R. The open sets of R can be described as the largest
topology (i.e., a system of open sets) on R such that the map

ϕ : r´1, 1s Ñ R

x ÞÑ
"

˘8, if x “ ˘1,
tanpπx{2q, otherwise,

is continuous, where we recall that the map ϕ is continuous if and only if all preimages
ϕ´1pOq, O Ă R open, is open in r´1, 1s. Here, r´1, 1s is endowed with the usual (trace-)
topology of R, i.e., the open subsets of r´1, 1s are just the ones of the form r´1, 1s X O,

for any O Ă R open in the topology induced by the Euclidean metric.

In other words, the open sets of R are given by (unions of) the sets of the form

• V Ă R open;

• r´8, aq, a P R;

• pa,8s, a P R;

In particular, we see that t8u and t´8u are not open in this topology of R.

(c) in fact, it is not easy to construct sets in Rd which are not in BpRdq. An example of such
sets are the so-called Vitali sets; however, apart from possibly peculiar counterexamples,
all subsets of Rd that we will encounter in this course are actually contained in BpRdq.

Lemma 1.1.31. Each of the following subsets of 2R
d
is a generator of the Borel-σ-algebra

BpRdq, and each of them is a π-system:

(a) E1 :“
 

pa, bq : a, b P Qd with a ă b
(

Y tHu;

(b) E2 :“
 

pa, bs : a, b P Qd with a ă b
(

Y tHu;

(c) E3 :“
 

ra, bq : a, b P Qd with a ă b
(

Y tHu;

(d) E4 :“
 

ra, bs : a, b P Qd with a ď b
(

Y tHu;

(e) E5 :“
 

p´8, as : a P Qd
(
;
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(f) E6 :“
 

p´8, aq : a P Qd
(
;

(g) E7 :“
 

ra,8q : a P Qd
(
;

(h) E8 :“
 

pa,8q : a P Qd
(
;

(i) E9 :“
 
A Ă Rd : A is compact

(
;

(j) E10 :“
 
A Ă Rd : A is closed

(
.

We can replace any Q in the above by R and the statements still hold true.
In addition, in the case d “ 1, and considered as subsets of 2R, any of the above systems of
sets is a generator of BpRq also (where in the cases (e) to (h) we have to include 8 and ´8,

respectively, i.e., exchange the corresponding 1p1 or 1q1 by 1r1 or 1s1, respectively).

Proof. We prove only part of the result (the remaining cases can be proved in similar ways).
Any open subset of Rd can be written as a countable union of elements of E1 (or of E2, E3, or E4
for that matter). Hence, all open subsets of Rn are contained in any σ-algebra containing any
of the Ej , 1 ď j ď 4, and thus we deduce

BpRnq Ă σpEjq, for all 1 ď j ď 4. (1.1.21)

Conversely, since any element of E1 is open, we immediately get σpE1q Ă BpRnq, which proves
the desired equality σpE1q “ BpRnq.
Furthermore, the complement of any element of E4 is open, E4 Ă BpRdq, and hence σpE4q Ă
BpRdq; thus, in combination with (1.1.21) we have

σpE4q “ BpRdq. (1.1.22)

To continue, any element of E2 (or of E3) can be written as a countable union of elements of E4;
indeed, we have for a, b P Qd with a ă b that

pa, bs “
ď

rPQd

aărăb

rr, bs,

and similarly in the case of E3. As a consequence, E2, E3 Ă E4 and thus we obtain σpE2q, σpE3q Ă
σpE4q, which in combination with (1.1.21) and (1.1.22) supplies us with

σpE2q “ σpE3q “ BpRdq.

Furthermore, E9, E10 Ă BpRdq, hence

σpE9q, σpE10q Ă BpRdq. (1.1.23)

Conversely all open subsets of Rd are contained in σpE10q, hence

σpE10q “ BpRdq. (1.1.24)

In addition, E4 Ă E9 and hence in combination with (1.1.23) and (1.1.22) we deduce σpE9q “
BpRdq.
For the last point, alternatively we could argue by exhaustion as follows: For C P E10 we have

C “
ď

nPN

`
rn, nsd X Clooooomooooon

compact

˘
,

and in combination with (1.1.24) we infer σpE9q “ BpRdq.
The remaining parts are left as an exercise.
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Theorem 1.1.32. Let D be a λ-system over a non-empty set Ω. Then D is a π-system if and
only if it is a σ-algebra.

Proof. Let D be a λ-system.

Any σ-algebra is obviously a π-system (see Exercise 1.1.20 (b), where all but finitely many An

can be chosen to be H).

Conversely, assume that D is a π-system. Obviously, (1.1.19) and (1.1.18) imply that (1.1.15)
and (1.1.14) hold true, so it remains to show that (1.1.16) is fulfilled as well. For this purpose,
we start with observing that D is z-closed. In fact, if A,B P D, then

AzB “ A XBc P D.

Now let a sequence pAnqnPN of sets with An P D for all n P N be given. Define B1 :“ A1, and
for n ě 2 set

Bn :“ Anz
n´1ď

i“1

Ai “ Anz 9
ďn´1

i“1
Bi.

By definition the Bn form a sequence of pairwise disjoint sets, and inductively we obtain that
Bn P D for all n P N. As a consequence,

8ď

n“1

An “
8ď

n“1

Bn P D.

This implies (1.1.16).

The following result is fundamental in probability theory, and in particular it will be helpful in
order to show Theorem 1.2.17 below.

Theorem 1.1.33 (Dynkin’s π-λ-Theorem). Let Ω be a non-empty set and let A Ă 2Ω be a
π-system. Then

δpAq “ σpAq. (1.1.25)

Proof. Since any σ-algebra is a Dynkin system also, it is clear that ‘Ă’ holds in (1.1.25). For the
converse inclusion, we observe that it is sufficient to show that δpAq is a π-system, which due
to Theorem 1.1.32 would imply that δpAq is a σ-algebra (containing A), so ‘Ą’ would follow.

For this purpose we define for arbitrary A P δpAq the set

δApAq :“
 
B P δpAq : AXB P δpAq

(
.

We claim that for any A P δpAq, the set system δApAq is a Dynkin system. Indeed, we have
the following:

• Ω P δApAq, since A X Ω “ A P δApAq by choice of A;

• if B P δApAq, then also B X A P δpAq; hence, Lemma 1.1.23 supplies us with A X Bc “
AzpB XAq P δpAq, and thus Bc P δApAq also;

• if pBnq is a sequence of pairwise disjoint sets such that Bn P δApAq for all n P N, then we
have Bn X A P δpAq for all n P N, and furthermore those sets are pairwise disjoint. As a
consequence, ´

9
ď8

n“1
Bn

¯
XA “ 9

ď8

n“1
pBn XAq P δpAq,

i.e., 9
Ť8

n“1Bn P δApAq.
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Hence, δApAq forms a Dynkin system.

Next, we observe that since A is a π-system, we have A Ă δApAq for all A P A. Since δApAq is
a Dynkin systems for A P A due to the above, we deduce that δpAq Ă δApAq for any A P A.

This, however, implies that for all B P δpAq and A P A we have AXB P δpAq, hence A Ă δApAq
for all A P δpAq now, and thus δpAq Ă δApAq for all A P δpAq. In particular, this implies that
δpAq is a π-system. In combination with Theorem 1.1.32 this establishes the fact that δpAq is
a σ-algebra, hence δpAq Ą σpAq, which finishes the proof.

Corollary 1.1.34. In the notation of Lemma 1.1.31 we have for each j P t1, 2, . . . , 10u that

BpRdq “ δpEjq.

Proof. This is a direct consequence of Lemma 1.1.31 in combination with Theorem 1.1.33.

1.2 Set functions

1.2.1 Properties of set functions

Definition 1.2.1. For Ω a non-empty set and E Ă 2Ω, a function µ : E Ñ R is called a set
function.

The set function µ is called

• monotone if µpAq ď µpBq for all A,B P E with A Ă B;

• additive if

µ
´ nď

i“1

Ai

¯
“

nÿ

i“1

µpAiq

for all pairwise disjoint A1, . . . , An P E with
Ťn

i“1Ai P E;

• subadditive if

µpAq ď
nÿ

i“1

µpAiq

for all A,A1, . . . , An P E with A Ă Ťn
i“1Ai;

• σ-additive if

µ
´ 8ď

i“1

Ai

¯
“

8ÿ

i“1

µpAiq (1.2.1)

for any sequence of pairwise disjoint sets A1, A2, . . . P E with
Ť8

i“1Ai P E such that the
right-hand side of the previous equation is well-defined;

• σ-subadditive if

µpAq ď
8ÿ

i“1

µpAiq

for any A,A1, A2, . . . P E with A Ă Ť8
i“1Ai such that the right-hand side of the previous

equation is well-defined;

Remark 1.2.2. In the context of Definition 1.2.1, as for ‘usual’ functions, we will commonly
write µ ď ν for two set functions on E if for all A P E we have

µpAq ď νpAq.
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Apart from a short excursion (see Definition 1.2.11 below which will prove useful later on) we
will only be interested in non-negative set functions. Some types of set functions will occur
frequently, hence we introduce the following terminology.

Definition 1.2.3. Let S be a semiring over Ω, and let µ : S Ñ r0,8s be a set function with
µpHq “ 0. Then µ is called a

(a) content (‘Inhalt’) if µ is additive;

(b) pre-measure (‘Prämaß’) if µ is σ-additive;

(c) measure (‘Maß’) if µ is a pre-measure and S is a σ-algebra;

(d) probability measure (‘Wahrscheinlichkeitsmaß’) if µ is a measure with µpΩq “ 1.

Remark 1.2.4. Show that the items in Definition 1.2.3 become more and more restrictive. I.e.,
if (d) is satisfied, then (c) is also satisfied; if (c) is satisfied, then (b) is also satisfied, and so on.
On the other hand, one can find examples of a content which is no pre-measure, of pre-measures
which are no measures, and so on (exercise).

Definition 1.2.5. Let S be a semiring over Ω and let µ : S Ñ r0,8s be a content.

(a) Then µ is called finite if µpSq ă 8 for all S P S. Furthermore, µ is called σ-finite if there
exists a sequence pSnq of sets Sn P S with

•

µpSnq ă 8 @n P N,

and

• 8ď

n“1

Sn “ Ω.

(b) A set N P S is called a (µ-)null set (‘Nullmenge’) if µpNq “ 0.8

Definition 1.2.6. Let Ω ‰ H, F a σ-algebra over Ω, and µ : F Ñ r0,8s a measure, Then the
triplet pΩ,F , µq is called a measure space.
A measure space pΩ,F , µq is called a σ-finite measure space if µ is σ-finite.
If µ is a probability measure, then a measure space pΩ,F , µq is called a probability space.

Example 1.2.7 (Contents, pre-measures). (a) On the semiring I of left-open right-closed
intervals introduced in Example 1.1.6 we can define a σ-finite content as follows. Let
f : R Ñ r0,8q be continuous and set

F pxq :“
ż x

0
fprq dr, x P R,

and where the integral is to be interpreted in the Riemann sense. Then F is non-decreasing
and hence

µpIq :“ F pbq ´ F paq,
for I “ pa, bs P I defines a content on I. Indeed, we have µpHq “ F paq ´ F paq (for any
a P R), and for pai, bis P I, 1 ď i ď n, with

9
ďn

i“1
pai, bis P I,

8Some authors consider any B Ă Ω for which we find N P S with B Ă N and µpNq “ 0 a null set.
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we can, after possibly permuting the indices, write

pa, bs “ 9
ďn

i“1
pai, bis

with a “ a1 ď b1 “ a2 ď b2 “ a3 ď . . . bn´1 “ an ď bn “ b. Hence, since

µppa, bsq “ F pbq ´ F paq “
nÿ

i“1

F pbiq ´ F paiq “
nÿ

i“1

µppai, bisq,

we deduce that µ is additive and hence a content indeed.

For Sn :“ p´n, ns P S we obtain that
Ť

nPN Sn “ R and µpSnq “ F pnq ´ F p´nq ă 8,

hence µ is σ-finite.

Using problem 3 of Homework 3 (see also Example 1.1.11) we can uniquely extend µ to a
content on not only the semiring S, but also on the ring R generated by S.

(b) For our purposes, the most important content / pre-measure arguably is the d-dimensional
Lebesgue content / pre-measure λd. It is defined on the set of d-dimensional hyper-cuboids
Id introduced in (1.1.4) as follows. For pa, bs P Id we have a, b P Rd with a ď b, and its
d-dimensional Lebesgue pre-measure is defined as

λd : Id Ñ r0,8q,

pa, bs ÞÑ
dź

i“1

pbi ´ aiq.
(1.2.2)

It is not too hard to verify that λd defines a content on Id; indeed, for the case d “ 1 this
is a consequence of Part (a) of this example, where we choose f ” 1. For the case d ě 2
we refer to the proof of Proposition 1.2.8 (alternatively, see [Bau92, Satz 4.3]).

and again choosing the sets Sn :“ p´n, nsd P Id we get that Rd “
Ť

nPN Sn and µpSnq “
p2nqd, thus λ is σ-finite.

In fact, λd even defines a pre-measure:

Proposition 1.2.8. The function λd defined in (1.2.2) defines a pre-measure on Id.

Proof. The proof is slightly more technical than what we did in Part (a) of this example
for the case d “ 1; however, the key ideas are present here already. We refer to [Els05, Satz
II.3.1] for a proof (in this source, several strategies for proving the result are given – the
one following [Els05, Satz II.3.8 b)] is closest to Part (a) of this example).

Example 1.2.9 (Measures). (a) Let Ω be an arbitrary set and define the counting measure
(‘Zählmaß’)

µ : 2Ω Ñ r0,8s
A ÞÑ |A|,

where for A Ă Ω we denote by |A| the number of elements of A if A is finite, and 8
otherwise.

Exercise 1.2.10. Show that µ indeed defines a measure on 2Ω. Is it σ-finite?
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(b) Let X be uncountable and define F to be the σ-algebra over X that contains all sets A Ă X

for which either A or Ac is countable. (Check that this defines a σ-algebra indeed!) For
A P F define the measure µ via

µpAq :“
"

1, if A uncountable,
0, if A countable.

(1.2.3)

Check that µ defines a measure on pX,Fq. We have µpHq “ 0, and for a sequence pAnq
of pairwise disjoint sets with An P F for all n P N, we have that

Ť
nPNAn is countable if

and only if An is countable for each n P N. Thus,

µ
´ ď

nPN
An

¯
“
"

1, if some An is uncountable,
0, if all An are countable.

In addition, if one An˚ is uncountable, then, since the An are pairwise disjoint and in F ,

we get that An is countable for all n P N with n ‰ n˚. Thus,

ÿ

nPN
µpAnq “

"
1, if some An is uncountable,
0, if all An are countable.

This shows that µ is σ-additive and hence a measure.

Also, observe that there are many µ-null sets, not just H.

Furthermore, µ is σ-finite; indeed, µ is a finite (even a probability) measure since µpXq ă
8, and any finite measure is σ-finite as we can choose Sn :“ X for all n P N.

On the other hand, if we replaced 1 by 8 in (1.2.3), then µ would still be a measure
(check!) but it would not be σ-finite anymore. Indeed, if we had a sequence pSnq with
Sn P F and µpSnq ă 8, then this would imply that Sn is countable for all n P N, and in
particular we would infer that ď

nPN
Sn

is countable again. Since we assumed X to be uncountable, a fortiori we would deduceŤ
nPN Sn ‰ X, hence µ cannot be σ-finite.

The above were relatively simple examples of set functions, which could be defined explicitly
for all sets we were interested in. If, however, we would try to directly define a measure on
BpRdq which is consistent with the content of d-dimensional volume for the hyperrectangles
Id Ă BpRdq, we would run into troubles: The reason is just that we do not have an explicit
hold on elements of BpRdq (as we had e.g. for generated algebras, cf. Homework 2 on sheet 1).
Hence, one of our goals will be to give at least an abstract machinery of extending such simple
notions of volume on basic sets to bigger systems of sets, see Section 1.3 below.
We now introduce the concept of a signed measure here for the sake of completeness. This is
not very essential in probability theory, but on the one hand it will turn out that it does not
really make things more complicated, and on the other hand it makes our short introduction to
measure theory a bit more complete.

Definition 1.2.11. For a σ-algebra F over Ω, we call a set function µ : F Ñ r´8,8s with
µpHq “ 0 a signed measure if µ is σ-additive.9

Exercise 1.2.12. (a) Show that if µ is a signed measure, then its range is either a subset of
r´8,8q or of p´8,8s.

9In particular, we require all sums occurring on the right-hand side of (1.3.4) to be well-defined. Alternatively
we could also demand the restriction of the ranges established in Exercise 1.2.12 in the definition already, if that
makes you feel more comfortable.
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(b) If µ is a signed measure and A,B P F with A Ă B and µpBq P p´8,8q, then also
µpAq P p´8,8q.

Although in probability theory we will mostly be interested in probability measures, it will turn
out useful to be able to cover the case of ‘nicely’ behaved infinite contents (and measures) also.

Lemma 1.2.13. Let S be a semiring and let µ be a content on S. Then:

(a) µ is monotone;

(b) if S is a ring, then for all A,B P S we have

µpA YBq ` µpA XBq “ µpAq ` µpBq; (1.2.4)

(c) µ is subadditive, and if µ is σ-additive, then µ is also σ-subadditive;

(d) if S is a ring and A1, . . . , An P S with µpŤn
i“1Aiq ă 8, then

µ
´ nď

k“1

Ak

¯
“

nÿ

k“1

p´1qk´1
ÿ

1ďi1ă...ăikďn

µpAi1 X . . . XAikq (inclusion-exclusion formula).

(1.2.5)

Proof. (a) Let A,B P S with A Ă B. Since S is a semiring we can write BzA “ 9
Ťn

j“1Cj some
pairwise disjoint Cj P S, 1 ď j ď n, some n P N. Thus, A, Cj , 1 ď j ď n is a family of
pairwise disjoint elements of S such that

B “ A 9Y 9
ďn

j“1
Cj .

Hence, the additivity of the content µ gives

µpBq “ µpAq `
nÿ

j“1

µpCjq ě µpAq,

which implies the monotonicity, since µ ě 0.

(b) We have
A “ pA XBloomoon

PS
q 9Yp AzBloomoon

PS

q

and hence the additivity of µ supplies us with

µpAq ` µpBq “ µpAXBq ` µpAzBq ` µpBq “ µpA XBq ` µpAYBq,

where we also took advantage of AzB 9YB “ A YB.

(c) Let A,A1, . . . , An P S with A Ă Ťn
i“1Ai. Similar to the proof of Theorem 1.1.32 we write

B1 :“ A1 and for k ě 2,

Bk :“ Akz
k´1ď

i“1

Ai “
k´1č

i“1

AkzAi Ă Ak,

so in particular
nď

k“1

Ak “
nď

k“1

Bk. (1.2.6)

By definition of a semiring, AkzAi is the finite disjoint union of elements of S. Since S is
a π-system, it is not hard to show that the same applies to Bk,
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i.e.,

Bk “ 9
ďnk

i“1
Ck
i , some pairwise disjoint Ck

1 , . . . , C
k
nk

P S.

Using this representation for Bk, in a similar fashion we get that

AkzBk “ 9
ďmk

i“1
Dk

i some pairwise disjoint Dk
1 , . . . ,D

k
mk

P S.

In combination with (1.2.6) we therefore get

µpAq “ µ
´

9
ďn

k“1
Bk XA

¯
“ µ

´
9
ďn

k“1

9
ďnk

i“1
Ck
i XA

¯
additivity“

nÿ

k“1

nkÿ

i“1

µpCk
i XAq

ď
nÿ

k“1

´ nkÿ

i“1

µpCk
i q `

mkÿ

i“1

µpDk
i q
¯

additivity“
nÿ

k“1

µpAkq,

which shows the subadditivity, and where we also took advantage of the monotonicity of
µ in order to obtain the inequality.

If µ is σ-additive, then the σ-subadditivity follows in essentially the same way, replacing
n in the above by 8.

(d) Using Lemma 1.1.12, the proof proceeds in the same way as that of [Dre18, Lemma 1.3.10]
(that proof was for µ a probability measure on a σ-algebra, but it proceeds in the same
way for µ a content on a ring).

The following definition will allow us to introduce the notion of continuity for functions defined
on sets also.

Definition 1.2.14. We write

pAnq Ò A as n Ñ 8,

if pAnqnPN is a sequence of sets such that An Ă An`1 for all n P N, and A “
Ť

nPNAn.

Similarly, we write

pAnq Ó A as n Ñ 8,

if pAnqnPN is a sequence of sets such that An`1 Ă An for all n P N, and A “ Ş
nPNAn.

Definition 1.2.15. Let S be a semiring and let µ be a content defined on S.

(a) We say that µ is continuous from below (‘stetig von unten’) if for any sequence of sets
pAnq with An Ò A as well as An, A P S for all n P N, one has

lim
nÑ8

µpAnq “ µpAq.

(b) We say that µ is continuous from above (‘stetig von oben’) if for any sequence of sets
pAnq with An Ó A as well as An, A P S and µpAnq ă 8 for all n P N, one has

lim
nÑ8

µpAnq “ µpAq.

(c) We say that µ is continuous in H (‘stetig in H’) if for any sequence of sets pAnq with
An Ó H as well as An P S and µpAnq ă 8 for all n P N, one has

lim
nÑ8

µpAnq “ 0.
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As the name of this section suggests, we will mostly be interested in measures, i.e., in particular
the property of a set function being σ-additive will play a crucial role. Thus, it turns out useful
to have other characterizations (and related properties) of σ-additivity available.

Proposition 1.2.16. Let µ be a content on a ring R.

Consider the following properties:

(a) µ is σ-additive (i.e., it is a pre-measure);

(b) µ is continuous from below;

(c) µ is continuous from above;

(d) µ is continuous in H;

We have the following implications:

paq ðñ pbq ùñ pcq ðñ pdq.

If in addition µ is finite, then in the previous display ùñ can be replaced by ðñ.

Proof. 1paq ùñ pbq1 :
Let pAnq and A be as in the assumptions of (b). As done several times before already, we define
B1 :“ A1 as well as

Bn :“ Anz
n´1ď

i“1

Ai

loomoon
PRlooooomooooon

PR

for n ě 2. Then the pBnq form a sequence of pairwise disjoint sets with Bn P R, and such thatŤn
i“1Bi “ Ťn

i“1Ai for all n P N. As a consequence, and since µ is σ-additive by assumption,
we get

µpAq “ µ
´ 8ď

i“1

Bi

¯
µσ-additive“

8ÿ

i“1

µpBiq “ lim
nÑ8

nÿ

i“1

µpBiq “ lim
nÑ8

µpAnq,

which shows that µ is continuous from below.
1pbq ùñ paq1 :
Let pAnq be a sequence of pairwise disjoint sets with An P R for all n P N as well as

Ť
nPNAn P R.

Defining Bn :“ 9
Ťn

i“1Ai, we have a sequence pBnq with Bn P R and such that Bn Ò B :“Ť
iPNBi P R as n Ñ 8. Henceforth, the continuity from below supplies us with

µ
´ 8ď

i“1

Ai

¯
“ µpBq µ continuous from below“ lim

nÑ8
µpBnq additivity“ lim

nÑ8

nÿ

i“1

µpAiq “
8ÿ

i“1

µpAiq,

which proves the σ-additivity of µ.
1pbq ùñ pcq1:
Let pAnq and A be as in the assumptions of (c). Since µpAnq ă 8 and An Ą An`1 for all n P N,

the additivity of µ implies that

µpA1zAnq “ µpA1q ´ µpAnq. (1.2.7)

Now because An Ó A as n Ñ 8, we get that A1zAn Ò A1zA as n Ñ 8, and therefore the
validity of (b) implies the existence of the left-hand side of

µpA1zAq “ lim
nÑ8

µpA1zAnq (1.2.7)“ lim
nÑ8

µpA1q ´ µpAnq “ µpA1q ´ lim
nÑ8

µpAnq,
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exists. Hence, using µpA1q ă 8,

lim
nÑ8

µpAnq “ µpA1q ´ µpA1zAq “ µpAq,

where in the last equality we took advantage of the additivity of µ.
1pcq ùñ pdq1: This is obvious.
1pdq ùñ pcq1:
Let pAnq and A be as in (c). Then Bn :“ AnzA Ó H as n Ñ 8. Furthermore, the monotonicity
of µ in combination with µpAnq ă 8 implies that µpBnq ă 8 for all n P N. As a consequence,
we deduce from the continuity of µ in H that

µpAnq “ µpBnq ` µpAq Ñ µpAq as n Ñ 8,

which implies the continuity of µ from above.
It remains to prove 1pbq ðù pcq1 in the case of µ being finite. For this purpose, let pAnq and A

be as in (b). Then AzAn Ó H as n Ñ 8 and µpAnq ă 8 for all n P N. Hence, the continuity of
µ in H in combination with the finiteness of µ supply us with

µpAq ´ µpAnq “ µpAzAnq Ñ 0 as n Ñ 8,

and hence limnÑ8 µpAnq “ µpAq, which shows the continuity from below.

We now give a first application of Dynkin’s π-λ-Theorem (Theorem 1.1.33) that will prove useful
later on.

Theorem 1.2.17. Let E be a π-system over Ω. Assume there exists a sequence of sets pEnq
with En P E for all n P N and

Ť
nPNEn “ Ω. Furthermore, let µ1, µ2 denote two measures on

pΩ, σpEqq such that

(a)
µ1pEq “ µ2pEq @E P E , (1.2.8)

(b)
µ1pEnq “ µ2pEnq ă 8 @n P N. (1.2.9)

Then the measures µ1 and µ2 coincide and are σ-finite.

Proof. The σ-finiteness is a direct consequence of (1.2.9). Hence, it remains to show that µ1
and µ2 coincide. For E P E with µ1pEq ă 8, define

DE :“
 
D P σpEq : µ1pD X Eq “ µ2pD X Eq

(
.

Claim 1.2.18. DE is a Dynkin system.

Proof. We have Ω P DE since the middle equality of µ1pΩ XEq “ µ1pEq “ µ2pEq “ µ2pΩ XEq
follows from E P E .

Also, for D P DE we have

µ1pDc X Eq “ µ1pEq ´ µ1pD XEq “ µ2pEq ´ µ2pD X Eq “ µ2pDc X Eq,

where the second equality follows from D P DE and the fact that E P E . Hence, we deduce
Dc P DE .

It remains to show that DE is stable unter countable unions of pairwise disjoint sets. Thus, for
a sequence pDnq of pairwise disjoint sets with Dn P DE for all n P N, we deduce

µ1

´ ď

nPN
Dn X E

¯
“

ÿ

nPN
µ1pDn XEq “

ÿ

nPN
µ2pDn X Eq “ µ2

´ ď

nPN
Dn X E

¯
,

where the first and last equality exploit that the Dn X E are pairwise disjoint, and the middle
equality takes advantage of the fact that Dn P DE for all n P N.
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Due to the above claim, DE is a Dynkin system with E Ă DE. Since E is a π-system, Theorem
1.1.33 implies that σpEq “ DE . In particular, this implies that for each E P σpEq and n P N,

µ1pE X Enq “ µ2pE X Enq. (1.2.10)

Setting Fn :“ EnzŤn´1
i“1 Ei we have the disjoint union

9
ď

nPNFn “ Ω.

Thus, using that for E P σpEq we have Fn X E P σpEq, we obtain in combination with (1.2.10)
that

µ1pFn X Eq “ µ1pEn X pFn X Eqq “ µ2pEn X pFn X Eqq “ µ2pFn X Eq.
Summing these identities over n P N we obtain µ1pEq “ µ2pEq, which finishes the proof, since
E P σpEq had been chosen arbitrarily.

Corollary 1.2.19. If µ1 and µ2 are measures on pΩ, σpEqq with µ1pΩq “ µ2pΩq ă 8 and such
that (1.2.8) holds, then µ1 “ µ2.

Proof. We define rE :“ E Y tΩu. Then the assumptions of Theorem 1.2.17 are fulfilled with E

replaced by rE and En :“ Ω for all n P N. Since σpEq “ σprEq, the result follows.

1.3 Carathéodory’s extension theorem (‘Maßerweiterungssatz’)

In this section we will see how to extend contents to measures. As it turns out, in pursuing
this endeavor it will be useful to make a detour via so-called ‘outer measures’ introduced below:
Contents will give rise to ‘nice’ outer measures (see Theorem 1.3.9 below), which themselves
(by restriction to ‘well-behaved’ sets) give rise to measures (see Theorem 1.3.5 below).
We start with investigating how to go from outer measures to measures, and start with the
definition of the former.

Definition 1.3.1. For Ω a non-empty set, a set function µ˚ : 2Ω Ñ r0,8s is called an outer
measure (‘äußeres Maß’), if

(a) µ˚pHq “ 0;

(b) µ˚ is monotone;

(c) µ˚ is σ-subadditive.

Remark 1.3.2. Since an outer measure µ˚ is σ-subadditive by definition, we deduce that for
A1, . . . , An P 2Ω, we have, setting Am :“ H P 2Ω for m ą n, that

µ˚
´ nď

i“1

Ai

¯
“ µ˚

´ 8ď

i“1

Ai

¯ σ-subadditivity
ď

8ÿ

i“1

µ˚pAiq
Definition 1.3.1 (a)“

nÿ

i“1

µ˚pAiq.

Thus, an outer measure is also subadditive.

We will now introduce the concept of sets which are measurable with respect to an outer measure.
Such sets will be the ‘well-behaved’ sets alluded to above; they form a σ-algebra on which (the
restriction of) the outer measure induces a measure (see Theorem 1.3.5 below).

Definition 1.3.3. Let Ω be a non-empty set and assume an outer measure µ˚ : 2Ω Ñ r0,8s to
be given. Then A P 2Ω is called µ˚-measurable (‘µ˚-messbar’), if for all B P 2Ω,

µ˚pBq “ µ˚pB XAq ` µ˚pB XAcq. (1.3.1)
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Remark 1.3.4. Since an outer measure is subadditive due to Remark 1.3.2, we infer that

µ˚pBq ď µ˚pB XAq ` µ˚pB XAcq

holds true for all A,B P 2Ω. Therefore, (1.3.1) is equivalent to

µ˚pBq ě µ˚pB XAq ` µ˚pB XAcq.

The next results is fundamental in our construction of measures and provides us with a recipe
for how to obtain a measure from an outer measure.

Theorem 1.3.5 (Carathéodory). For an outer measure µ˚ : 2Ω Ñ r0,8s, the set

Mµ˚ :“
 
A Ă Ω : A is µ˚-measurable

(

is a σ-algebra over Ω, and the restriction

µ˚|Mµ˚ (1.3.2)

of µ˚ to Mµ˚ is a measure.

Proof. We start with proving the following claim.

Claim 1.3.6. Mµ˚ is an algebra over Ω.

Proof. By Definition 1.3.1 (a) we have µ˚pHq “ 0, and hence (1.3.1) trivially holds true for
A “ Ω.
Furthermore, since (1.3.1) is symmetric in A and Ac we immediately deduce that Mµ˚ is stable
under complements.
It remains to show Property (c) of Definition 1.1.14. For this purpose, let A1, A2 P Mµ˚ , and
let B Ă Ω be arbitrary. Then

µ˚pBq
A1PMµ˚“ µ˚pB XA1q ` µ˚pB XAc

1q
A2PMµ˚“ µ˚pB XA1q ` µ˚pB XAc

1 XA2q ` µ˚pB XAc
1 XAc

2q
µ˚ subadditive

ě µ˚`pB XA1q 9YpB XAc
1 XA2q

˘
` µ˚pB X pA1 YA2qcq

“ µ˚pB X pA1 YA2qq ` µ˚pB X pA1 YA2qcq.

This shows that AYB P Mµ˚ , and therefore Mµ˚ is an algebra.

In order to show that Mµ˚ is a σ-algebra, due to Theorem 1.1.32 it is sufficient to show that it
is a λ-system;
Since Mµ˚ is an algebra due to Claim 1.3.6, we immediately get Ω P Mµ˚ and we also know
that Mµ˚ is stable under complements. Thus, it remains to show the union of a countable
family of pairwise disjoint elements of Mµ˚ is contained in Mµ˚ again. For this purpose, let
pAnq be a sequence of pairwise disjoint sets with An P Mµ˚ for all n P N.

We start with inductively proving that for all n P N,

µ˚
´
B X

nď

i“1

Ai

¯
“

nÿ

i“1

µ˚pB XAiq @B Ă Ω. (1.3.3)

Indeed, for n “ 1 this boils down to a tautology, so assume (1.3.3) holds for arbitrary n P N.

Then, using that the Ai are pairwise disjoint and that
Ťn

i“1Ai P Mµ˚ ,

µ˚
´
B X

n`1ď

i“1

Ai

¯
“ µ˚

´´
B X

n`1ď

i“1

Ai

¯
X

nď

i“1

Ai

¯
` µ˚

´´
B X

n`1ď

i“1

Ai

¯
X
´ nď

i“1

Ai

¯c¯

“
nÿ

i“1

µ˚pB XAiq ` µ˚pB XAn`1q,
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where we used the induction assumption in the last step. This finishes the induction step and
therefore establishes (1.3.3).
We infer that

µ˚pBq ě µ˚
´
B X

nď

i“1

Ai

¯
` µ˚

´
B X

´ nď

i“1

Ai

¯c¯
ě

nÿ

i“1

µ˚pB XAiq ` µ˚
´
B X

´ 8ď

i“1

Ai

¯c¯
,

where we used the fact that Mµ˚ is an algebra to get the inequality, and the inequality is a
consequence of display (1.3.3) in combination with the monotonicity of µ˚. Taking n Ñ 8 in
the previous display and using that µ˚ is σ-subadditive, we arrive at

µ˚pBq ě
8ÿ

i“1

µ˚pB XAiq ` µ˚
´
B X

´ 8ď

i“1

Ai

¯c¯

ě µ˚
´
B X

8ď

i“1

Ai

¯
` µ˚

´
B X

´ 8ď

i“1

Ai

¯c¯
,

(1.3.4)

which shows that
Ť8

i“1Ai P Mµ˚ . Therefore, Mµ˚ is a λ-system, which in combination with
Claim 1.3.6 and Theorem 1.1.32 implies that Mµ˚ is a σ-algebra also.
Last but not least, we have to show (1.3.2). Since µ˚ is an outer measure, we have µ˚pHq “ 0 by
definition. Also, for a sequence pAnq of pairwise disjoint sets with An P Mµ˚ we have, choosing
B :“ Ť8

n“1An, that the first inequality in (1.3.4) supplies us with

µ˚
´ 8ď

n“1

An

¯
ě

8ÿ

n“1

µ˚pAnq.

In combination with the σ-subadditivity of µ˚ this concludes the proof that µ˚|Mµ˚ is a measure.

Definition 1.3.7. A measure µ on a measurable space pΩ,Fq (or the measure space pΩ,F , µq
for that matter) is called complete, if for all M P F with µpMq “ 0, and all N Ă M, one has
that N P F as well.

Exercise 1.3.8. Show that the measure µ˚
Mµ˚

on pΩ,Mµ˚ q from Theorem 1.3.5 is complete

in the sense of Definition 1.3.7.

In what follows, we will assume the standard convention that

inf H “ 8 and sup H “ ´8.

Theorem 1.3.9. Let A Ă 2Ω with H P A, and let µ : A Ñ r0,8s be a set function with
µpHq “ 0. For A Ă Ω define the set function µ˚ : 2Ω Ñ r0,8s via

µ˚pAq :“ inf
! 8ÿ

i“1

µpAiq : A1, A2, . . . P A, and A Ă
8ď

i“1

Ai

)
, A Ă Ω. (1.3.5)

Then,

(a) µ˚ defines an outer measure;

(b) if A is a semiring and µ is a content, then A Ă Mµ˚ ;

(c) if A is a semiring and if µ is not only a content but also σ-subadditive, then

µ˚|A “ µ.
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Proof. (a) Setting An :“ H P A, the definition in (1.3.5) of µ˚ immediately yields µ˚pHq “ 0.
The monotonicity of µ˚ also is a direct consequence of (1.3.5).

It remains to show the σ-subadditivity. For this purpose, let pAnq be a sequence with
An Ă Ω for all n P N, and assume without loss of generality that µ˚pAnq ă 8 for all
n P N. Then for ε ą 0 arbitrary, choose for each n P N a covering pAn,iqiPN of An with
An,i P A for all i P N and such that

8ÿ

i“1

µpAn,iq ď µ˚pAnq ` 2´nε. (1.3.6)

Then ď

nPN
An Ă

ď

i,nPN
An,i,

and by the definition of µ˚ in combination with (1.3.6), we deduce

µ˚
´ ď

nPN
An

¯
ď

ÿ

nPN

ÿ

iPN
µpAn,iq

looooomooooon
(1.3.6)

ď µ˚pAnq`2´nε

ď
ÿ

nPN
µ˚pAnq ` ε.

Since ε ą 0 had been chosen arbitrarily, we deduce

µ˚
´ ď

nPN
An

¯
ď

ÿ

nPN
µ˚pAnq,

which shows the σ-subadditivity of µ˚.

(b) For A P A arbitrary we want to show that for all E Ă Ω we have

µ˚pE XAq ` µ˚pE XAcq “ µ˚pEq,

and without loss of generality we can assume µ˚pEq ă 8. Then for ε ą 0 arbitrary but
fixed, we find a sequence pAnq such that

• An P A for all n P N;

• E Ă Ť8
n“1An;

•
8ÿ

n“1

µpAnq ď µ˚pEq ` ε. (1.3.7)

Now since A is a semiring, for any n P N, we find mn P N and An,i, 1 ď i ď m, such that

An XAc “ AnzA “ 9
ďmn

i“1
An,i.

As a consequence, we get

µ˚pE XAq ` µ˚pE XAcq ď
8ÿ

n“1

µpAn XAq `
8ÿ

n“1

µ˚` 9
ďmn

i“1
An,i

˘

ď
8ÿ

n“1

´
µpAn XAq `

mnÿ

i“1

µpAn,iq
¯

“
8ÿ

n“1

µpAnq
(1.3.7)

ď µ˚pEq ` ε.

Since ε ą 0 was chosen arbitrarily and using Remark 1.3.4, this finishes the proof.
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(c) Let A P A. On the one hand, by definition of µ˚ we have µ˚pAq ď µpAq. On the other
hand, for any covering A1, A2, . . . P A with A Ă Ť8

i“1Ai we have

µpAq “ µ
´ 8ď

i“1

pA XAiq
¯

ď
8ÿ

n“1

µpAi XAq, (1.3.8)

where we used that µ is σ-subadditive in combination with the fact that Ai XA P A for all
i P N. Since display (1.3.8) holds for any suitable covering, this shows that µpAq ď µ˚pAq,
which finishes the proof.

We can summarize Theorems 1.3.9 and 1.3.5 to obtain the following corollary.

Corollary 1.3.10. Let S be a semiring and let rµ be a content on S which is σ-subadditive. By
rµ˚ we denote the corresponding outer measure as defined in (1.3.5).

Then there exists a measure µ : Mrµ˚ Ñ r0,8s such that rµ and µ coincide on S.

Furthermore, if rµ is σ-finite, then so is µ, and in this case the restriction of µ to σpSq Ă Mrµ˚

is the unique extension of rµ to a measure on σpSq.

Proof. The existence of a measure µ on Mrµ˚ extending rµ follows from Theorems 1.3.9 and
1.3.5.

If rµ is σ-finite, then there exists a sequence pSnq such that Sn P S,
Ť

nPN Sn “ Ω, and µpSnq ă 8
for all n P N. In particular, this implies that µ is σ-finite.

Furthermore, using Theorem 1.2.17 we deduce that there exists at most one measure on σpSq
which extends rµ, so the extension is unique.

1.3.1 Lebesgue measure

Our principal goal in this section is to extend the elementary content λd that we had defined
on hyperrectangles in (1.2.2) to a measure on the σ-algebra generated by the hyperrectangles;
due to Lemma 1.1.31, this σ-algebra coincides with BpRdq.

Theorem 1.3.11 (d-dimensional Lebesgue measure). There exists a uniquely determined σ-
finite measure λd on pRn,BpRdqq such that

λdppa, bsq “
dź

i“1

pbi ´ aiq @a, b P Rd with a ă b. (1.3.9)

λd is called the d-dimensional (Borel-) Lebesgue measure.

Proof. In order to distinguish Lebesgue content and Lebesgue measure, let us write rλd for the
Lebesgue content.

We will apply Corollary 1.3.10 to the case S “ Id and rµ “ rλd. In combination with the fact
that σpIdq “ BpRdq (cf. Lemma 1.1.31), the measure whose existence is implied by Corollary
1.3.10 will be the unique one defined on BpRdq and satisfying (1.3.9).

We have to show that
rλd is σ-subadditive on Id. (1.3.10)

For this purpose let a, b P Rd with a ď b be given, and let papnq, bpnqs, where apnq, bpnq P Rd

with apnq ď bpnq for all n P N, be a sequence of hypercubes (i.e., elements of Id) such that

pa, bs Ă
8ď

n“1

papnq, bpnqs.
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It is sufficient to show that for the content rλd on Id we have

rλdppa, bsq ď
8ÿ

n“1

rλdppapnq, bpnqsq. (1.3.11)

We will show this inequality by exploiting a continuity property of the content rλd in order to
apply a compactness argument which then reduces the above to a finite setting. To be precise,
for ε ą 0 arbitrary choose for each n P N an element bεpnq P Rd such that bεpnq ą bpnq and
such that

rλdppapnq, bεpnqsq ď rλdppapnq, bpnqsq ` 2´nε.

In addition, choose aε P Rd such that aε ą a and such that

rλdppaε, bsq ě rλdppa, bsq ´ ε. (1.3.12)

Now

raε, bs Ă pa, bs Ă
8ď

n“1

papnq, bεpnqq.

Since the left-hand side is a compact set, there exists N0 P N such that

raε, bs Ă
N0ď

n“1

papnq, bεpnqq.

Hence, using the fact that the content λ is (finitely) subadditive (cf. Lemma 1.2.13), we deduce

rλdppa, bsq
(1.3.12)

ď rλdppaε, bsq ` ε

ď
N0ÿ

n“1

rλdppapnq, bεpnqsq ` ε ď
N0ÿ

n“1

rλdppapnq, bpnqsq ` 2ε.

In particular, this implies

rλdppa, bsq ď
8ÿ

n“1

rλdppapnq, bpnqsq ` 2ε.

Since ε ą 0 was chosen arbitrarily, this establishes (1.3.10) and hence (1.3.9).

The σ-finiteness follows immediately from the σ-finiteness of the Lebesgue content and the fact
that Lebesgue content and Lebesgue measure coincide on Id.

Remark 1.3.12. For simplicity write λ˚ for the outer measure induced by the d-dimensional
Lebesgue content as defined in (1.3.5). Theorem 1.3.5 actually shows that the measure λd can be
defined on the σ-algebra LpRdq :“ Mλ˚ of the so-called Lebesgue-measurable sets (in a unique
way, and LpRdq is the completion of BpRdq, i.e., the smallest complete σ-algebra containing
BpRdq; see [Els05, Corollary II.6.5]), where by λ˚ we denote the outer measure induced by the
content rλ and (1.3.5). From Theorem 1.3.9 we infer that

BpRdq Ă LpRdq Ă 2Ω,

and one can show that both of these inclusions are strict (see [Els05, Example II.4.6]).
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1.3.2 Lebesgue-Stieltjes measure

Theorem 1.3.13 (Lebesgue-Stieltjes measures). Let a non-decreasing function and right-
continuous function F : R Ñ R be given. Recall the semiring I of left-open right-closed intervals
in R which had been introduced in Example 1.1.6. Then

rµF : I Ñ r0,8q,
pa, bs ÞÑ F pbq ´ F paq,

defines a content, and there exists a unique σ-finite measure µF on pR,BpRqq such that

µF pIq “ rµF pIq for all I P I.

µF is called the Lebesgue-Stieltjes measure of F.

Proof. We have rµF pHq “ 0, and for pairwise disjoint intervals pap1q, bp1qs, . . . , papnq, bpnqs with
pa, bs “

Ťn
i“1papiq, bpiqs some a, b P R with a ă b we have

nÿ

i“1

rµF
`
papiq, bpiqs

˘
“ F

`
max
1ďiďn

bpiq
˘

´ F p min
1ďiďn

apiqq “ rµF ppa, bsq,

since a “ min1ďiďn apiq and b “ max1ďiďn bpiq. This means that rµF is additive also, and hence
a content on I.

Since I is a semiring, according to Corollary 1.3.10, the only thing that is left to show is that
rµF is σ-subadditive and σ-finite. For the first, we proceed similarly to the proof of Theorem
1.3.11. Indeed, let pa, bs as well as ppapnq, bpnqsqnPN with a, b, apnq, bpnq P R be given such that
a ď b and apnq ď bpnq for all n P N, and such that

pa, bs Ă
8ď

n“1

papnq, bpnqs.

For ε ą 0 given we take advantage of the right continuity of F in order to deduce the existence
of aε ą a such that

rµF ppaε, bsq ě rµF ppa, bsq ´ ε.

In addition, using the right continuity of F again, for each n P N we find bεpnq P R with
bεpnq ą bpnq and

rµF ppapnq, bpnqsq ě rµF ppapnq, bεpnqsq ´ ε2´n.

As in the proof of Theorem 1.3.11 we can then deduce that

rµF ppa, bsq ď
ÿ

nPN
rµF ppapnq, bpnqsq ` 2ε.

Since ε ą 0 had been choosen arbitrarily, we infer

rµF ppa, bsq ď
ÿ

nPN
rµF ppapnq, bpnqsq,

which implies the desired σ-subadditivity.

Regarding the σ-finiteness, we observe that rµF is σ-finite since rµF pp´n, nsq ă 8 for all n P N,

and hence so is µF .

Example 1.3.14. (a) Show that for F : R Ñ R with F pxq “ x the Lebesgue-Stieltjes measure
µF from Theorem 1.3.13 coincides the one-dimensional Lebesgue measure λ1.
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(b) Let f : R Ñ r0,8q be continuous and set

F pxq :“
ż x

0
fprq dr, x P R,

with the right-hand side interpreted as Riemann integral. Then F is non-decreasing and
continuous (e.g. due to the Fundamental Theorem of Calculus), and hence we can use
Theorem 1.3.13 to deduce the existence of a measure µF on σpIq “ BpRq.

Remark 1.3.15. If we have a closer look at the proof of Theorem 1.3.13 again, we discover that
it did not hinge on the special nature of the Lebesgue content, but rather we only needed some
continuity properties of the content. In particular, if F1, . . . , Fn are non-decreasing and right-
continuous functions from R to R just as in Theorem 1.3.13, then these give rise to measures
µ1, . . . , µn on pR,BpRqq just in the same vein as in Theorem 1.3.13. We can then perform the
proof of Theorem 1.3.11 in essentially the same way as before and obtain that there exists a
unique σ-finite measure µ on pRn,BpRnqq (recall that σpInq “ BpRnq due to Lemma 1.1.31)
such that

µppa, bsq “
nź

i“1

µippai, bisq, @a, b P Rn with a ă b.

We also write bn
i“1µi :“ µ and call µ the product measure of µ1, . . . , µn.

In Section 2.4 below we will see how to construct product measures not only as products of
measures on pR,BpRqq but on arbitrary measurable spaces, and also how to construct infinite
products of measures.

In what follows, most results and definitions concerning probability spaces can be generalized
to finite measure spaces pΩ,F , µq, where µ is a finite measure. There is, however, oftentimes
a more significant difference between the case of µ being finite or infinite, so we have to be a
bit more careful when trying to transfer results we have for finite measure spaces to infinite
measure spaces.

1.4 Measurable functions, random variables

The Riemann integral had been introduced by partitioning the domain of definition of the
integrand (oftentimes intervals in R or hypercubes in Rd) into finer and finer pieces, and then
consider the upper and lower Riemann sums. If they converged to the same limit as the
partitions got finer and finer, this limit had been defined as the corresponding Riemann integral.
The notion of integral we will be introducing later on,10 on the other hand, will be defined for
real or complex functions defined on a measure space pΩ,F , µq. It can essentially be defined by
partitioning the range of the integrand into finer and finer pieces. In particular, for an integrand
f this will require that preimages of intervals, i.e., sets of the form f´1pra, bsq, can be measured
by the measure underlying the domain of definition of the function. This means we want
expressions of the type µpf´1pra, bsqq to be well-defined, which is equivalent to f´1pra, bsq P F .

As a consequence, such functions will play a special role. (In the case of pΩ,F , µq being a
probability space, the definition of random variables in [Dre18, Def.1.7.1] had been general
enough to serve our purposes.)

Definition 1.4.1. Let pΩ,Fq and pE, Eq be measurable spaces. A function f : Ω Ñ E is called
a measurable function (‘messbare Funktion’) if for all A P E its preimage under f is contained
in F , i.e., if

f´1pAq :“ tω P Ω : fpωq P Au P F , @A P E .

10It is called the Lebesgue integral, although it not only refers to integrals with respect to the standard Lebesgue
measure on pRd,BpRdqq, but with respect to arbitrary measures.
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In this case, f is also said to be F ´ E-measurable (‘F ´ E-messbar’).

If not only a measurable space pΩ,Fq but a probability space pΩ,F , µq is given, then f as above is
called a random variable (‘Zufallsvariable’) If furthermore pE, Eq “ pR,BpRqq, then f is referred
to as a real random variable (‘reelle Zufallsvariable’, ‘Zufallsgröße’), and if pE, Eq “ pR,BpRqq,
we say that f is an extended real random variable (‘erweiterte reelle Zufallsvariable’).

Even if we have given only a measurable space pΩ,Fq, we denote the space of extended real
functions by M, and the subset of non-negative extended real-valued functions by M`. For a
random variable X the values Xpωq, ω P Ω, are also called realizations of the random variable
X.

For the sake of simplicity, functions f : Rd Ñ Rk which are BpRdq ´BpRkq-measurable are just
called Borel-measurable.

Example 1.4.2. (a) Any constant function from pΩ,Fq to pE, Eq is F ´ E-measurable.

(b) For A Ă Ω the indicator function of A is defined as

1A : Ω Ñ t0, 1u

ω ÞÑ
"

1, if ω P A,
0, if ω R A.

Show that if pΩ,Fq is a measurable space, then for A Ă 2Ω the indicator function 1A is
F ´ BpRq-measurable if and only if A P F .

(c) Let Ω be a non-empty set and let F , G be two σ-algebras on Ω with F Ĺ G. The identity
function idΩ from Ω to Ω, where idΩpωq :“ ω, is G ´ F-measurable. However, it is not
F ´ G-measurable.

(d) If either F “ 2Ω or E “ tE,Hu, then any function from pΩ,Fq to pE, Eq is F ´ E-
measurable.

Remark 1.4.3. Let pΩ,Fq and pE, Eq be measurable spaces. Let furthermore f : Ω Ñ E be an
F ´ E-measurable function. Recall the definition of the trace-σ-algebra EG from Exercise 1.1.19
for G Ă E, and assume that fpΩq Ă G. Then, if G P E , the function f can also be interpreted
as a F ´ EG-measurable function from Ω to G. This is not necessarily true if G R E .

To us, random variables will be important to describe the outcomes of experiments that we
consider to be random (prime examples being dice rolls or coin tosses). For more intuition on
random variables we refer to [Dre18], in particular Section 1.7. Note, however, that in [Dre18]
essentially all functions which occurred were measurable by definition anyway since we only
investigated nice and simple settings. In general, the measurability has to be established when
investigating arbitrary functions between measurable spaces. We will provide a useful tool for
this in Theorem 1.4.7 below, but before we will establish some further general properties for
measurable functions.

Theorem 1.4.4 (Compositions of measurable functions). Let pΩi,Fiq, i P t1, 2, 3u, be measur-
able spaces, and let fi : Ωi Ñ Ωi`1 be Fi ´ Fi`1-measurable maps, for i P t1, 2u.
Then the composition

f2 ˝ f1 : Ω1 Ñ Ω3

ω1 ÞÑ f2pf1pω1qq

is a F1 ´ F3-measurable map from Ω1 to Ω3.



34 CHAPTER 1. SET FUNCTIONS

Proof. For arbitrary F3 P F3 we have

pf2 ˝ f1q´1pF3q “ f´1
1 pf´1

2 pF3qq P F1,

where the latter takes advantage of the fact that

f´1
2 pF3q P F2

since f2 is F2 ´ F3-measurable. This concludes the proof.

Since σ-algebras are often large, it is practically not feasible to check the measurability condition
of Definition 1.4.1. As a remedy, Theorem 1.4.7 below states that it is sufficient to check it on a
generator, which is often easier to achieve. We are now going to prepare its proof via a couple
of auxiliary results.

Claim 1.4.5 (‘Operationstreue’). Given an arbitrary map f from a non-empty space X to a
non-empty space Y , consider the preimage map

f´1 : 2Y Ñ 2X

A ÞÑ f´1pAq.

Then the following properties hold:

(a) For an arbitrary family pBλq, λ P Λ, with Bλ P 2Y for all λ P Λ,

f´1
´ ď

λPΛ
Bλ

¯
“

ď

λPΛ
f´1pBλq,

and

f´1
´ č

λPΛ
Bλ

¯
“

č

λPΛ
f´1pBλq;

(b) for each B P 2Y ,

f´1pBcq “ pf´1pBqqc.

Proof. Exercise.

The previous claim helps in deriving the following lemma.

Lemma 1.4.6. Let f : Ω Ñ E be an arbitrary mapping, and let H be an arbitrary subset of
2E . Then

σpf´1pHqq “ f´1pσpHqq.

In particular, if H is a σ-algebra over E, then f´1pHq is a σ-algebra over Ω.

Proof. We have

f´1pHq Ă f´1pσpHqq,

and using Claim 1.4.5, we infer that the right-hand side of the previous display is a σ-algebra,
whence

σpf´1pHqq Ă f´1pσpHqq.

We now prove the converse inclusion using the good sets principle. Denote by G those subsets
of E the preimages of which under f which are contained in σpf´1pHqq :

G :“
 
G Ă E : f´1pGq P σpf´1pHqq

(
. (1.4.1)
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Then we have E P G, and furthermore, using Claim 1.4.5 we deduce that G is stable under
countable unions and complements. Hence, G is a σ-algebra. In addition, as a consequence of
(1.4.1) we get H Ă G. Thus, in particular we deduce that

f´1pσpHqq Ă f´1pGq Ă σpf´1pHqq,

which finishes the proof.

We are now ready to prove the tool announced above, which shows that in order to prove
measurability of a map, it is sufficient to consider the generator of the corresponding σ-algebra
in the image space.

Theorem 1.4.7. Let f be a mapping from the measurable space pΩ,Fq to the measurable space
pE, Eq. Furthermore, let G Ă 2E be any generator of E .
Then f is F ´ E-measurable if and only if f´1pGq Ă F .

Proof. If f is F´E-measurable, then since G Ă E we deduce from the definition that f´1pGq Ă F .

To prove the converse inclusion, assume that f´1pGq Ă F . Then

σpf´1pGqq Ă F ,

and the left-hand side of this display coincides with f´1pσpGqq “ f´1pEq due to Lemma 1.4.6,
which finishes the proof.

We will now derive a corollary of the previous result for which we introduce the following
notation.

Definition 1.4.8. Let Λ be a non-empty set, and let Xλ, λ P Λ be mappings from Ω to sets
Eλ. Furthermore, let Eλ be σ-algebras on Eλ, λ P Λ. We denote by σpXλ : λ P Λq the smallest
σ-algebra on Ω such that each Xλ is σpXλ : λ P Λq ´ Eλ-measurable. σpXλ : λ P Λq is also
called the σ-algebra generated by the Xλ, λ P Λ.

Corollary 1.4.9. Let Λ ‰ H and measurable spaces pΩ,Fq, prΩ, rFq, as well as pΩλ,Fλq, λ P Λ,
be given. Furthermore, assume maps Yλ : rΩ Ñ Ωλ, λ P Λ, to be given such that rF “ σpYλ :
λ P Λq.
Then a map X : Ω Ñ rΩ is F ´ rF-measurable if and only if the compositions Yλ ˝ X : Ω Ñ Ωλ

are F ´ Fλ-measurable for all λ P Λ.

Proof. If X is measurable, then all the compositions are measurable due to Theorem 1.4.4.
If, on the other hand, all the Yλ ˝X are F ´ Fλ-measurable, then we start with observing that
by definition of rF ,

rG :“
 
Y ´1
λ pF q : λ P Λ, F P Fλ

(

is a generator of rF . But since all Yλ are measurable by assumption, we have X´1prGq Ă F , and
hence Theorem 1.4.7 implies that X has the desired measurability properties.

The following result is interesting in its own right, but it will also play an important role
in proving the central Proposition 1.4.13 below. We recall the facts we had learned about
topologies in Definition 1.1.28 and below. Furthermore, we remind ourselves that a function
from a topological space pO1,O1q to a topological space pO2,O2q was defined to be continuous
if and only if f´1pOq P O1 for all O P O2 (this definition coincided with the definition for
continuity in the case of metric spaces or Rd).

Theorem 1.4.10. Let pO1,O1q and pO2,O2q be topological spaces. Then any continuous map
from pO1,O1q to pO2,O2q is BpO1q ´ BpO2q-measurable.
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Proof. Since f is continuous, by definition f´1pO2q Ă O1, so Theorem 1.4.7 implies
f´1pBpO2qq Ă BpO1q, which finishes the proof.

Proposition 1.4.11. Let f : pΩ,Fq Ñ pRd,BpRdqq. For i P t1, . . . , du denote by

πi : Rd Ñ R,

px1, . . . , xdq ÞÑ xi,

the projection on the i-th coordinate.

Then the function the function f is F ´ BpRdq-measurable if and only if πi ˝ f is F ´ BpRq-
measurable for all admissible choices of i.

Proof. Once we show BpRdq “ σpπi, 1 ď i ď dq, the result follows from Corollary 1.4.9.

Since the πi : Rd Ñ R are continuous, Theorem 1.4.10 implies their BpRdq´BpRq-measurability,
and we infer that σpπi, 1 ď i ď dq Ă BpRdq.
On the other hand, due to ra, bs “ Xd

i“1π
´1
i prai, bisq, a ď b P Rd and the fact that such hyper-

rectangles generate BpRdq due to Lemma 1.1.31, we infer BpRdq Ă σpπi, 1 ď i ď dq, which
finishes the proof.

Example 1.4.12. (a) Let f : pΩ,Fq Ñ pRd,BpRdqq be a F ´ BpRdq-measurable function.
Then the function

}f}2 : pΩ,Fq Ñ pR,BpRqq,
ω ÞÑ }fpωq}2,

is F ´ BpRq-measurable, where for x P Rn we write }x}2 :“
břd

i“1 x
2
i for the so-called

2-norm on Rd. In fact, as a composition of continuous functions, the function Rd Q x ÞÑ
}x}2 P r0,8q is continuous again, and hence F ´ BpRq-measurable due to Theorem and
1.4.10. Thus, due to Theorem 1.4.4 the function f is F ´ BpRdq-measurable.

(b) Let f, g : pΩ,Fq Ñ pR,BpRqq be F ´ BpRq-measurable functions. Then the functions

f _ g, f ^ g f`, f´, and |f |

are F ´ BpRq-measurable. Here, we use the standard notation that for x, y P R

x_y :“ maxpx, yq, x^y :“ minpx, yq, as well as x` :“ x_0 and x´ :“ ´px^0q ě 0.

In the following result we will summarize a couple of important compositions of functions which
supply us with measurable functions again.

Proposition 1.4.13. Let f be a F ´BpRq-measurable function from Ω to R, and let g, h : Ω Ñ
Rd be F ´ BpRdq-measurable functions.

Then g ` h, g ´ h, f ¨ g, g{f are also measurable functions.

Remark 1.4.14. Here we must pay attention to how define g{f in the case that f (or f and g)
are 0. For the setting of this result and the following proof, we set x{0 :“ 0 (which might seem
awkward in the case x ‰ 0, but more natural for x “ 0; either way, scrutinizing the proof below
we will see that any convention x{0 :“ c, some c P R, would work and still leave us with g{f
measurable).
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Proof. For the case g ` h, we observe that the function Ω Q ω ÞÑ pgpωq, hpωqq P pRd ˆ Rdq
is a F ´ BpR2dq-measurable function due to Proposition 1.4.11. Furthermore, the function
Rd ˆ Rd Q px, yq ÞÑ x ` y P Rd is continuous, so in combination with Theorem 1.4.4 we infer
that the composition g ` h : Ω Q ω ÞÑ gpωq ` hpωq P Rd is F ´ BpRdq-measurable.
The remaining cases follows in a similar fashion, and the only point where we do have to pay
some extra attention is g{f in the case that the denominator vanishes. Since we can write
g{f “ g ¨ 1

f
, and we know that f, g are measurable and that the product of two measurable

functions is measurable again, due to Theorem 1.4.4 the only thing that remains to show is that
i : R Q x ÞÑ 1{x P R is BpRq ´ BpRq-measurable. For this purpose, observe that for U Ă R open
we have

i´1pUq “ i´1p Uzt0uloomoon
ĂRzt0u open

q

loooooooomoooooooon
ĂRzt0u open, since i continuous on Rzt0u

YpU X t0uq P BpRq.

Hence, the result follows in combination with Theorem 1.4.7.

Proposition 1.4.15. Let pfnq be a sequence of functions in M. Then the functions

sup
nPN

fn, inf
nPN

fn, lim sup
nÑ8

fn and lim inf
nÑ8

fn,

are all in M again.

Proof. For any a P R we have

 
sup
nPN

fn P pa,8s
(

“
ď

nPN
f´1
n ppa,8sq

Thus, using Lemma 1.1.31 and Theorem 1.4.7 yields that supnPN fn has the desired measurability
property. The case of infnPN fn can be shown similarly or otherwise by using the identity
infnPN fn “ ´ supnPNp´fnq and invoking Proposition 1.4.13 twice.
With regard to lim supnÑ8 fn, we observe that

lim sup
nÑ8

fn “ inf
nPN

sup
měn

fm,

and use the first part of this Proposition to first conclude that supměn fm has the desired
measurability properties, and then to conclude that the same holds true for infnPN supměn fm,

which finishes this part.
Again, for the case lim infnÑ8 fn we can follow one of the two alternative routes outlined in the
proof of the first part.

Corollary 1.4.16. Let pfnq be a sequence of functions in M such that

fpωq :“ lim
nÑ8

fnpωq

exists for all ω P Ω.
Then f P M.

Another result that comes in handy is the following.

Lemma 1.4.17 (factorization lemma (‘Maßtheoretischer Dreisatz’)). Let pΩ,Fq and pΩ1,F 1q
be two measurable spaces and let T : Ω Ñ Ω1 and f : Ω Ñ R be two mappings. Then f is
T´1pF 1q ´ B-measurable if and only if there exists a F 1 ´ B-measurable mapping ϕ : Ω1 Ñ R

such that f “ ϕ ˝ T.

Proof. Exercise.
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1.5 Image measures, distributions

As introduced in [Dre18, Definition 1.8.12], for real-valued random variables the concept of its
(cumulative) distribution function plays a prominent role.

Definition 1.5.1. Let X be a random variable defined on a probability space pΩ,F ,Pq and
mapping to pRd,BpRdqq. Then the function

FX : Rd Ñ r0, 1s,

t ÞÑ PpX ď tq “ P

´
X P

dą

i“1

p´8, tis
¯
,

is called the (cumulative) distribution function (or cdf) of X (‘Verteilungsfunktion von X’).

Similarly, if µ is a probability measure on pRd,BpRdqq, then the function

Fµ : Rd Ñ r0, 1s,

t ÞÑ µ
´ dą

i“1

p´8, tis
¯
,

is called the distribution function of µ (‘Verteilungsfunktion von µ’).

Of particular importance to us will be the case d “ 1, and in [Dre18, Thm. 1.8.16] we had found
the following properties of distribution functions.

Theorem 1.5.2. If F is the distribution function of a real random variable or of a probability
measure on pR,BpRqq, then

(a) F is non-decreasing;

(b)

lim
tÑ´8

F ptq “ 0, lim
tÑ8

F ptq “ 1;

(c) F is right-continuous (i.e., for all t0 P R one has F pt0q “ limtÓt0 F ptqq;

We had also introduced the following definition and theorem as [Dre18, Def. 1.8.17, Thm.1.8.18].

Definition 1.5.3. Any function F : R Ñ r0, 1s that satisfies the three properties given in
Theorem 1.5.2 is called a distribution function (‘Verteilungsfunktion’).

The following result complements Theorem 1.5.2, and combined they establish that there is a
correspondence between random variables and distribution functions.

Theorem 1.5.4. If F is any distribution function, then there exists a unique probability measure
µF on pR,BpRqq such that FµF

“ F.

However, at that point we were not able to prove this result. Since we are now in the position
to do so, we give the proof.

Proof of Thm.1.5.4. See homework problems.

Observing that the distribution function FX of a real random variable X depends only on the
probability measure PpX P ¨q, and combining Theorems 1.5.2 and 1.5.4, we deduce that there
exists a one-to-one correspondence between probability measures on pR,BpRqq and distribution
functions F : R Ñ r0, 1s.
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Corollary 1.5.5. The mapping induced by Definition 1.5.1, which maps a probability measure
µ on pR,BpRqq to its distribution function Fµ defines a bijection from the space of probability
measures on pR,BpRqq to the space of distributions functions on R.

Theorem 1.5.6. Let pΩ,F , νq be a measure space and let pE, Eq be a measurable space. Fur-
thermore, assume a F ´ E-measurable mapping f to be given. Then the set function

ν ˝ f´1 : E Ñ r0,8s,
F ÞÑ νpf´1pF qq,

defines a measure on pE, Eq. We will also sometimes denote it by νf for simplicity of notation.
If ν is a probability measure (so f is a random variable), νf is also called the distribution of f .

Proof. The proof proceeds in the same way as the one of [Dre18, Theorem 1.7.6], which is for
probability measures.

Definition 1.5.7. The measure ν˝f´1 introduced in Theorem 1.5.6 is called the image measure
(or pushforward) of ν under f. In the case of f being a random variable (i.e., ν is a probability
measure), the image measure ν ˝ f´1 is called the distribution (or law) of f.

As we will see, in probability theory, oftentimes a random variable X itself will not be of too
much importance to us; rather, what we will be interested in usually is its law.

Example 1.5.8. Arguably the most prominent example of a distribution is the so-called Normal
distribution or Gaussian distribution (‘Normalverteilung’, ‘Gaußverteilung’). We say that for
µ P R, σ P p0,8q, a random variable X defined on a probability space pΩ,F ,Pq is N pµ, σ2q
distributed if

PpX ď sq “ 1?
2πσ2

ż s

8
e

´ px´µq2

2σ2 dx, @s P R.

This really defines a probability measure, i.e.,

1?
2πσ2

ż 8

8
e

´ px´µq2

2σ2 dx “ 1. (1.5.1)

Indeed, we have

´ ż 8

´8
e´x2{2 dx

¯2
“
ż 8

´8

´ż 8

´8
e´x2{2e´y2{2 dx

¯
dy “

ż 8

0
2πre´r2{2 dr “ ´2πe´r2{2ˇ̌8

r“0
“ 2π,

where we took advantage of Polar coordinates in standard Riemann integration in the second
equality. In particular, (1.5.1) follows.
In higher dimensions d ě 2 we can still define the normal distribution and say that X :
pΩ,F ,Pq Ñ pRd,BpRdqq is N pµ,Σq-distributed, where µ P Rd and Σ is a symmetric positive
definite matrix in Rdˆd, if

PpX ď sq “ 1

p2πq d
2

a
|detpΣq|

ż s1

8
. . .

ż sd

8
e´ 1

2
px´µqt¨pΣ´1px´µqq dx1 . . . dx1, @s P Rd,

i.e., its density with respect to λd is given by

1

p2πq d
2

a
|detpΣq|

e´ 1
2

px´µqt¨pΣ´1px´µqq.
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Chapter 2

The Lebesgue integral

We recall here that the Riemann integral had been constructed by directly partitioning the
domain of the integrand into finer and finer partitions (see Section 2.0.3 below for a short
reminder). As already outlined at the beginning of Section 1.4, the Lebesgue integral will
essentially be constructed by first partitioning the image of the integrand (into finer and finer
partitions), and then use these partitions of the image in order to obtain a partition of the
domain and hence define the integral.

This procedure is most easily performed for simple functions as follows.

2.0.1 Integrals of simple functions

Definition 2.0.1. Let pΩ,F , µq be a measure space, and let f : pΩ,F , µq Ñ pR,BpRqq be a
F ´BpRq-measurable function such that fpΩq is a finite set. Then f is called a simple function
(‘einfache Funktion’, ‘Treppenfunktion’). The set (in fact a vector space, see Lemma 2.0.4
below) of all simple functions will be denoted by T , and by T ` we denote the set of all non-
negative simple functions.

Lemma 2.0.2. A function f : pΩ,Fq Ñ pR,BpRqq is simple if and only if there exist pairwise
disjoint sets F1, . . . , Fn P F and numbers α1, . . . , αn P R such that

f “
nÿ

i“1

αi1Fi
. (2.0.1)

Remark 2.0.3. As in the literature, we will call a representation of f as in Lemma 2.0.2
a normal representation ‘Normaldarstellung’ of f ; note that some authors also demand thatŤn

i“1 Fi “ Ω for (2.0.1) to be called a normal representation. In fact, if
Ťn

i“1 Fi Ĺ Ω, thenřn`1
i“1 αi1Fi

with αn`1 “ 0 and Fn`1 “ Ωz
Ťn

i“1 Fi is a normal representation with
Ťn`1

i“1 Fi “ Ω.

Proof. If f is of the form (2.0.1), then obviously f P T . On the other hand, if f P T , then
fpΩq “ tα1, . . . , αnu Ă R, and we have

f “
nÿ

i“1

αi1f´1ptαiuq,

so f is of the form (2.0.1) with pairwise disjoint Fi, since f´1ptαiuq P F due to the F ´ BpRq-
measurability of f.

Lemma 2.0.4. The product of two simple functions is simple again, and so is the linear com-
bination of finitely many simple functions. In particular, T is a vector space.

Proof. Exercise.

41
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From now on onwards we will use the convention that 0 ¨ 8 “ 0.

Lemma 2.0.5. For a measure space pΩ,F , µq, let f P T ` be a simple function with normal
representations

f “
nÿ

i“1

αi1Fi
“

mÿ

j“1

βj1Gj
,

for m,n P N, αi, βj P R, and Fi, Gj P F . Then

nÿ

i“1

αiµpFiq “
mÿ

j“1

βjµpGjq.

Proof. For Fi, Gj with Fi X Gj ‰ H we get that fpωq “ αi “ βj for ω P Fi X Gj , and as a
consequence

nÿ

i“1

αiµpFiq “
nÿ

i“1

mÿ

j“1

αiµpFi XGjq “
mÿ

j“1

nÿ

i“1

βiµpFi XGjq “
mÿ

j“1

βiµpGjq,

where in the first and third equality we took advantage of the facts that if αi ‰ 0, then
Fi Ă Ťm

j“1Gj , and if βj ‰ 0, then Gj Ă Ťn
i“1 Fi.

Definition 2.0.6. Let f P T ` with normal representation f “ řn
i“1 αi1Fi

with αi ě 0 and
Fi P F for all i P t1, . . . , nu. Then the (µ-)integral of f is defined as

ż

Ω
f dµ :“

ż

Ω
fpωqµpdωq :“

nÿ

i“1

αiµpFiq P r0,8s.

Remark 2.0.7. Note that due to Lemma 2.0.5, the previous Definition 2.0.6 is well-defined.

We collect some important properties of integrals of non-negative simple functions

Lemma 2.0.8. (a) Let F P F . Then

ż

Ω
1F dµ “ µpF q.

(b) For f, g P T ` and c ě 0,

ż

Ω
pcf ` gq dµ “ c

ż

Ω
f dµ`

ż

Ω
g dµ (linearity). (2.0.2)

(c) For f, g P T ` with f ď g

we have ż

Ω
f dµ ď

ż

Ω
g dµ.

Proof. (a) A normal representation of f is given by 1 ¨ 1F , the integral of which is µpF q by
definition.

(b) We start with noting that due to Lemma 2.0.4, cf ` g is a simple function again, and
since it is non-negative, we have cf ` g P T ` and can therefore consider its integral.

Furthermore, if
řn

i“1 αi1Fi
and

řm
j“1 βj1Gj

are normal representations of f and g, respec-
tively, then

řm¨n
k“1 γk1Hk

is a normal representation for cf ` g, where

γk “ cαi ` βj
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and

Hk “ Fi XGj

with k “ pi ´ 1qm ` j P t1, . . . ,mnu, i P t1, . . . , nu, j P t1, . . . ,mu. (2.0.2) then follows
immediately from the definition of the integral.

(c) This follows from the linearity and non-negativity of the integral in combination with the
fact that g, g ´ f P T `.

Exercise 2.0.9. Show that if f “ řn
i“1 αi1Fi

P T ` with Fi P F and αi ě 0 for all 1 ď i ď n is
not necessarily a normal representation, one still has

ż

Ω
f dµ “

nÿ

i“1

αiµpFiq.

2.0.2 Lebesgue integral for measurable functions

As is often done in mathematics, we are now to introduce the integral of suitable measurable
functions by reducing it to something simpler, i.e., to the integral of simple functions. In order
to pull through this procedure, the following approximation result is fundamental.

Lemma 2.0.10. Let pΩ,Fq be a measurable space. Then f : pΩ,Fq Ñ pr0,8s,Bpr0,8sq is
F ´Bpr0,8sq-measurable if and only if there exists a non-decreasing sequence pfnq of functions
fn P T ` such that

fn Ñ f as n Ñ 8.

Proof. Proposition 1.4.15 immediately supplies us with the fact that if pfnq is a sequence of
functions as in the assumptions, limnÑ8 fn “ supnPN fn P M`.
On the other hand, assume f P M` to be given. For n P N and i P t0, 1, . . . , n2n ´ 1u we define
the function

fn :“
n2nÿ

i“0

i2´n
1An,i

,

where for n P N and i P t0, 1, . . . , n2n ´ 1u we set An,i :“ f´1pri2´n, pi` 1q2´nqq P F , as well as
An,n2n :“ f´1prn,8sq. It is apparent from the definition that fn P T `, that fn is non-decreasing,
and that fn Ñ f pointwise, which finishes the proof.

The obvious procedure would now be to define the integral of a non-negative measurable (ex-
tended) real-valued function f as the monotone limit of a sequence of integrals of simple func-
tions pfnq approximating it monotonically. I.e.,

ż

Ω
f dµ :“ lim

nÑ8

ż

Ω
fn dµ,

where one can invoke Lemma 2.0.8 to ensure that the integrals on the right-hand side are non-
decreasing in n, and hence the limit exists. However, we have to make sure that that the limit
of those integrals does not depend on the very choice of the approximating sequence of simple
functions. For this purpose, we prove the following lemma.

Lemma 2.0.11. Let pfnq, pgnq be two non-decreasing sequences of functions in T ` such that
limnÑ8 fn “ limnÑ8 gn. Then

lim
nÑ8

ż

Ω
fn dµ “ lim

nÑ8

ż

Ω
gn dµ. (2.0.3)



44 CHAPTER 2. THE LEBESGUE INTEGRAL

For the proof of Lemma 2.0.11 we take advantage of the following claim.

Claim 2.0.12. Let f P T ` and let pfnq be an increasing sequence with fn P T ` for all n P N

such that
f ď lim

nÑ8
fn. (2.0.4)

Then ż

Ω
f dµ ď lim

nÑ8

ż

Ω
fn dµ.

Proof. Write f “
řm

i“1 αi1Fi
for a normal representation of f. Then for ε P p0, 1q we consider

the set
Mn :“ tfn ě p1 ´ εqfu P F .

From (2.0.4) we deduce that Mn Ò Ω, hence the continuity of the measure µ from below implies

ż

Ω
f dµ “

mÿ

i“1

αiµpFiq “ lim
nÑ8

mÿ

i“1

αiµpFi XMnq “ lim
nÑ8

ż

Ω
f ¨ 1Mn dµ

ď lim
nÑ8

ż

Ω

1

1 ´ ε
fn dµ “ lim

nÑ8
1

1 ´ ε

ż

Ω
fn dµ.

Since ε P p0, 1q was chosen arbitrarily, taking ε Ó 0 it follows that
ş
Ω f dµ ď limnÑ8

ş
Ω fn dµ,

which finishes the proof.

Proof of Lemma 2.0.11. From Claim 2.0.12 we deduce that for all m P N,

ż
gm dµ ď lim

nÑ8

ż
fn dµ.

Hence, taking m Ñ 8 we infer

lim
mÑ8

ż
gm dµ ď lim

nÑ8

ż
fn dµ.

Exchanging the roles of fn and gm we therefore obtain (2.0.3).

We can now introduce the integral for measurable extended real-valued functions, which by
Lemma 2.0.11 is well-defined.

Definition 2.0.13. Let f P M` and let pfnq be any sequence as in Lemma 2.0.10. Then

ż

Ω
f dµ :“

ż

Ω
fpωqµpdωq :“ lim

nÑ8

ż

Ω
fn dµ

is called the (µ-)integral of f .

As in the case of integrals of non-negative simple functions we derive the following basic prop-
erties.

Lemma 2.0.14. (a) For f, g P M` and c P r0,8s,
ż

Ω
pcf ` gq dµ “ c

ż

Ω
f dµ`

ż

Ω
g dµ (linearity).

(b) For f, g P M` with f ď g

we have ż

Ω
f dµ ď

ż

Ω
g dµ.
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The lemma can be proven taking advantage of its validity in the case of integrands in T ` (see
Lemma 2.0.8) and then decomposing into positive and negative parts as well as taking limits.
We omit the details.

Corollary 2.0.15. An alternative way (which sometimes comes handy) to reduce the integral
of f as in Definition 2.0.13 to integrals of non-negative simple functions is via

ż

Ω
f dµ “ sup

gPT `

gďf

ż

Ω
g dµ.

Proof. Exercise.

Having introduced the integral for non-negative measurable functions, we would like to extend
it to a suitable class of measurable functions that can take positive and negative values at once.
It will turn out, however, that we do not only need the notion of Lebesgue integral for extended
real-valued functions, but also for complex valued functions. Therefore, for a complex number
z “ x ` yi P C with x, y P R, we denote its real part x by Repzq and its imaginary part y by
Impzq, so z “ Repzq ` Impzq ¨ i.

Exercise 2.0.16. Show that a function f : pΩ,F , µq Ñ pC,BpCqq is F ´ BpCq-measurable if
and only if the functions Re f and Im f are F ´ BpRq-measurable.

Proof. We note that the functions C Q z ÞÑ Repzq P R and C Q z ÞÑ Repzq P R are continuous.
Therefore, if f is measurable, so are the functions Re f and Im f due to Theorems 1.4.10 and
1.4.4.

If, on the other hand, the functions Re f and Im f are F ´ BpRq-measurable, the so is the
function i ¨ Im f , and hence f “ Re f ` i ¨ Im f is measurable as well due to Proposition 1.4.13
(where we identify C with R2).

Definition 2.0.17. Let f : pΩ,F , µq Ñ pC,BpCqq be an F ´ BpCq-measurable function. Then
f is called Lebesgue-integrable or (µ-)integrable if the integrals

ż

Ω
pRe fq˘ dµ,

ż

Ω
pIm fq˘ dµ

are all finite. If this is the case, the quantity

ż

Ω
f dµ :“

ż

Ω
pRe fq` dµ´

ż

Ω
pRe fq´ dµ` i

ż

Ω
pIm fq` dµ´ i

ż

Ω
pIm fq´ dµ

is called the Lebesgue integral of f (or also µ-integral of f).

Furthermore, for A P F we introduce the notation

ż

A

f dµ :“
ż

Ω
1A ¨ f dµ, (2.0.5)

if the function 1A ¨ f is Lebesgue-integrable.

Above all, in the case of real-valued integrands it will turn out useful to be slightly less demand-
ing in the above definition.

Definition 2.0.18. Let f P M. We define

ż

Ω
f dµ :“

ż

Ω
f` dµ´

ż

Ω
f´ dµ
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as long as one of the two terms on the right-hand side is finite.1 In this case, we call f quasi-
integrable. We write L1 or L1pΩ,F , µq for the set tf P M :

ş
Ω f dµ P Ru, the (vector) space of

integrable functions.
Similarly, for a random variable X : pΩ,F ,Pq Ñ pR,BpRqq we define its expectation

ErXs :“
ż

Ω
X dP,

whenever X is quasi-integrable with respect to P.

The Reader may convince herself that the notion of integral introduced in Definition 2.0.18
coincides with that of Definition 2.0.17 for measurable f that takes values in R only.
Also, the property of linearity as given for non-negative functions in Lemma 2.0.14 directly
transfers to complex-valued or R-valued functions if the resulting sum is well-defined in R (i.e.,
we don’t have expressions like 8 ´ 8 appearing).

2.0.3 Lebesgue vs. Riemann integral

Recall that the Riemann integral has been defined for real-valued functions which are defined
on (subsets of) Rd instead of on more general sets (as is the case for the Lebesgue integral,
which essentially can be applied to real-valued functions defined on arbitrary measure spaces).
Generalizing Definition 2.0.18 to the case of functions that are defined only on a part of the
underlying space, for f : A Ñ R which is LpAq ´ BpRq-measurable, where A P BpRdq and
LpAq :“ LpRdqA the trace σ-algebra, we say that f is Lebesgue integrable if

ż

A

f dλd :“
ż

Rd

rf dλd

(where rf : Rd Ñ R is defined to coincide with f on A, and as 0 on Ac) is well-defined and finite.
We will have a closer look at the case of A being an interval in R and recall that the Riemann
integral had been defined as follows. f : ra, bs Ñ R was called Riemann integrable if for any
sequence pInq with

In : a “ t
pnq
0 ă t

pnq
1 ă . . . ă tpnq

mn
“ b

such that
max

1ďiďmn

t
pnq
i ´ t

pnq
i´1 Ñ 0 as n Ñ 8,

and for any sequence of points

ξ
pnq
i P rtpnq

i´1, t
pnq
i s, n P N, 1 ď i ď mn,

we have that the limit

lim
nÑ8

mnÿ

i“1

fpξpnq
i qptpnq

i ´ t
pnq
i´1q

exists, is finite, and is independent of the very choice of pInq and pξpnq
i q. In this case we writeşb

a
fpxq dx for the corresponding limit.

Exercise 2.0.19. (a) Show that f as above is Lebesgue integrable if and only if
ş

|f | dλd ă 8.

(b) Show that the function

f : r0, 1s Ñ t0, 1u

x ÞÑ
"

1, if x P Q,

0, if x R Q,

is Lebesgue integrable but not Riemann integrable.

1You might sometimes also encounter the notation µpfq for the Lebesgue integral
ş
Ω
f dµ.
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(c) Show that the function

g : r1,8q Ñ R

x ÞÑ sinpxq
x

is (improperly (‘uneigentlich’)) Riemann integrable (i.e., the limit limnÑ8
şn
1 gpxq dx ex-

ists) but not Lebesgue integrable.

Theorem 2.0.20. If f : ra, bs Ñ R is Riemann integrable, then f is bounded and
pLpra, bsq,BpRqq-measurable. In particular, f is Lebesgue integrable and the Riemann integral
of f coincides with the Lebesgue integral of f.

Since this result is not central to our further exposition, we refer to the exercise classes for a
proof.
As a consequence of the previous result, we will henceforth also write dx instead of λpdxq if
there is not danger of confusion.

2.1 Convergence theorems

In contrast to the Riemann integral, the Lebesgue integral is pretty robust when it comes to
exchanging limits and integration. The following subsection collects the convergence theorems
that are most relevant to us in what is to come.

2.1.1 Dominated and monotone convergence

Theorem 2.1.1 (Monotone convergence theorem (MCT) (B. Levi (1875 – 1961, Italian poly-
math)). Let pfnq be a non-decreasing sequence of measurable functions fn P M`. Then

ż

Ω
lim
nÑ8

fn dµ “ lim
nÑ8

ż

Ω
fn dµ.

Proof. We first of all notice that limnÑ8 fn P M` due to Proposition 1.4.15, and hence its
integral is well-defined (recall Def. 2.0.13).
The monotonicity of the integral (Lemma 2.0.14) immediately implies that

ż

Ω
lim
nÑ8

fn dµ ě
ż

Ω
fm dµ

for each m P N, and that the right-hand side is monotone in m, whence we conclude that
ż

Ω
lim
nÑ8

fn dµ ě lim
mÑ8

ż

Ω
fm dµ.

To show the reverse inequality, we will take advantage of Corollary 2.0.15. For this purpose,
consider arbitrary g P T ` with g ď limnÑ8 fn. Then for ε ą 0 arbitrary we have that

1tfněp1´εqgu ¨ g Ò g,
and as a consequence

lim
nÑ8

ż

Ω
fn dµ ě p1 ´ εq lim

nÑ8

ż

Ω
1tfněp1´εqgu ¨ gloooooooomoooooooon

PT `

dµ ě p1 ´ εq
ż

Ω
g dµ,

where the limits exist due to monotonicity and Lemma 2.0.14, and the second inequality follows
from Claim 2.0.12. Taking ε ą 0 to 0 we obtain

lim
nÑ8

ż

Ω
fn dµ ě

ż

Ω
g dµ,

for any g P T ` with g ď f. Thus, the desired inequality is a consequence of Corollary 2.0.15.
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Having this result at our disposal, we can immediately prove the following result which is of
importance on its own.

Lemma 2.1.2 (Lemma of Fatou (1878 – 1929, French mathematician)). Let pfnq be a sequence
with fn P M`. Then

lim inf
nÑ8

ż
fn dµ ě

ż
lim inf
nÑ8

fn dµ.

Proof. Since for each n P N we have that for m ě n,

fm ě inf
kěn

fk,

the monotonicity of the integral supplies us with

inf
kěn

ż
fk dµ ě

ż
inf
kěn

fk dµ.

Taking limits on both sides we get

lim inf
nÑ8

ż
fn dµ ě lim

nÑ8

ż
inf
kěn

fk dµ
Thm. 2.1.1“

ż
lim inf
nÑ8

fn dµ.

Exercise 2.1.3. Show that the conclusion of Lemma 2.1.2 does not hold in general if we dispose
of the assumption fn ě 0.

Definition 2.1.4. Let pΩ,F ,Pq be a probability space and assume given a sequence pAnq of
subsets An Ă Ω. Then the ‘limes superior’ of the sequence pAnq is defined as

lim sup
nÑ8

An :“
8č

n“1

8ď

k“n

Ak.

The ‘limes inferior’ of the sequence pAnq is defined as

lim inf
nÑ8

An :“
8ď

n“1

8č

k“n

Ak

Note that if An P F for all n P N in the previous definition, then also lim supnÑ8An P F and
lim infnÑ8 An P F .

Exercise 2.1.5. Show the following identities:

•

lim sup
nÑ8

An “
 
ω P Ω : ω P An for infinitely many n

(
;

•

lim inf
nÑ8

An “
 
ω P Ω : ω P An such that Dn0 P N with ω P An @n ě n0

(
;

Corollary 2.1.6. Let a measure space pΩ,F , µq and a sequence pAnq with An P F be given.
Then

µ
`

lim inf
nÑ8

An

˘
ď lim inf

nÑ8
µpAnq, (2.1.1)

and if µ is finite, then also

µ
`

lim sup
nÑ8

An

˘
ě lim sup

nÑ8
µpAnq, (2.1.2)
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Proof. (2.1.1) is a direct consequence of Fatou’s lemma with fn :“ 1An , since

µplim inf Anq “
ż

lim inf
nÑ8

1An dµ ď lim inf
nÑ8

ż
1An dµ “ lim inf

nÑ8
µpAnq.

To obtain (2.1.2), observe that (2.1.1) with An replaced by Ac
n reads

µ
`

lim inf Ac
n

˘
ď lim inf

nÑ8
µpAc

nq.

Using this in combination with the identity
`

lim supnÑ8An

˘c “ lim infnÑ8 Ac
n, the finiteness

of µ, and the fact that µpΩq ´ lim infnÑ8 µpAc
nq “ lim supnÑ8 µpAnq, we therefore deduce

µ
`

lim sup
nÑ8

An

˘
ě lim sup

nÑ8
µpAnq.

Another benefit of Fatou’s lemma is that it serves in proving the dominated convergence theorem
below, which (besides the monotone convergence theorem) is one of the principal results allowing
the interchange of integration and limits.

Theorem 2.1.7 (Lebesgue’s dominated convergence theorem (DCT)). Let pfnq be a sequence
in MpΩ,F , µq, and assume there exists g P M`pΩ,F , µq with |fn| ď g for all n P N, as well
as

ş
g dµ ă 8. Furthermore, assume that fn converges µ-almost surely to some f P M (see

Definition 2.2.1 below for almost sure convergence).

Then
ş

|f | dµ ă 8, and

lim
nÑ8

ż
fn dµ “

ż
f dµ.

Proof. Using Fatou’s lemma we obtain

ż
g dµ` lim inf

nÑ8

´
˘
ż
fn dµ

¯
“ lim inf

nÑ8

ż
pg ˘ fnq dµ ě

ż
pg ˘ fq dµ “

ż
g dµ˘

ż
f dµ. (2.1.3)

Subtracting
ş
g dµ P r0,8q on both sides supplies us with

ż
f dµ ď lim inf

nÑ8

ż
fn dµ ď lim sup

nÑ8

ż
fn dµ “ ´ lim inf

nÑ8

ż
´fn dµ ď

ż
f dµ,

and hence finishes the proof.

Example 2.1.8. Let f P M`. Then

ż
f dµ “

ż

r0,8q
µpf ą tqλpdtq.

Indeed, let pfnq be any sequence as in Lemma 2.0.10. Then, using MCT,

ż

Ω
f dµ “ lim

nÑ8

ż

Ω
fn dµ “ lim

nÑ8

ż

r0,8q
νpfn ą tqλpdtq “

ż

r0,8q
νpf ą tqλpdtq.

where the first equality is the definition of the integral for measurable non-negative functions
(or else by MCT), the second equality is easy to check for simple functions in normal form, and
the third equality takes advantage of the MCT as well as the convergence tfn ą tu Ò tf ą tu in
combination with the continuity from below of the measure µ.
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2.2 Measures with densities, absolute continuity

2.2.1 Almost sure / almost everywhere properties

Definition 2.2.1. Let pΩ,F , µq be a measure space and let P be a property such that for each
ω P Ω it can be decided whether the property P holds true or not. We then say that the property
P holds (µ-)almost everywhere / (µ-)a.e. (‘(µ-)fast überall’/ ‘(µ-)f.ü.’)) if there exists a (µ-)null
set N P F such that P holds for all ω P N c.

If µ is a probability measure, we also say that the property P holds for (µ-)almost all / (µ-)a.a.
(‘µ-fast alle’/ ‘µ-f.a.’) ω instead.

Example 2.2.2. Consider the Cantor function F : r0, 1s Ñ r0, 1s. Then F is differentiable
λ|r0,1s-almost everywhere with F 1pxq “ 0 for all such x (see problem 2 e) on homework sheet 7).

Indeed, in the homework we have seen that F 1pxq “ 0 for all x P r0, 1szC, with C denoting the
Cantor set. You have furthermore shown that λpCq “ 0, so in particular this means that F is
differentiable λ|r0,1s-a.e.

Lemma 2.2.3. Let f P M`pΩ,F , µq. Then

ż
f dµ “ 0 if and only if f “ 0 µ´ a.e.

Proof. The statement is obvious for simple functions. For general f P M`, choose a monotone
approximating sequence of non-negative simple functions fn with fn Ò f. Then f “ 0 µ-a.e. if
and only if for all n P N, we have fn “ 0 µ-a.e. By the observed validity of the statement for
simple functions, the latter is equivalent to

ş
fn dµ “ 0 for all n P N, which due to the definition

of the integral via ż
f dµ “ lim

nÑ8

ż
fn dµ

is equivalent to
ş
f dµ “ 0. This proves the result.

Lemma 2.2.3 it interesting in its own right, but it also proves useful in deriving the following
result.

Proposition 2.2.4. Let

(a) f, g P M`pΩ,F , µq, or let

(b) f, g P MpΩ,F , µq and let f or g be µ-integrable.

Then, if f ď g µ-a.e., we have ż

Ω
f dµ ď

ż

Ω
g dµ.

Proof. Exercise.

The MCT Theorem 2.1.1 gives rise to a class of measures that is of particular importance in
probability theory, as is explained in the following corollary to it.

Corollary 2.2.5. Let f P M` be defined on a measure space pΩ,F , µq. Then the set function

ν : F Ñ r0,8s,

A ÞÑ
ż

A

f dµ,
(2.2.1)

defines a measure on pΩ,Fq.
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Proof. Since f ě 0 we have ν ě 0, and furthermore νpHq “ 0. To show the σ-additivity, let
pAnq be a sequence of pairwise disjoint sets with An P F for all n P N. Then

ν
´

9
ď

nPNAn

¯
“
ż

9Ť
nPNAn

f dµ “
ż

Ω

´ ÿ

nPN
1An

¯
¨ f dµ

Thm. 2.1.1“
ÿ

nPN

ż

Ω
f ¨ 1An dµ “

ÿ

nPN
νpAnq.

Remark 2.2.6. In fact, if instead of f P M` we only assume that f P M is µ-quasi-integrable,
we still get that (2.2.1) defines a signed measure.

For those who have attended ‘Introduction to stochastics’, we add here the remark that the
result of Corollary 2.2.5 is very good news for us. Indeed, recall from [Dre18, Section 1.8.3]
that we did run into severe troubles trying to define measures as in (2.2.1) using the Riemann
integral. It turns out that by use of the Lebesgue integral everything we’re after works out
smoothly.

Definition 2.2.7. In the context of Corollary 2.2.5, we say that f is a density of ν with respect
to µ. We write ν “ f ¨ µ, or

f “ dν

dµ
.

Example 2.2.8. Recall the Normal distribution on pRd,BpRdqq introduced in Example 1.5.8.
We observe that a N pµ,Σq distributed random variable (µ P Rd, Σ a symmetric positive definite
matrix) has a distribution (recall Def. 1.5.7) which has density

1a
p2πqd|detpΣq|

e´ 1
2

px´µq¨pΣ´1px´µqq, x P Rd,

with respect to λd.

The following result explains us how to integrate with respect to measures that have a density.

Proposition 2.2.9. Let g P M such that g ě 0 µ-a.s. or
ş

|g| dµ ă 8. Furthermore, assume
ν “ f ¨ µ with f P M`. Then

ż

Ω
|g| dν ă 8 if and only if

ż

Ω
|g| ¨ f dµ ă 8,

and if the integrals are finite, then

ż

Ω
g dν “

ż

Ω
g ¨ f dµ P R.

Proof. Assume g P M`. Then, due to Lemma 2.0.10, there exists a non-decreasing sequence
pgnq of functions in T ` such that limnÑ8 gn “ g. Writing gn “ řmn

i“1 α
n
i 1An

i
, for a normal

representation of gn with An
i P F and αn

i ě 0 we have

ż

Ω
gn dν “

mnÿ

i“1

αn
i νpAn

i q “
mnÿ

i“1

αn
i

ż

Ω
f ¨ 1An

i
dµ “

ż

Ω
gn ¨ f dµ,

where in the second equality we took advantage of the fact that νpAn
i q “

ş
An

i
f dµ by definition

of the measure ν. Using the MCT, the result follows.

If, on the other hand, g P M, then we decompose g “ g` ´ g´, and proceed similarly to the
above for both, g` and g´.
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Proposition 2.2.10. Let ν and µ be measures on pΩ,Fq, and assume that ν is σ-finite. Fur-
thermore, assume that f and g are densities of ν with respect to µ. Then we have

f “ g µ´ a.e.

Proof. Since ν is σ-finite we find Sn P F such that νpSnq ă 8 and Ω “ Ť
nPN Sn. Define the set

Ln :“ tf ą gu X Sn of those points in Sn where f takes values larger than g. We deduce

0 “ νpLnq ´ νpLnq “
ż

Ln

f dµ´
ż

Ln

g dµ “
ż

Ω
pf ´ gq1tfąguXSn

dµ.

Since pf ´ gq1tfągu ą 0, this implies µpLnq “ 0. Therefore,

µpf ą gq “ µ
´ ď

nPN
Ln

¯
ď

ÿ

nPN
µpLnq “ 0.

In a similar manner we obtain
µpf ă gq “ 0,

so µpf ‰ gq “ 0 and therefore f “ g µ-a.e.

More generally, we introduce the following concepts relating two measures on the same measur-
able space.

Definition 2.2.11. Let µ, ν be two measures on a measurable space pΩ,Fq. We say that

(a) ν is absolutely continuous (‘absolutstetig’) with respect to µ (and write ν ! µ), if for
each F P F with µpF q “ 0 we also have νpF q “ 0;

(b) µ and ν are equivalent if µ ! ν and ν ! µ;

(c) ν is singular (‘singulär’) with respect to µ (and write ν K µ), if there exists F P F such
that µpF q “ 0 and νpF cq “ 0.

In the case of finite measures, there is an obvious justification for Part (a) of this terminology
given in the following lemma.

Lemma 2.2.12. Let µ and ν be measures on a measurable space pΩ,Fq such that ν is finite.
Then ν is absolutely continuous with respect to µ if and only if for each ε ą 0 there exists δ ą 0
such that for any F P F ,

µpF q ď δ implies νpF q ď ε.

Proof. If the ε-δ-condition holds, then for any set F P F with µpF q “ 0 we have νpF q “ 0, so
ν is absolutely continuous with respect to µ.
On the other hand, assume that the condition does not hold true. Then we find ε ą 0 and a
sequence pFnq with Fn P F such that µpFnq ď 2´n and νpFnq ą ε. Setting

F :“ lim sup
nÑ8

Fn “
č

nPN

ď

měn

Fm

we deduce for each n P N that

µpF q ď µ
´ ď

měn

Fm

¯
ď

ÿ

měn

µpFmq ď 2´n`1,

so µpF q “ 0. On the other hand, using Corollary 2.1.6 and the fact that µ is finite,

νpF q ě lim sup
nÑ8

νpFnq ě ε ą 0.

Thus, ν is not absolutely continuous with respect to µ.
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2.2.2 Hahn-Jordan decomposition

The following result on the Radon-Nikodym derivative (Theorem 2.2.16) is not only of impor-
tance in the context of probability theory, but is also of significance to functional analysis.
Before, however, we introduce a key result for proving it, which is interesting in its own right.

We begin with giving an intuitive definition.

Definition 2.2.13. Let µ be a signed measure on pΩ,Fq. A set A P F is called positive (nega-
tive), if for every F P F we have that µpA X F q ě 0 (µpA X F q ď 0).

Theorem 2.2.14 (Hahn-Jordan decomposition (Hans Hahn (1879–1934), Camille Jordan
(1838–1922))). Let µ be a signed measure on pΩ,Fq. Then there exist Ω`,Ω´ P F such that
Ω “ Ω`

9YΩ´ and the following hold:

(a) Setting µ` :“ µp¨ X Ω`q as well as µ´ :“ ´µp¨ X Ω´q, both µ` and µ´ define non-negative
measures (note that in particular we have µ´pΩ`q “ 0 as well as µ`pΩ´q “ 0). In this
case, we say that Ω` and Ω´ form a so-called Hahn decomposition of Ω with respect to
µ.

(b)

µ “ µ` ´ µ´ (Jordan decomposition).

In addition, the Hahn decomposition of Ω is unique up to null sets with respect to the measure
µ` ` µ´.

Proof. According to Exercise 1.2.12 we can assume w.l.o.g. (without loss of generality, ‘o.B.d.A.’,
‘ohne Beschränkung der Allgemeinheit’) that µpF q P p´8,8s for all F P F .

We define

c :“ inf
FPF

F negative

µpF q. (2.2.2)

We can find a sequence pFnq of negative subsets of F such that limnÑ8 µpFnq “ c, the countable
union of negative sets is negative again, we infer that

Ω´ :“
8ď

n“1

Fn

is negative and that µpΩ´q “ c. Indeed, since ´µ|Ω´ is a ‘common’ non-negative measure, the
latter equality follows from

c “ lim
nÑ8

µpFnq ě µpΩ´q ě inf
FPF

F negative

µpF q ě c,

where the second limit exists since the sequence is monotone.

We claim that Ω` :“ ΩzΩ´ is a positive set. Indeed, assume it was not. Then there would
exist G0 P F with G0 Ă Ω` such that µpG0 X Ω`q ă 0. Now G0 cannot be a negative set since
in that case G0 9YΩ´ would be a negative set with µpG0 Y Ω´q ă c, a contradiction to (2.2.2).
Thus, there exists a minimal k1 P N such that G0 contains a set G1 P F with µpG1q ě 1

k1
. Then

µpG0zG1q “ µpG0q ´ µpG1q ď ´ 1

k1
;

since the RHS is negative, the same reasoning applied to G0 before can now be applied to
G0zG1 in order to infer that G0zG1 contains a set G2 P F with µpG2q ě 1

k2
, and such that k2 is
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minimized among all such admissible subsets. Due to µpG0q P p´8,8q, Exercise 1.2.12 would
in particular yield that

lim
nÑ8

1

kn
“ 0,

and as a consequence, for every G P F subset of

G˚ :“ G0z
8ď

n“1

Gn

we would have µpGq ď 0. In particular, G˚ P F would be negative. But then

µpG˚q “ µpG0q ´
8ÿ

n“1

µpGnq ď µpG0q ă 0,

which as before contradicts the assumption that µpΩ´q is minimal among all negative sets.
Therefore, we must have that Ω` is a positive set and we have proved the claim and can now
conclude the proof:

(a) It immediately follows that

µ´pΩ`q “ µ`pΩ´q “ 0. (2.2.3)

Similarly, µ` ě 0 since Ω` is a positive set and µ´ ě 0 since Ω´ is a negative set.

(b) This is a consequence of the additivity of signed measures.

Uniqueness: Exercise.

Lemma 2.2.15. For a signed measure µ on pΩ,Fq, we have with the notation of Theorem
2.2.14:

(a)

µ`pAq “ sup
FPF
FĂA

µpF q, @A P F ,

and µ` is also called the positive variation of µ.

(b)

µ´pAq “ ´ inf
FPF
FĂA

µpF q, @A P F ,

and µ´ is also called the negative variation of µ.

Furthermore, we call the measure

|µ| :“ µ` ` µ´

the total variation of µ.

Proof. (a) It follows from Theorem 2.2.14 that µp¨ X Ω´q is non-positive and µp¨ X Ω`q is
non-negative, so

sup
FPF
FĂA

µpF q “ sup
FPF

FĂAXΩ`

µpF q “ µ`pAq.

The remaining part follows in a similar manner.
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2.2.3 Lebesgue’s decomposition theorem, Radon-Nikodym derivative

Theorem 2.2.16 (Lebesgue’s decomposition theorem, Radon-Nikodym theorem). Let µ and ν
be σ-finite measures on a measurable space pΩ,Fq.
Then there exist unique measures νac and νs on pΩ,Fq such that the following hold:

ν “ νac ` νs, and νac ! µ, νs K µ.

Furthermore, there exists f P M` with

νac “ f ¨ µ

and f is µ-a.s. uniquely determined.

Corollary 2.2.17. Under the same assumptions as in Theorem 2.2.16,

ν ! µ if and only if ν has a density with respect to µ.

You are asked to prove most of Theorem 2.2.16 in homework problem 2 on sheet 8. Here, we
will only address the uniqueness part. For this purpose take another decomposition of µ with ν 1

s

and ν 1
ac denoting the corresponding singular and absolutely continuous parts. Let A P F such

that µpAq “ 0 and νspAcq “ 0. Then ν 1
acpAq “ 0 since µpAq “ 0, and hence

νspF q “ νpF XAq “ ν 1
spF XAq ď ν 1

spF q @F P F .

In particular, we infer νs ď ν 1
s and thus ν 1

ac ď νac. But then ν 1
s ´ νs “ νac ´ ν 1

ac is a measure
which at the same times is singular and absolutely continuous w.r.t. µ so it must vanish. Hence,
νs “ ν 1

s and ν 1
ac “ νac, which proves the uniqueness of the Lebesgue decomposition.

Now that we know that νac is unique, the µ-a.e. uniqueness of f follows from the fact that (see
homework sheet) νac :“ f ¨ µ for some f P M` and Proposition 2.2.10.

Remark 2.2.18. (a) Using Theorem 2.2.14, Theorem 2.2.16 can be extended to signed mea-
sures (which we won’t do here).

(b) Above we had introduced all the machinery we needed in order to give a self-contained
proof of Theorem 2.2.16. If you do have a basic knowledge of functional analysis, you
might also want to have a look at another proof of the cited results that takes advantage
of Riesz’ representation theorem (see the Proof of [Kle14, Theorem 7.33], for example).

2.2.4 Integration with respect to image measures

The following is a generalization of [Dre18, Proposition 1.9.10].

Theorem 2.2.19 (Change of variable formula (‘Transformationssatz’)). Assume a measure
space pΩ,F , µq as well as a measurable space prΩ, rFq and a F ´ rF-measurable map ϕ : Ω Ñ rΩ
be given. Denote the image measure µ ˝ ϕ´1 by rµ. Then for f P MprΩ, rFq the integral

ż

Ω
f ˝ ϕdµ

exists if and only if the integral ż

rΩ
f drµ

exists in R (i.e., in the sense of quasi-integrability). In this case both integrals coincide.

The proof is contained in Homework 8.1.
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2.3 Product spaces

As outlined in [Dre18, Section 1.14.3] of [Dre18] already, it will be crucial for us to be able to
construct infinite sequences of random variables defined on the same probability space. One
way to ensure that the underlying probability space is ‘rich enough’ to accommodate for this
wealth and structure of random variables will be to consider infinite product spaces, which are
products of measure spaces and play a crucial role in probability theory.2

Definition 2.3.1. Let Λ be an arbitrary non-empty index set, and let Ωλ, λ P Λ, be a family
of non-empty sets. Then we define the product space (‘Produktraum’) (or also the product of
the Ωλ, λ P Λ) ą

λPΛ
Ωλ

to be the set of all maps f : Λ Ñ Ť
λPΛ Ωλ such that fpλq P Ωλ for all λ P Λ.

In the case that the Ωλ are equal to some set Ω for all λ P Λ, we also write ΩΛ for the corre-
sponding product space.

Example 2.3.2. Without going into detail, it might be suggesting itself that if we want to model
an infinite sequence of coin tosses, the space t0, 1uN might be a candidate for outcomes of such
an experiment to lie in, where 0 can be identified with tails and 1 with heads. Then ω P t0, 1uN
is nothing else than an infinite sequence pωpnqqnPN of elements in ωpnq P t0, 1u for all n P N.

Definition 2.3.3. For I Ă J Ă Λ we introduce the projections

πJI :
ą

λPJ
Ωλ Ñ

ą

λPI
Ωλ

ω ÞÑ ω|I .

In particular, if J “ Λ we will write πI , and if I “ tλu, we will use the notation πJλ . For π
I
tλu

we will also just write πtλu.

We are now going to introduce the notion of a product-σ-algebra. In case you have seen this
before, it will be very much in the spirit of the definition of the product topology, where instead
of measurability one asks for continuity of the projection maps. We recall the definition here
fore completeness.

Definition 2.3.4. Let a family pΩλ, τλq, λ P Λ, of topological spaces be given. The corresponding
product topology τ is defined as the smallest topology on

Ś
λPΛ Ωλ such that for each λ1 P Λ,

the coordinate maps πλ1 :
Ś

λPΛ Ωλ Ñ Ωλ1 are continuous with respect to the topologies τ and
τλ.

With this in mind, we can now proceed to the definition of the product-σ-algebra.

Definition 2.3.5. Let a family pΩλ,Fλq, λ P Λ, of measurable spaces be given. The correspond-
ing product-σ-algebra

Â
λPΛ Fλ is defined as the smallest σ-algebra on

Ś
λPΛ Ωλ such that for

each λ1 P Λ, the coordinate maps πλ1 :
Ś

λPΛ Ωλ Ñ Ωλ1 are
Â

λPΛFλ ´ Fλ1-measurable.

As before, if F0 “ Fλ for all λ P Λ, then we also abbreviate
Â

λPΛFλ by pF0qbΛ.

Lemma 2.3.6. In the setting of Definition 2.3.5, for any I Ă J Ă Λ, the mapping πJI isÂ
λPJ Fλ ´

Â
λPI Fλ-measurable.

Proof. This is a direct consequence of Corollary 1.4.9.

2In spirit, this will be very much related to the concept of products of topological spaces in case you have seen
this before
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Definition 2.3.7. Let a family pΩλ,Fλq, λ P Λ, of measurable spaces be given. Then any set
of the form

pπJ q´1pF q P
â

λPΛ
Fλ, F P

â

λPJ
Fλ, J Ă Λ finite, (2.3.1)

is called a cylinder set.

Lemma 2.3.6 implies that cylinder sets are F “ Â
λPΛFλ-measurable.

The principal reason that cylinder sets will play an important role in what follows is that it
is generally easier to assign probabilities to them than to arbitrary measurable subsets of an
infinite space. Indeed, imagine the setting of infinitely many coin tosses again. As long as you
only want to understand events involving the outcome of finitely many of these coin tosses, you
are easily able to assign them a probability under the assumption that the coin tosses are fair
and independent. This becomes much more intricate in case you consider events that depend
on the outcome of infinitely many coin tosses.
Crucially, as will turn out below, specifying a probability measure on cylinder sets already
uniquely characterizes the measure (see Theorem 4.2.1 below), so there is no need to specify
probabilities for an even bigger subclass of measurable sets.

Exercise 2.3.8. Assume the setting of Definition 2.3.7. Show that cylinder sets form an algebra,
but not a σ-algebra.

We have seen before that the Borel-σ-algebra plays a prominent role in our studies; the following
result sheds some light on its behaviour under taking products.

Theorem 2.3.9. Let Λ be an at most countable set and assume that for a family pΩλ, τλq,
λ P Λ, each pΩλ, τλq is a Polish space3 (complete separable metric spaces, if you prefer). Then,
setting Ω :“ Ś

λPΛ Ωλ and denoting by τ the product topology of Ω, we get that pΩ, τq is a Polish
space (or a complete separable metric spaces for that matter) again, and

σpτq “
â

λPΛ
Bpτλq. (2.3.2)

Proof. For simplicity of notation we assume w.l.o.g. that Λ “ N (or a finite subset of N with
the respective modifications in the notation below) for the first part of the proof. Denote by
dn a metric on Ωn that induces the topology τn, and with respect to which Ωn is complete. We
define on Ω a new metric

dpω, ω1q :“
ÿ

nPN
2´n dnpωpnq, ω1pnqq

1 ` dnpωpnq, ω1pnqq ,

and it is left as an exercise to check that d induces the product topology on Ω, and that Ω is
complete with respect to d. Furthermore, Ω is separable, as will follow from an argument below.
We now prove (2.3.2). By definition, for each λ P Λ, the projections πλ : Ω Ñ Ωλ, λ P Λ,
are continuous maps from the topological space pΩ, τq to the topological space pΩλ, τλq. As
a consequence of Theorem 1.4.7, the σ-algebra bλPΛBpτλq is generated by all sets of the form
π´1
λ pOq, O P τλ, λ P Λ, and in combination with the aforementioned continuity of the projections

we get that π´1
λ pOq P τ , whence

Â
λPΛ Bpτλq Ă σpτq.

To prove the converse inclusion, we first of all observe that the (at most) countable product
of separable metric spaces is separable again. Indeed, for λ P Λ we denote by Dλ a countable
dense subset of Ωλ. For each λ P Λ choose and fix rωλ P Dλ arbitrarily and set

D :“
 
ω P

ą

λPΛ
Dλ : ωλ1 ‰ rωλ1 for finitely many λ1 P Λ

(
.

3Recall that a Polish space was defined as a separable topological space, for which there exists a complete
metric that induces its topology.
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Then D is countable and dense in Ω, so Ω is separable.

Now let

Oλ :“
!
B 1

n
pωq : ω P Dλ, n P N

)
,

with B 1
n

pωq “ trω P Ωλ : dλpω, rωq ă 1
n

u, then Oλ is a countable basis of the topology of Ωλ

(i.e., any open set in Ωλ can be written as a (a priori possibly uncountable) union of elements
of Oλ). Thus,

8ď

n“1

! nč

i“1

π´1
λi

pBλi
q : Bλi

P Oλi
, tλ1, . . . , λnu Ă Λ

)
. (2.3.3)

is a basis for the topology τ.

Now since Ω is separable, for an arbitrary basis B of the topology τ, any open set in τ can be
written as the countable union of elements in B. Thus, since the elements of (2.3.3) are contained
in bλPΛBpτλq, this finishes the proof of τ Ă bλPΛBpτλq and thus also σpτq Ă bλPΛBpτλq.

We immediately obtain the following important corollary.

Corollary 2.3.10. For each d P N, we have

BpRdq “ BpRqbd.

2.4 Product measures

Oftentimes, such as e.g. in the case of Rd, we do know how to integrate with respect to the
‘one-dimensional measures’ (such as with respect to the Lebesgue measure, where the funda-
mental theorem of calculus provides us with a powerful tool to actually compute integrals), but
integration with respect to the product measure seems to be harder when it comes to actual
computations (recall Theorem 1.3.11 as well as Remark 1.3.15). The Theorems 2.5.1 and 2.5.2
below provide a useful technique to reduce the integral with respect to the product measure to
integrals with respect to the marginals.

In order to be able to rigorously formulate them, we first have to introduce the concept of a
product measure in a more general setting than that of Remark 1.3.15.

Definition 2.4.1. Assume measurable spaces pΩ1,F1q, pΩ2,F2q and pE, Eq be given and write
Ω :“ Ω1 ˆ Ω2. For arbitrary A Ă Ω as well as rωj P Ωj, 1 ď j ď 2, we call

Arω1
:“

 
ω2 P Ω2 : prω1, ω2q P A

(

the rω1-section of A (‘rω1-Schnitt von A’), and similarly we call

Arω2 :“
 
ω1 P Ω1 : pω1, rω2q P A

(

the rω2-section of A (‘rω2-Schnitt von A’).

If f : Ω Ñ E, then we call

frω1
: Ω2 Ñ E, ω2 ÞÑ fprω1, ω2q

the rω1-section of f (‘rω1-Schnitt von f ’), and similarly

f rω2 : Ω1 Ñ E, ω1 ÞÑ fpω1, rω2q

the rω2-section of f (‘rω2-Schnitt von f ’).

Lemma 2.4.2. Assume the setting of Definition 2.4.1.
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(a) If A P F1 b F2, then

Arω1
P F2, Arω2 P F1.

(b) If f is F1 b F2 ´ E-measurable, then frω1
is F2 ´ E-measurable, and similarly f rω2 is

F1 ´ E-measurable.

Proof. (a) Fix rω1 P Ω1 and consider the system of sets

A :“
 
A P F1 b F2 : Arω1

P F2

(
.

We claim that A is a σ-algebra. Indeed, Ω P A since Ωrω1
“ Ω2 P F2. Furthermore, since

pAcqrω1
“ Ω2zpArω1

q, we get that A P A implies Ac P A. Lastly, for pAnq with An P A for
all n P N, we deduce ´ ď

nPN
An

¯
rω1

“
ď

nPN
pAnqrω1

,

and hence we deduce
Ť

nPNAn P A, too, and A is a σ-algebra. Furthermore, for F1 P F1,

F2 P F2 we have F1 ˆ F2 P F1 b F2, since

pF1 ˆ F2qrω1
“

"
F2, if rω1 P F1,

H, otherwise.

Since F1 ˚ F2 (recall the notation of Lemma 1.1.7) generates the σ-algebra F1 b F2, we
deduce that A “ F1 b F2, which finishes the proof.

Analogously, one can show Arω2 P F1.

(b) Fix rω1 P Ω1. For F P E we have

pfrω1
q´1pF q “ pf´1pF qqrω1

,

and the claim follows from the fact that f´1pF q P F1 b F2 in combination with (a).

Similarly for rω2 P Ω2 and f rω2 .

Proposition 2.4.3. For j P t1, 2u, let µj be a measure on a measurable space pΩj,Fjq.

(a) If µ2 is σ-finite, then for any F P F1 b F2, the function

Ω1 Q ω1 ÞÑ µ2pFω1q (2.4.1)

is F1 ´ BpRq-measurable, and the function

µ : F1 b F2 ÞÑ
ż

Ω1

µ2pFω1qµ1pdω1q (2.4.2)

defines a measure such that for any A P F1, B P F2,

µpA ˆBq “ µ1pAq ¨ µ2pBq. (2.4.3)

(b) If both, µ1 and µ2 are σ-finite, then there is exactly one measure µ1 bµ2 on F1 bF2 such
that (2.4.3) holds with µ replaced by µ1 b µ2. In this case,

µ1 b µ2pF q “
ż

Ω1

µ2pFω1qµ1pdω1q “
ż

Ω2

µ1pFω2qµ2pdω2q @F P F1 b F2. (2.4.4)

µ1 b µ2 is called the product measure of µ1 and µ2, and it is σ-finite.
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Proof. (a) As before, by the usual exhaustion procedure we can assume that µ2 is finite. Then
desired measurability of the function in (2.4.1) follows again by a good sets principle and
we will omit the details here.

We can rewrite the function in (2.4.2) as

µpF q “
ż

Ω1

ż

Ω2

1F pω1, ω2qµ2pdω2qµ1pdω1q,

from which one can observe by applying the MCT that this expression defines a measure
on F1 b F2. By setting F :“ A ˆB we immediately obtain (2.4.3).

(b) By (a) and symmetry, the middle and right-hand side expressions of (2.4.4) both define
measures satisfying (2.4.3). Since both, µ1 and µ2 are σ-finite, we can use Theorem 1.2.17
to deduce the desired uniqueness, so the two measures coincide and µ1 bµ2 is well-defined
and uniquely determined by (2.4.4).

Remark 2.4.4. σ-finiteness of µ2 is needed Part (a) of Proposition 2.4.3, since otherwise the
function ω1 ÞÑ µ2pFω1q is not necessarily measurable anymore, see [Beh87, p.96].

The above can immediately be generalized to the product of finitely many measures, which in
particular is a generalization of the observation of Remark 1.3.15.

Theorem 2.4.5. Let pΩi,Fi, µiq, 1 ď i ď n, be σ-finite measure spaces. Then there exists a
unique σ-finite measure on the product-σ-algebra F :“ b1ďiďnFi such that

µpF1 ˆ . . . ˆ Fnq “
nź

i“1

µipFiq,

for all Fi P Fi, 1 ď i ď n.

bn
i“1µi :“ µ1 b . . .bµn :“ µ is called the product measure of the µi, 1 ď i ď n, and in the case

that all pΩi,Fi, µiq are equal, we write µbn
1 for the product measure.

Proof. We will not give the proof here since we will prove a more general result in Theorem
4.2.1 below. See [Els05, Satz V.1.12] for a proof.

2.5 The theorems of Fubini and Tonelli

Theorem 2.5.1 (Tonelli’s theorem (Italian mathematician (1885–1946))). Let pΩ1,F1, µ1q and
pΩ2,F2, µ2q be σ-finite measure spaces, and let f P M`pΩ1 ˆ Ω2,F1 b F2q. Then the function

ω1 ÞÑ
ż

Ω2

fpω1, ω2q dµ2pω2q is in M`pΩ1,F1q, (2.5.1)

the function

ω2 ÞÑ
ż

Ω1

fpω1, ω2q dµ1pω1q is in M`pΩ2,F2q, (2.5.2)

and the equality

ż

Ω1ˆΩ2

f dµ1 b µ2 “
ż

Ω1

´ż

Ω2

fpω1, ω2qµ2pdω2q
¯
µ1pdω1q “

ż

Ω2

´ż

Ω1

fpω1, ω2qµ1pdω1q
¯
µ2pdω2q

(2.5.3)

holds true.
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Proof. We see that (2.5.1) to (2.5.3) hold true for f “ 1F , F P F1bF2, due to Proposition 2.4.3.
Using the linearity of the integral for non-negative functions as in Lemma 2.0.14, we obtain that
the validity extends to simple non-negative functions which are F1 b F2 ´ BpRq-measurable.
Choosing a non-decreasing sequence pfnq of non-negative simple functions as in Lemma 2.0.13
with limnÑ8 fn “ f, we use Proposition 1.4.15 and the MCT to deduce the measurability stated
in (2.5.1) and (2.5.2) for f P M` from their validity for simple functions:

ż

Ω2

fpω1, ω2q dµ2pω2q “
ż

Ω2

lim
nÑ8

fnpω1, ω2q dµ2pω2q “ lim
nÑ8

ż

Ω2

fnpω1, ω2q dµ2pω2q.

Similarly for the roles of ω1 and ω2 exchanged. The equalities in (2.5.3) then follow by the
MCT and their validity for simple functions:

ż

Ω1ˆΩ2

f dµ1 b µ2 “
ż

Ω1ˆΩ2

lim
nÑ8

fn dµ1 b µ2 “ lim
nÑ8

ż

Ω1ˆΩ2

fn dµ1 b µ2

“ lim
nÑ8

ż

Ω1

´ż

Ω2

fnpω1, ω2qµ2pdω2q
¯
µ1pdω1q “

ż

Ω1

´ż

Ω2

fpω1, ω2qµ2pdω2q
¯
µ1pdω1q,

and similarly for the second equality in (2.5.3).

It turns out that we are still allowed to integrate coordinatewise even if f is not necessarily
non-negative. However, we have to demand integrability with respect to the product measure
to replace non-negativity. This is the content of Fubini’s theorem.

Theorem 2.5.2 (Fubini’s theorem (Italian mathematician (1879–1943))). Assume the setting
of Theorem 2.5.1, except that instead of f P M`pΩ1 ˆ Ω2,F1 b F2q we only require f “ g ` ih,
with g, h P MpΩ1 ˆ Ω2,F1 b F2q. Then, if f is µ1 b µ2-integrable,

(a)
Ac

1 :“
 
ω1 P Ω1 : fpω1, ¨q is not µ2-integrable

(
P F1 (2.5.4)

is a µ1-null set;

(b)
Ac

2 :“
 
ω2 P Ω2 : fp¨, ω2q is not µ1-integrable

(
P F2 (2.5.5)

is a µ2-null set;

(c)

ω1 ÞÑ
ż

Ω2

fpω1, ω2q dµ2pω2q is in MpA1,F1|A1
q, (2.5.6)

and

ω2 ÞÑ
ż

Ω1

fpω1, ω2q dµ1pω1q is in MpA2,F2|A2
q, (2.5.7)

and
ż

Ω1ˆΩ2

f dµ1 b µ2 “
ż

A1

´ ż

Ω2

fpω1, ω2qµ2pdω2q
¯
µ1pdω1q

“
ż

A2

´ ż

Ω1

fpω1, ω2qµ1pdω1q
¯
µ2pdω2q.

(2.5.8)

Proof. From the µ1bµ2-integrability of f we deduce that |f | is integrable with respect to µ1bµ2
as well. Thus, Tonelli’s theorem implies

ż

Ω1

´ż

Ω2

|fpω1, ω2q|µ2pdω2q
¯
µ1pdω1q “

ż

Ω1ˆΩ2

|f | dµ1 b µ2 ă 8. (2.5.9)
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The inner integral on the left-hand side is a measurable function due to (2.5.1) and so the
finiteness of the outer integral on the left-hand side implies

ż

Ω2

|fpω1, ω2q|µ2pdω2q ă 8 for µ1 ´ a.a. ω1 P Ω1,

i.e.,

Ac
1 “

!
ω1 P Ω1 :

ż

Ω2

|fpω1, ω2q|µ2pdω2q “ 8
)

is in F1 due to (2.5.1) and a µ1-null set, which establishes (2.5.4). In particular,

for all ω1 P A1, the function |fpω1, ¨q| is µ2-integrable. (2.5.10)

Thus we deduce from the linearity of the integral that for ω1 P A1 we have
ż

Ω2

fpω1, ω2qµ2pdω2q “
ż

Ω2

pRefq`pω1, ω2qµ2pdω2q

´
ż

Ω2

pRefq´pω1, ω2qµ2pdω2q

` i

ż

Ω2

pImfq`pω1, ω2qµ2pdω2q

´ i

ż

Ω2

pImfq´pω1, ω2qµ2pdω2q,

(2.5.11)

where all integrals on the right-hand side exist in r0,8q due to (2.5.10) and

pRefq`, pRefq´, pImfq`, pImfq´ P r0, |f |s. (2.5.12)

Thus, (2.5.6) follows since restricted to A1, all integrals on the right-hand side of (2.5.11)
are finite and in M`pA1,F1|A1

q. The bounds (2.5.12) in combination with (2.5.9) imply that
linearity of the integral supplies us with

ż

A1

´ ż

Ω2

fpω1, ω2qµ2pdω2q
¯
µ1pdω1q “

ż

A1

´ ż

Ω2

pRefq`pω1, ω2qµ2pdω2q
¯
µ1pdω1q

´
ż

A1

´ ż

Ω2

pRefq´pω1, ω2qµ2pdω2q
¯
µ1pdω1q

` i

ż

A1

´ż

Ω2

pImfq`pω1, ω2qµ2pdω2q
¯
µ1pdω1q

´ i

ż

A1

´ż

Ω2

pImfq´pω1, ω2qµ2pdω2q
¯
µ1pdω1q,

where the last equality follows from the fact that all integrands of the outer integrals are non-
negative.
We may now apply Tonelli’s theorem to each summand on the right-hand side of the last display
to deduce that it equals

ż

Ω1ˆΩ2

pRefq` dµ1 b µ2

´
ż

Ω1ˆΩ2

pRefq´ dµ1 b µ2

`
ż

Ω1ˆΩ2

pImfq` dµ1 b µ2

´
ż

Ω1ˆΩ2

pImfq´ dµ1 b µ2

“
ż

Ω1ˆΩ2

f dµ1 b µ2,
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where the last equality follows from the finiteness of the integrals on the left-hand side and the
linearity of the integral. This implies the first equality in (2.5.8).
The remaining statements are obtained by exchanging the roles of pΩ1,F1, µ1q and pΩ2,F2, µ2q.

2.6 Fourier transform / characteristic functions

Recall the notation for image measures introduced in Theorem 1.5.6 and Definition 1.5.7.

Definition 2.6.1. Let µ be a finite measure on pRd,BpRdqq. Its characteristic function is defined
via the Fourier transform

ϕµptq :“
ż

Rd

eit¨x µpdxq “
ż

Rd

cospt ¨ xqµpdxq ` i

ż

Rd

sinpt ¨ xqµpdxq.

The characteristic function of a random variable X taking values in pRd,BpRdqq is defined as
the characteristic function of its distribution:

ϕXptq :“ ϕP˝X´1ptq “
ż

Rd

eit¨x PXpdxq Thm. 2.2.19“ Ereit¨Xs

For the next example we need the following result which is interesting and useful in its own
right.

Proposition 2.6.2 (Interchange of integration and differentiation). Let I be an interval con-
taining more than one point, t0 P I, let pΩ,F , µq be a measure space, and let f : I ˆ X Ñ C

with the following properties:

(a) for all t P I, the function fpt, ¨q is integrable;

(b) Bf
Bt pt0, ωq exists for all ω P Ω;

(c) there exists a neighborhood U of t0 as well as g P M`pΩ,Fq integrable such that for all
t P U X I with t ‰ t0, one has for µ-a.a. ω P Ω that

ˇ̌
ˇfpt, ωq ´ fpt0, ωq

t´ t0

ˇ̌
ˇ ď gpωq.

Then the function F : I Q t ÞÑ
ş
Ω fpt, ωqµpdωq is (at least one-sidedly) differentiable in t0, the

function Bf
Bt pt0, ¨q is integrable, and

F 1pt0q “
ż

Ω

Bf
Bt pt0, ωqµpdωq.

Proof. See exercise 3 on homework sheet 10.

Remark 2.6.3. Under the appropriate assumptions, important computational tools that we got
to know for real-valued functions remain valid for complex-valued functions also. This applies
to the Fundamental Theorem of Calculus, integration by parts, etc., where we can essentially
prove the respective results by decomposing a complex-valued function into its real and imaginary
parts, and then perform the proof for each of these parts.
Exemplifying we go through the example of the Fundamental Theorem of Calculus here: Let
f : ra, bs Ñ C a continuous complex-valued function with f “ g ` ih and g, h real-valued
functions, and F “ G ` iH an antiderivative to F with G and H antiderivatives to g and h.
Then

ş
ra,bs f dλ “

ş
ra,bs g dλ` i

ş
ra,bs hdλ “ Gpbq ´Gpaq ` ipHpbq ´Hpaqq “ F pbq ´F paq, where

the penultimate equality follows from the Fundamental Theorem of Calculus.
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Example 2.6.4. Let µ P R, σ P p0,8q, and let X „ N pµ, σ2q. In order to compute ϕX we
first of all note that using the previous result on integration by measures with densities (see
Proposition 2.2.9) and using substitution,

ϕXptq “ 1?
2πσ2

ż 8

´8
e

´ px´µq2

2σ2 eitx dx “ 1?
2π

ż 8

´8
e´x2

2 eitpσx`µq dx “ eitµϕY pσtq (2.6.1)

where Y „ N p0, 1q. Using Proposition 2.6.2 we can then differentiate ϕY ptq “
1?
2π

ş8
´8 e´x2{2eitx dx to get that

ϕ1
Y ptq “ 1?

2π

ż 8

´8
e´x2{2p´xqlooooomooooon

“:u1pxq

p´iqeitxlooomooon
“:vpxq

dx.

We can continue using integration by parts to obtain

ϕ1
Y ptq “ 1?

2π

´
e´x2{2p´iqeitx

ˇ̌8
x“´8looooooooooomooooooooooon

“0

´
ż 8

´8
e´x2{2teitx dx

¯
“ ´tϕY ptq (2.6.2)

and note that
ϕY p0q “ Ere0s “ 1. (2.6.3)

From the theory of ODEs (i.e., Analysis II in your case, cf. Existence and Uniqueness Theorem
of Picard-Lindelöf, [Wal93, Theorem II.6.I]) we know that the initial value problem given by
(2.6.2) and (2.6.3) has a unique solution which is given by

ϕY ptq “ e´t2{2.

Plugging this into (2.6.1), we obtain

ϕXptq “ eiµt´pσtq2{2.

The above considerations generalize to X a d-dimensional pµ,Σq-distributed random variable
(µ P Rd, Σ P Rdˆd positive definite) to obtain

ϕXptq “ eiµ¨t´t¨pΣ¨tq{2, t P Rd.

Theorem 2.6.5. Any finite measure on pRd,BpRdqq is uniquely characterized by its character-
istic function.

The proof of this result will be given later on (see page 96), when we have a better probabilistic
understanding of its tools.



Chapter 3

Classical and basic results in
probability theory

A large chunk of this chapter will be based on the lecture notes [Dre18] accompanying the course
‘Introduction to Stochastics’ which can be found here. As a consequence, we will not repeat
proofs of results that are proven in the same way as in [Dre18] but rather refer to that source
instead. In particular, you might want to have a look at [Dre18, Section 1.2] for motivating the
concept of a probability.
As regards to other sources, [Kle14], [Kal02] and [Dur10] make particularly good reads for
foundations of probability theory. All three sources cover significantly more than what we can
hope for in this course.

3.1 Specific distributions

When putting our previous setting of measure theory and integration into a probabilistic con-
text, we will usually consider some probability space pΩ,F ,Pq to be given. Random experiments
will then be described via random variables X : pΩ,F ,Pq Ñ pE, Eq as defined in Definition 1.4.1.
Furthermore, elements of the form tX P Au :“ tω P Ω : Xpωq P AupP Fq, A P E , will be called
events, and they will constitute those outcomes of (random) experiments that we will be able
to assign a probability to. See also [Dre18, Example 1.2.1]. In fact, this example (as well as
Remark 3.1.1 below) also exemplifies that we will oftentimes and without loss of generality
choose pΩ,Fq :“ pE, Eq; the latter is usually naturally given by the model of the experiment,
whereas the former may as well be some abstract space lurking in the background. What is
important to us, however, is the image measures P ˝ X´1.
The following observation will prove useful in the next sections when we introduce various
different distributions. This is largely taken from the corresponding section [Dre18, Section
1.8]. We refer to that source for further examples and motivation.

Remark 3.1.1. Given any distribution µ (i.e., a probability measure on pE, Eq) one can con-
struct a random variable X with law µ as follows. Take pE, E , µq as the underlying probability
space and choose X : E Q ω ÞÑ ω P E to be the identity on E. Then X defines a random
variable from pE, E , µq to pE, Eq with law µ.

In particular, as a consequence of this remark, if we want to describe an random experiment
whose outcome is a value in E, then we can choose pE, E , µq as the underlying probability space
for suitable E and µ.

3.1.1 Discrete distributions

We recall the notion of a distribution introduced in Definition 1.5.7, and we also repeat the
definition [Dre18, Definition 1.3.8] of the δ- or Dirac-measure.

65
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Definition 3.1.2. Let pE, Eq be a measurable space. For x P E, the Dirac measure / Dirac
distribution / delta measure in x is defined via

δx : E Ñ r0, 1s.
F ÞÑ 1F pxq.

We will call any distribution on a measurable space pE, Eq which is of the form

ÿ

nPN
αnδxn ,

where xn P E and αn ě 0 with
ř

nPN αn “ 1 a discrete distribution. Similarly, we call any
random variable which has a discrete distribution a discrete random variable.

In the remaining part of this section, if not mentioned otherwise explicitly, we will always assume
the underlying probability space to be pΩ,F ,Pq, and random variables map to pR,BpRqq.

Example 3.1.3. A random variable X is called Bernoulli distributed with parameter p P r0, 1s
(named after the Swiss mathematician Jacob Bernoulli (1655–1705)) if

PpX “ 1q “ p, and PpX “ 0q “ 1 ´ p.

In this case one writes X „ Berp and the law / distribution P ˝ X´1 is referred to as the
Bernoulli distribution Berp which, using Definition 3.1.2, can be written as

Berp “ pδ1 ` p1 ´ pqδ0.

A random variable that is Bernoulli distributed describes a coin flip (biased if p ‰ 1{2), for
example. Assume w.l.o.g. that the coin shows heads with probability p and tails with probability
1 ´ p.

Example 3.1.4. A random variable X is called Binomially distributed with parameters n P N

and p P p0, 1q, if

for each k P t0, 1, . . . , nu one has PpX “ kq “
ˆ
n

k

˙
pkp1 ´ pqn´k. (3.1.1)

In this case, one writes X „ Binn,p and its distribution is referred to as the Binomial distribution
Binn,p, which can be written as

Binn,p “
nÿ

k“0

ˆ
n

k

˙
pkp1 ´ pqn´kδk.

Example 3.1.5. A random variable X is called geometrically distributed with success param-
eter p P p0, 1q, if

for all k P N one has PpX “ kq “ pp1 ´ pqk´1. (3.1.2)

In this case we write X „ Geop, and its distribution is referred to as the Geometric distribution
Geop, which can be written as

Geop “
8ÿ

k“1

pp1 ´ pqk´1δk.

Remark 3.1.6. Some authors call X geometrically distributed if instead of (3.1.2),

for all k P N0 one has PpX “ kq “ pp1 ´ pqk.
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Example 3.1.7. A random variable X is called Poisson distributed with parameter ν ą 0 if
X : Ω Ñ N0 and

PpX “ kq “ e´ν ν
k

k!
@k P N0.

In this case we write X „ Poiν , and its distribution is referred to as the Poisson distribution
Poiν (named after the French mathematician Siméon Denis Poisson (1781 – 1840)), which can
be written as

Poiν “ e´ν
8ÿ

k“0

νk

k!
δk.

Poisson distributed random variables are e.g. used to describe the number of customers that have
called a customer service center in a certain time interval. The reason for such a description
being feasible is given by Theorem 3.1.8 below.

Theorem 3.1.8 (Poisson limit theorem). Let ppnq be a sequence of numbers from r0, 1s such
that the limit ν :“ limnÑ8 npn exists in p0,8q. Then for each k P N0,

lim
nÑ8

Binn,pnpkq “ Poiνpkq.

Proof. For k P N0 fixed we have

Binn,pnpkq “
ˆ
n

k

˙
pknp1 ´ pnqn´k “ n!

k!pn´ kq!
ppnnqk
nk

´
1 ´ pnn

n

¯n´k nÑ8ÝÑ νk

k!
e´ν “ Poiνpkq.

This result explains the fact that the Poisson distribution is used for modeling e.g. the number of
customers that contact a call center during a certain time interval: We partition the time interval
into n subintervals of equal width, and as we take n to infinity, it is reasonable to assume that in
any of the subintervals either zero or one customers are calling. Due to symmetry, it furthermore
seems reasonable to assume that the probability of a customer calling in a subinterval has a
probability decaying like p{n some p P p0,8q, and that the fact that a customer has called
during one subinterval does not influence the probabilities that a customer is calling during
another time interval.1 Thus, the probability of k customers calling during the original time
interval should be approximated by Binn,p{npkq if n is large. The above Theorem 3.1.8 now
shows that the Binomial distribution is the right candidate for this.

Example 3.1.9. Let N P N, and K,n P t0, 1, . . . , Nu. A random variable X is called hyper-
geometrically distributed with parameters K,N, n if X : t0, 1, . . . , Nu Ñ t0, 1, . . . , Nu with

PpX “ kq “
`
K
k

˘`
N´K
n´k

˘
`
N
n

˘ for k P t0 _ n`K ´N, . . . , n^Ku, (3.1.3)

and PpX “ kq “ 0 otherwise.
In this case we write X „ HyppN,K, nq, and its distribution is referred to as the Hypergeometric
distribution HypN,K,n with parameters N, K, and n.

Example 3.1.10. Let X „ Geop. Then the distribution function of X is given by

FXptq “
#

0, if t ă 1,
řttu

j“1 pp1 ´ pqj´1 “ p
1´p1´pqttu

1´p1´pq “ 1 ´ p1 ´ pqttu, if t ě 1.

Exercise 3.1.11. If X is a discrete real random variable, then FX has jumps exactly at the
points in tx P XpΩq : PpX´1txuq ą 0u and is constant otherwise.

1These are slightly delicate issues; in fact, if the customer center in question is e.g. that of an energy retailer
and there is a power outage during some part of the time interval we consider, then these assumptions will
generally not be met. However, they seem reasonable to assume during normal operation.
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3.1.2 Distributions with densities

Definition 3.1.12. A function f P M`pΩ,F , µq with the property that
ż

R

f dµ “ 1

is called a probability density (‘Wahrscheinlichkeitsdichte’).

For the time being we will mostly be interested in the case pΩ,F , µq “ pRd,BpRdq, λdq.
We will call any distribution on pΩ,Fq which is absolutely continuous with respect to λd a con-
tinuous distribution. Similarly, we call any random variable which has a continuous distribution
a continuous random variable.
Also, we remark in passing that the distinction between discrete and continuous distributions
is not as essential anymore as it used to be in the introductory lecture. This is because we now
have one comprising framework for discrete and continuous distributions, since both of them
can be considered as probability measures on pΩ,Fq now.

Example 3.1.13. (a) For a, b P R with a ă b the uniform distribution (‘Gleichverteilung’)
on the interval ra, bs has the density

R Q x ÞÑ 1

b´ a
1ra,bspxq.

We write Unipra, bsq for the uniform distribution on the interval ra, bs, and the correspond-
ing distribution function is given by

F ptq “

$
&
%

0, if t ď a,
t´a
b´a

, if t P pa, bq,
1, if t ě b.

(b) Let κ P p0,8q. The exponential distribution (‘Exponentialverteilung’) with parameter κ
has density

R Q x ÞÑ
"
κe´κx, if x ě 0,

0, otherwise.

We write X „ Exppκq if X is a random variable that is exponentially distributed with
parameter κ ą 0.

(c) The normal or Gaussian distribution (‘Normalverteilung’ or ‘Gaußverteilung’, named after
the German mathematician Carl Friedrich Gauss (1777–1855)) with parameters µ P R and
σ2 P p0,8q (seen in Example 1.5.8 already) has the density

R Q x ÞÑ 1?
2πσ2

e
´ px´µq2

2σ2 ,

and we had agreed to write X „ N pµ, σ2q if X is a random variable that is normally
distributed with parameters µ and σ2.

It should also be noted here that the cumulative distribution function of the standard Nor-
mal distribution N p0, 1q is usually denoted by

Φptq :“ 1?
2π

ż t

´8
e´x2

2 dx, (3.1.4)

and that there is no closed expression for general values of t for the right-hand side. There
are, however, tables to look up those values for a variety of different values for t.

We will get back to those distributions after having introduced the concept of expectation.
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3.2 Independence

A key concept in probability theory is the notion of ‘independence’, which in the setting of
events has been introduced as follows in [Dre18, Def. 1.6.1], see here. In fact, there are even
people saying that the concept of independence is the principal distinction of probability from
measure theory.

The motivation for the definition of independence has been the following definition of the con-
ditional probability.

Definition 3.2.1. Let F,G P F be such that PpGq ą 0. Then we define the conditional proba-
bility of F given G as

PpF |Gq :“ PpF XGq
PpGq . (3.2.1)

In terms of the interpretation of relative frequencies given in [Dre18, Section 1.2], this means
that if PpF |Gq “ PpF q (i.e., if PpF X Gq “ PpF qPpGq), then the (limiting) relative frequency
of F is not changed if we restrict to those experiments for which G occurs.

This gave rise to the following definition.

Definition 3.2.2. Given a probability space pΩ,F ,Pq, events A,B P F are called independent
if

PpAXBq “ PpAq ¨ PpBq.

As it turns out, we will need a more general concept of independence as introduced in the
following definition.

Definition 3.2.3. A family pEλq, λ P Λ, with Eλ Ă F is called independent if for any J Ă Λ
finite and any choice of Fj P Ej for j P J, one has

P
`č

jPJ
Fj

˘
“
ź

jPJ
PpFjq. (3.2.2)

An important special case is when Eλ “ tFλu for all λ P Λ, and with Fλ P F . In this case we
say that the family of events pFλq, λ P Λ, is independent.

Remark 3.2.4. The family pEλq, λ P Λ, is independent if and only if for any J Ă Λ finite, the
family pEλq, λ P J , is independent.

Proposition 3.2.5. Let pEλq, λ P Λ be an independent family with Eλ Ă F . Then the family
pδpEλqq, λ P Λ, of Dynkin systems is also independent.

Proof. From Remark 3.2.4 we deduce that we can assume Λ to be finite.

For λ1 P Λ arbitrary but fixed define Dλ1 to be the set of all F P F such that if we replace Eλ1 by
tF u, then the resulting family pEλq, λ P Λ, is still independent. Then Dλ1 is a Dynkin system
(exercise).

Now we have Eλ1 Ă Dλ1 , and hence also δpEλ1 q Ă Dλ1 . Thus, by definition of the independence
property, we deduce that the family we obtain when replacing Eλ1 by δpEλ1 q is still independent.
Repeating this step for each remaining λ P Λztλ1u, the result follows.

Corollary 3.2.6. If pEλq, λ P Λ is an independent family such that each Eλ is a π-system, then
pσpEλqq, λ P Λ also is an independent family.

Proof. This follows from Proposition 3.2.5 in combination with the π-λ-Theorem 1.1.32.
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Proposition 3.2.7. Let pEλq, λ P Λ, be an independent family such that each Eλ is a π-system.
Consider a partition of Λ into subsets Ji, i P I, and denote

Fi :“ σ
´ ď

jPJi
Ej

¯
.

Then pFiq, i P I, is an independent family.

Proof. For i P I denote

rEi :“
!
Ej1 X . . . X Ejn : n P N, tj1, . . . , jnu Ă Ji, and Ejk P Ejk @k P t1, . . . , nu

)
.

Since each Eλ is a π-system, so is each rEi and hence σprEiq “ δprEiq. Since the prEiq, i P I, still
form an independent family, the result follows with Corollary 3.2.6.

Definition 3.2.8. A family of random variables pXλq, λ P Λ, is called independent if the family
of σ-algebras σpXλq, λ P Λ, is independent.

We refer to [Dre18] on more background for the concept of independence, in particular see
[Dre18, Remark 1.7.15].

In [Dre18, Claim 1.8.4] the following claim had been derived, which you might want to try your
hands at (without looking it up) if you haven’t seen it before.

Claim 3.2.9. The sum

Sn :“
nÿ

j“1

Xj

of independent random variables X1, . . . ,Xn, each distributed according to Berp, is distributed
according to Binn,p.

The concept of a family of random variables that are independent and all have the same distri-
bution is so important that it has its own name.

Definition 3.2.10. A family of random variables pXλq, λ P Λ, is called independent identically
distributed (i.i.d.) (‘unabhängig identisch verteilt’ (u.i.v.)), if

(a) the family pXλq, λ P Λ, is an independent family of random variables, and

(b) if the Xλ, λ P Λ, all have the same distribution.

The Borel-Cantelli lemmas

In order to prove this theorem we need some further results, which are important and of interest
on their own.

Lemma 3.2.11 (Borel-Cantelli lemma (Italian mathematician Francesco Paolo Cantelli
(1875–1966)). Let pΩ,F ,Pq be a probability space and assume given a sequence pAnq of events
An P F .

(a) If ÿ

nPN
PpAnq ă 8, (3.2.3)

we have

P
`

lim sup
nÑ8

An

˘
“ 0.
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(b) If ÿ

nPN
PpAnq “ 8,

and if in addition the pAnq are independent, then

P
`

lim sup
nÑ8

An

˘
“ 1.

The proof is that of [Dre18, Lemma 1.12.6].

Remark 3.2.12. It is important to note here that the independence assumption in part (b)
of Lemma 3.2.11 cannot be dropped. To see this, consider for example a single fair coin toss
modeled on a probability space pΩ,F ,Pq, and denote for all n P N by An the event that the coin
shows tails. Then PpAnq “ 1

2 for all n P N, so
ř

nPN0
PpAnq “ 8, but Pplim supnÑ8 Anq “

PpAnq “ 1
2 ‰ 1.

Example 3.2.13. (a) A popular application is the so-called ‘infinite monkey theorem’. It
states that a monkey which is randomly hitting keys (in an i.i.d. fashion, and such that
any key, lower and upper case, has a positive probability of being hit) of a computer
keyboard will almost surely type any given text, such as e.g. Tolstoy’s ‘War and Peace’. It
is left to the reader to make this statement more precise. k

(b) Consider a sequence pXnq of independent random variables such that

PpXn “ nq “ PpXn “ ´nq “ 1

2

1

n lnpn` 1q
and

PpXn “ 0q “ 1 ´ 1

2

1

n lnpn` 1q .

Then, setting An :“ t |Xn|
n

ě 1u, we obtain

8ÿ

n“1

PpAnq “
8ÿ

n“1

1

n lnpn` 1q “ 8,

where the latter equality can be shown by Cauchy’s condensation test (‘Cauchy’sches
Verdichtungskriterium’). Therefore, the sequence pAnq fulfills the condition of the sec-
ond part of the Borel-Cantelli lemma. We will come back to this example in the context
of the law of large numbers.

Kolmogorov’s 0 ´ 1-law

Definition 3.2.14. Let pFnq be a sequence of σ-algebras with Fn Ă F . We define the corre-
sponding tail-σ-algebra (‘terminale σ-Algebra’) as

T :“ T
`
pFnq

˘
:“

8č

n“1

σ
´ ď

měn

Fm

¯
.

The intuition is the following: An event A P F is contained in the tail-σ-algebra if in order to
decide whether or not it occurs (i.e., whether or not ω P A) we can discard the ‘information’
from finitely many of the Fn. It becomes more clear in the context of an example.

Example 3.2.15. Let pXnq be a sequence of random variables and consider the corresponding
tail-σ-algebra

T :“ T
`
pσpXnqq

˘
.

Define Sn :“ řn
i“1Xi.

Then we do for example have that (check!)
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•  
lim
nÑ8

Sn exists
(

P T and

•
 

lim
nÑ8

Sn

n
“ 0

(
P T .

Theorem 3.2.16 (Kolmogorov’s 0 ´ 1-law). Let pFnq be a sequence which is an independent
family of σ-algebras with Fn Ă F . Then the tail-σ-algebra T is P-trivial, i.e.,

PpAq P t0, 1u @A P T .

Proof. We are going to show that for all A P T ,

PpAq “ PpAq2, (3.2.4)

which will imply the result.

For this purpose, for arbitrary fixed A P T define

D :“
 
D P F : PpAXDq “ PpAqPpDq

(
.

Our strategy is to show that D is a Dynkin system with

T Ă D, (3.2.5)

which in particular will imply (3.2.4).

The fact that D is a Dynkin system is shown along the by now standard lines and we will not
go into further detail. In order to establish (3.2.5), we observe that due to Proposition 3.2.7
and the fact that A P T we have

σn :“ σ
´ nď

k“1

Fk

¯
Ă D,

so we also obtain

σ8 :“
ď

nPN
σn Ă D,

and consequently

δpσ8q Ă D. (3.2.6)

But since the σn are non-decreasing in n, we deduce that σ8 is a π-system, so by the π-λ-
Theorem we infer

δpσ8q “ σpσ8q. (3.2.7)

On the other hand, YnPNFn Ă σpσ8q, and therefore in particular also T Ă σpσ8q. Combining
this with (3.2.7) and (3.2.6), we infer (3.2.5) which finishes the proof.

3.3 Covariance, variance

Definition 3.3.1. For X P L1, the expression on the right-hand side of

VarpXq :“ E
“
pX ´ ErXsq2

‰
P r0,8s

is called the variance of X.



3.3. COVARIANCE, VARIANCE 73

From the expression on the right-hand side it is clear that the variance is always non-negative,
since the random variable in the expectation on the right-hand side is non-negative. Further-
more, this expression shows that the variance gauges the expected quadratic deviation of X
from its expectation ErXs. It is a simple measure for how strongly the random variable X
fluctuates around its mean.
Using the linearity of expectation, we can rewrite the variance as

VarpXq “ E
“
pX ´ ErXsq2

‰
“ ErX2s ´ 2ErXsErXs ` ErXs2 “ ErX2s ´ ErXs2,

which holds true in the case ErX2s “ 8 as well. Thus, we immediately obtain the following
corollary.

Corollary 3.3.2. For X P L1, we have VarpXq ă 8 if and only if ErX2s ă 8.

Definition 3.3.3. The covariance of two random variables X and Y is defined as

CovpX,Y q “ E
“
pX´ErXsqpY ´ErY sq

‰
“ ErXY s´2ErXsErY s`ErXsErY s “ ErXY s´ErXsErY s

(3.3.1)
if the right-hand side is well-defined in r´8,8s.
The two random variables are called uncorrelated if CovpX,Y q “ 0.

Again we note that variance and covariance only depend on the random variables involved
through their corresponding distributions.
In some sense the covariance CovpX,Y q tells us how strongly X and Y are correlated, i.e.,
how strongly they tend to ‘change together’. If both X and Y tend to take values above their
expectation on the same subset of Ω, and also tend to take values below their expectations
on similar sets, then according to (3.3.1) this should imply that their covariance is positive;
on the other hand, if X tends to take values above its expectation on subsets of Ω where Y
tends to take values below its expectation, and vice versa, then this would suggest that their
covariance is negative. Therefore, if X and Y are independent one might possibly guess that
CovpX,Y q vanishes. This is indeed the case as Theorem 3.3.6 below shows. Note, however,
that the converse is not generally true as will be asked to show in Exercise 3.3.8.
We now collect some properties of covariances and variances in the following result.

Proposition 3.3.4. Let X and Y be random variables with ErX2s,ErY 2s ă 8, and let a, b, c, d P
R. Then

(a)
CovpaX ` b, cY ` dq “ acCovpX,Y q;

in particular,
VarpapX ` bqq “ a2 VarpXq; (3.3.2)

(b)
| CovpX,Y q| ď

a
VarpXq VarpY q;

Proof. • Using the linearity of expectation we get

CovpaX ` b, cY ` dq “ E
“
paX ` b´ EraX ` bsqpcY ` d´ ErcY ` dsq

‰

“ acE
“
pX ´ ErXsqpY ´ ErY sq

‰
“ acCovpX,Y q.

•

| CovpX,Y q| ď E
“
|X ´ ErXs| ¨ |Y ´ ErY s|

‰
ď E

“
pX ´ ErXsq2

‰ 1
2E

“
pY ´ ErY sq2

‰ 1
2

“
a

VarpXq VarpY q,
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where the inequality is a consequence of the Cauchy-Schwarz inequality.2

Before continuing, we bring a small result which is easy to prove but nevertheless oftentimes
important and helpful.

Claim 3.3.5. Let X : pΩ,F ,Pq Ñ pE1, E1q and Y : pΩ,F ,Pq Ñ pE2, E2q be two independent
random variables. Then

PpX,Y q “ PX b PY . (3.3.3)

Proof. Due to the independence assumption on X and Y , on the X-stable generator of rectangles
of E1 b E2 the two probability measures PpX,Y q and PX b PY coincide. Thus, Corollary 1.2.19
yields (3.3.3).

Theorem 3.3.6. Let X,Y P L1 be independent random variables. Then XY P L1 and

ErXY s “ ErXsErY s. (3.3.4)

In particular, independent random variables are uncorrelated.

Proof. We recall the statement of Claim 3.3.5. Therefore, the change of variable formula The-
orem 2.2.19 in combination with Tonelli’s theorem implies that

Er|XY |s “
ż

R

z P|XY |pdzq “
ż

R2

|xy|PpX,Y qpdpx, yqq “
ż

R2

|xy|PX b PY pdpx, yqq

“
ż

R2

|xy|PXpdxqPY pdyq “
ż

R

|x|PXpdxq
ż

R

|y|PY pdyq “ Er|X|sEr|Y |s.

Now if X,Y P L1, then the right-hand side (and therefore all expressions appearing) are finite.
In particular, in this case we can remove the absolute value signs and obtain (reading the
previous display from right to left, and replacing Tonelli by Fubini) that XY P L1 as well as
(3.3.4).

Remark 3.3.7. Iterating the above we obtain the following generalization of Theorem 3.3.6:
Let X1, . . . ,Xn be a family of independent random variables which are either all in L1 or all
non-negative. Then

E

” nź

j“1

Xj

ı
“

nź

j“1

ErXjs.

Exercise 3.3.8. Find an example of real random variables X,Y which are uncorrelated but not
independent.

We now compute some variances of distributions we got to know earlier in this course.

Example 3.3.9. (a) Let X „ N pµ, σ2q with µ P R and σ2 P p0,8q. It is not hard to compute
ErXs “ µ (see e.g. [Dre18, Example 1.9.6]). Then we get using Proposition 2.2.9 that

VarpXq “ E
“
pX ´ ErXsq2

‰
“

ż 8

´8
px ´ µq2 1?

2πσ2
e

´ px´µq2

2σ2 dx

x ÞÑσx`µ“ 1?
2π

ż 8

´8
pσxq2e´x2

2 dx “ σ2?
2π

´
´xe´x2

2

ˇ̌
ˇ
8

x“´8looooooomooooooon
“0

`
ż 8

´8
e´x2

2 dx
loooooomoooooon

“
?
2π

¯
“ σ2,

2Here, the Cauchy-Schwarz inequality is applied to the symmetric bilinear form defined via L
2 ˆL

2 Q pf, gq ÞÑş
f ¨ g dµ P R – which is not necessarily an inner product since since we can have pf, fq “ 0 even if f ‰ 0 (and

only µpf ‰ 0q “ 0) – however, the (standard) proof of the Cauchy-Schwarz for inner products does not depend
on the missing implication pf, fq “ 0 ùñ f “ 0.
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where we used integration by parts for the penultimate equality. Hence, we observe that the
second parameter in N pµ, σ2q denotes the variance of the random variable. In particular,
this means that the normal distribution is completely distributed by its expectation and its
variance.

Furthermore, we deduce that the standard normal distribution from Example 3.1.13 (c)
has mean 0 and variance 1.

(b) Let X „ Geoppq for p P p0, 1q. We first compute ErXs and for this purpose we take
advantage of the following useful trick. For q P p´1, 1q, the formula for the geometric
series supplies us with

8ÿ

j“1

qj “ q

1 ´ q
.

Since the left-hand side defines a power series that is absolutely convergent on p´1, 1q, we
know from Analysis I that its derivative can be computed term by term. Thus, differenti-
ating both sides of the equation gives

8ÿ

j“1

jqj´1 “ p1 ´ qq ´ qp´1q
p1 ´ qq2 “ 1

p1 ´ qq2 . (3.3.5)

Using this identity for q “ 1 ´ p we can compute

ErXs “
8ÿ

j“1

jPpX “ jq “
8ÿ

j“1

jpp1 ´ pqj´1 “ p

p2
“ 1

p
. (3.3.6)

We now have to compute ErX2s. For this purpose we differentiate (3.3.5) once again (and
again, the left-hand side can be differentiated term by term on p´1, 1q due to its absolute
convergence) to obtain

8ÿ

j“1

jpj ´ 1qqj´2 “ 2

p1 ´ qq3 . (3.3.7)

Thus, we get using the change of variable formula that

ErX2s “
8ÿ

j“1

j2PpX “ jq “
8ÿ

j“1

j2pp1 ´ pqj´1

“ pp1 ´ pq
8ÿ

j“1

jpj ´ 1qp1 ´ pqj´2 ` p

8ÿ

j“1

jp1 ´ pqj´1 “ 2p1 ´ pq
p2

` 1

p
“ 2 ´ p

p2
,

where we took advantage of (3.3.6) and (3.3.7) to get the third equality. Thus, we can
compute

VarpXq “ ErX2s ´ ErXs2 “ 2 ´ p

p2
´ 1

p2
“ 1 ´ p

p2
.

If we want to compute the variance of the sum of random variables, the following result turns
out to be useful by decomposing it into a sum of variances and corresponding covariances.

Proposition 3.3.10. Let X1, . . . ,Xn be random variables in L2. Then

Var
´ nÿ

j“1

Xj

¯
“

nÿ

j“1

VarpXjq `
ÿ

1ďi,jďn,i‰j

CovpXi,Xjq.
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Proof. Due to Proposition 3.3.4 (a), without loss of generality, we can assume ErXis “ 0 for all
1 ď i ď n. Using the linearity of expectation we get

Var
´ nÿ

j“1

Xj

¯
“ E

”´ nÿ

j“1

Xj

¯2ı
´
´
E

” nÿ

j“1

Xj

ı¯2

looooooomooooooon
“0 by assumption

“
nÿ

i,j“1

ErXiXjs

“
nÿ

i“1

VarpXiq `
ÿ

1ďi,jďn,i‰j

CovpXi,Xjq.

Note that
Er|XiXj |s ď

`
ErX2

i s
˘ 1

2
`
ErX2

j s
˘ 1

2 ă 8
due to Cauchy-Schwarz’ inequality, hence all expectations in the above equations are well-
defined, and so are all the sums.

If the random variables in the above result turn out to be uncorrelated, all covariances in the
above result vanish and the computation of the variance becomes significantly simpler. The
corresponding result is used so often that it deserves its own name.

Corollary 3.3.11 (Bienaymé formula (Irénée-Jules Bienaymé (1796–1878), French probabilist
and statistician)). Let X1, . . . ,Xn be (pairwise) uncorrelated random variables in L2. Then

Var
´ nÿ

j“1

Xj

¯
“

nÿ

j“1

VarpXjq.

Example 3.3.12. (a) Let X „ N pµ1, σ21q and Y „ N pµ2, σ22q be independent random vari-
ables. Then X ` Y „ N pµ1 ` µ2, σ

2
1 ` σ22q.

Now you may have a look at [Dre18, Example 3.3.12] to convince yourself that it took a
little bit of not so nice calculus do prove this.

Using Theorem 2.6.5 and Example 2.6.4 we are in the position to derive this result in a
significantly neater way. Indeed, using the independence of X and Y in combination with
Example 2.6.4 we compute

ϕX`Y ptq “ EreitpX`Y qs Thm. 3.3.6“ EreitX sEreitY s “ eiµ1t´pσ1tq2{2eiµ2t´pσ2tq2{2

“ eipµ1`µ2qt´ppσ2
1`σ2

2qt2{2.

In combination with Theorem 2.6.5 and Example 2.6.4 it therefore follows that X ` Y „
N pµ1 ` µ2, σ

2
1 ` σ22q.

(b) Let X „ Binn,p for some n P N and p P r0, 1s. In Claim 3.2.9 we had seen that X has the
same distribution as

řn
j“1 Yj , where the Yj are independent random variables distributed

according to Berp. Now VarpYjq is easy to compute since ErYjs “ p and ErY 2
j s “ p. Thus,

VarpYjq “ pp1 ´ pq. Now since VarpXq depends on X only through its distribution, we get
the first equality of

VarpXq “ Var
´ nÿ

j“1

Yj

¯
“

nÿ

j“1

VarpYjq “ npp1 ´ pq,

where in the second equality we used Corollary 3.3.11.

The following lemma is interesting in its own right, but a generalization of it will play an
important role when we introduce the concept of conditional expectations (which heurstically
will amount to averaging over partial information of F only) in Section ?? below. It can be
interpreted in the sense that the best approximation to a random variable X by a constant c is
its expectation c “ ErXs (if distance is measured in terms of the second moment of X ´ c).
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Lemma 3.3.13. Let X P L2 be a random variable. Then the function

R Q s ÞÑ ErpX ´ sq2s

is minimized at s “ ErXs. In particular, we have ErpX ´ sq2s ě VarpXq for all s P R.

Proof. We compute using the linearity of expectation that

ErpX ´ sq2s “ ErX2s ´ 2sErXs ` s2 “ pErX2s ´ ErXs2q ` pErXs ´ sq2.

From this it is obvious that the function attains its minimum for s “ ErXs, in which case it
equals VarpXq. This finishes the proof.

3.4 L
p spaces and some fundamental inequalities

Definition 3.4.1. Let f P M. We define its essential supremum as

ess sup f :“ inftM P R : µpf ě Mq “ 0u,

with the standard convention inf H “ 8.

Similarly, its essential infimum is defined as

ess inf f :“ suptm P R : µpf ď mq “ 0u,

with the standard convention sup H “ ´8.

Exercise 3.4.2. Show that the essential supremum could be equivalently defined as

ess sup f :“ inftM P R : µpf ą Mq “ 0u,

and similarly that
ess inf f “ suptm P R : µpf ă mq “ 0u,

Definition 3.4.3. Let p P p0,8q. For f P M we define

}f}p :“
´ ż

Ω
|f |p dµ

¯ 1
p P r0,8s.

In addition, set
}f}8 :“ ess sup |f | P r0,8s.

For p P p0,8s we then set

Lp :“ LppΩ,F , µq :“
 
f P M : }f}p ă 8

(
,

which is consistent with the notation from Definition 2.0.18. Motivated by this definition one
also uses the notation

}f}LppΩ,F ,µq :“ }f}p.

By } ¨ }p : Lp Q f ÞÑ }f}p we denote the mapping that maps functions to their respective norms.

Proposition 3.4.4. For p P r1,8s the mapping } ¨ }p introduced in Definition 3.4.3 is a semi-
norm on Lp.

For the proof of the triangle inequality we need another result which is important on its own.

Theorem 3.4.5 (Minkowski’s inequality). Let f, g P M such that f ` g is well-defined (in the
sense that ’8 ´ 8’ does not occur). Then for any p P r1,8s,

}f ` g}p ď }f}p ` }g}p. (3.4.1)
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The proof of Theorem 3.4.5 will take advantage of yet another inequality that we have not
studied so far.

Proof of Proposition 3.4.4. } ¨ }p maps from Lp to r0,8q, so we only have to show that it is
absolutely homogeneous and fulfills the triangle inequality. Absolute homogeneity (}cf}p “
|c|}f}p for all c P R and f P Lp) follows from the linearity of the integral. The validity of the
triangle inequality is a consequence of Minkowski’s inequality.

While for p P r1,8s the above result in combination with the fact that Lp is a vector space
provides us with the fact that Lp is actually a semi-normed vector space, it is not hard to
observe that } ¨ }p does not in general define a norm on Lp. Indeed, for any f P Lp we can choose
some g P Lp such that f ‰ g and µpf ‰ gq “ 0 and get }f ´ g}p “ 0.

An elegant way out of this quandary is to consider an appropriate quotient space. To be precise,

let N denote the set of all f P Lp such that µpf ‰ 0q “ 0. (3.4.2)

Applying Lemma 2.2.3 we can deduce that

N “
 
f P Lp : }f}p “ 0

(
. (3.4.3)

It is not hard to show that N forms a subspace of Lp, and thus we can define the quotient space

Lp :“ Lp{N “ t rf :“ f ` N : f P Lpu.

Hence, elements of Lp are equivalence classes of functions in Lp, and f, g P Lp are in the same
equivalence class (usually written f „ g) if and only if f ´ g P N , i.e., according to (3.4.3),

ż
|f ´ g|p dµ “ 0.

Thus, in combination with Proposition 3.4.4

}f}p ď }f ´ g}p ` }g}p “ }g}p,

and similarly we get

}g}p ď }f}p,
so }f}p “ }g}p. As a consequence, we obtain the following result.

Corollary 3.4.6. For p P r1,8s, the space Lp is a normed vector space with norm } ¨ }p.

Proof. Using Proposition 3.4.4 in combination with the fact that N as introduced in (3.4.2) is
a subspace of Lp, we obtain that Lp is a semi-normed vector space. Since for f P Lp we have
}f}p “ 0 if and only if f P N , we deduce that } ¨ }p is definite on Lp, and hence the latter
endowed with } ¨ }p is a normed vector space.

In a slight abuse of nomenclature, one usually also refers to elements of Lp as functions, although,
strictly speaking, they are equivalence classes of functions. One reason for this is that in
probability theory (and also functional analysis, where Lp spaces play an important role) people
are most often mainly interested in the almost sure behaviour (recall Section 2.2.1), i.e., in
properties that do not change if the random variable is modified on a set of measure zero; in
particular, this implies that for f P Lp, any representative rf P Lp of the equivalence class of
f would have the same (almost everywhere) properties. An example that you have gotten to
know already is the distribution of a random variable (recall Definition 1.5.1), which did not
change if we modified a random variable on a set of measure zero.

In fact, one even has that Lp endowed with } ¨ }p is complete.
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Theorem 3.4.7. For p P r0,8s, the vector space Lp endowed with } ¨ }p is a Banach space.

Since this result is not central to this class, we refer to the proof of [Els05, Korollar 2.6] for a
proof.

We now give some further properties of the above spaces, most of which have been derived
in [Dre18] already. Since for 0 ă p ď q we have |x|p ď 1 ` |x|q for all x P R we immediately
obtain the inclusion

Lqpµq Ă Lppµq, (3.4.4)

if µ is a finite measure.

Example 3.4.8. Consider the measurable function

fpxq “ 1r1,8qpxq 1

x
, x P R.

Then Theorem 2.1.1 (MCT) implies that

ż

R

|fpxq|p λpdxq “ lim
nÑ8

ż

r1,ns
|fpxq|p λpdxq.

Then we can use Theorem 2.0.20 to deduce
ż

R

|fpxq|p λpdxq “ lim
nÑ8

1

p´ 1

´
´ n´p`1 ` 1

¯

Thus, we see that if p ą 1, then

ż

R

|fpxq|p λpdxq “ 1

p´ 1
ă 8,

whereas for p P p0, 1q, ż

R

|fpxq|p λpdxq “ 8

(and the same applies for p “ 1).

In particular, the right-hand side is infinite for p P p0, 1s and finite for p P p1,8q. Thus, f P Lp

for p P p1,8q but f R Lp for p P p0, 1s.

In order to prove the fundamental Hölder inequality below we will need the following auxiliary
result.

Lemma 3.4.9 (Young’s inequality (English mathematician William Henry Young
(1863–1942))). Let a, b P r0,8q and p, q P p1,8q such that

1

p
` 1

q
“ 1. (3.4.5)

Then

ab ď ap

p
` bq

q
. (3.4.6)

Proof. See the proof of [Dre18, Lemma 1.9.14].

Theorem 3.4.10 (Hölder inequality (German mathematician Otto Ludwig Hölder
(1859–1937))). Let p, q ą 1 such that 1

p
` 1

q
“ 1. Then, for f, g P MpΩ,F , µq one has

ż

Ω
|f ¨ g| dµ ď

´ż

Ω
|f |p dµ

¯ 1
p
´ ż

Ω
|g|q dµ

¯1
q
. (3.4.7)
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Proof. This is the proof of [Dre18, Thm. 1.9.16], so we omit it here.

Remark 3.4.11. (a) In particular, if f P Lp and g P Lq, then fg P L1.

(b) The special case of p “ q “ 1{2 gives a special case of the Cauchy-Schwarz (Augustin-
Louis Cauchy (1789–1857), Hermann Schwarz (1843–1921) inequality you might know
from linear algebra (or might get to know in functional analysis) for inner products.

(c) Hölder’s inequality not only holds for expectations (which will be interpreted as integration
against probability measures in ‘Probability Theory I’) but also for more general integrals
in.

We now have all the tools to prove Theorem 3.4.5, which will be part of the last homework
sheet.

3.5 Convergence of random variables

Since this section introduces some core notions of probability theory, and in less generality this
has been treated in the corresponding part [Dre18, Section 1.11], which can be found here.
As in analysis, asymptotic investigation play a fundamental role in probability theory, in par-
ticular when it comes to the fundamental limit theorems that we will be investigating below.
As a first step to build a theoretical base for this we will introduce the fundamental types of
convergence that we will encounter in probability theory and give their dependencies.
In what follows, if not mentioned otherwise pS,dq is a separable metric space.

3.5.1 Almost sure convergence

This is one of the strongest types of convergence that we will consider, and we will introduce it
for random variables taking values in separable metric spaces.
We will need an auxiliary result before giving the precise definition.

Lemma 3.5.1. Let pS,dq be a metric space. If X,Y : pΩ,F ,Pq Ñ pS,dq are two random
variables, then the mapping Ω Q ω ÞÑ dpXpωq, Y pωqq defines an F ´ BpRq-measurable real
valued random variable.

Proof. We first of all note that the mapping ϕ1 : Ω Q ω ÞÑ pXpωq, Y pωqq P SˆS is F ´ pBpSq b
BpSqq-measurable by definition of the product-σ-algebra (and the assumption that the X and
Y are random variables). Furthermore, since d is a metric, the function

ϕ2 : S ˆ S Q px, yq ÞÑ dpx, yq P r0,8q (3.5.1)

is continuous. Therefore, as a consequence of Theorem 1.4.10, ϕ2 is BpSˆSq´BpRq-measurable.
Since pS,dq is separable, Theorem 2.3.9 implies that BpS ˆ Sq “ BpSq b BpSq and hence ϕ2 is
BpSˆSq´BpRq-measurable also. Therefore, due Theorem 1.4.4, it follows that the composition
ϕ2 ˝ ϕ1, which equals dpX,Y q, is measurable and hence a random variable.

Definition 3.5.2. Let pXnq be a sequence of random variables defined on pΩ,F ,Pq and mapping
into a metric space pS,dq, and let X be another such random variable. We say that Xn converges
(P-)almost surely (or a.s.) (‘fast sicher’ (or else ‘f.s.’) to X, and we write

Xn
a.s.ÝÑ X as n Ñ 8,

or
lim
nÑ8

Xn “ X P-a.s.,

if

P
`

lim
nÑ8

dpXn,Xq “ 0
˘

“ P

´!
ω P Ω : lim

nÑ8
Xnpωq “ Xpωq

)¯
“ 1. (3.5.2)
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Remark 3.5.3. (a) Note that from Lemma 3.5.1 in combination with Proposition 1.4.15 we
infer that the probabilities in (3.5.2) are well-defined.

(b) In particular, note that if Xn converges to X pointwise, then we have almost sure con-
vergence as well. The reason that pointwise convergence is not so important to us is
that modifications that only effect null sets cannot be noticed from a point of view of the
probability measure.

(c) Property (3.5.2) can be rephrased as

P
`

lim sup
nÑ8

dpXn,Xq ą 0
˘

“ 0.

In the setting of a general measure space pΩ,F , µq, where µ does not necessarily have mass
1, if for functions pfnq and f one has µ

`
lim supnÑ8 dpfn, fq ą 0

˘
“ 0, or equivalently

µ
`
tlimnÑ8 dpfn, fq “ 0uc

˘
“ 0, then pfnq is said to ‘converge µ-almost everywhere (or

µ-a.e.) to f ’.

3.5.2 Convergence in Lp

This is yet another fairly strong type of convergence which in a slightly more general form plays
an important role in (functional) analysis, too. Here, we will focus on the case of real-valued
random variables.

Definition 3.5.4. Let p ą 0, let pXnq be a sequence of (equivalence classes of) random variables
in LppΩ,F ,Pq, and let X P LppΩ,F ,Pq as well. Then we say that Xn converges to X in
LppΩ,F ,Pq, and write

Xn
LpÝÑ X

if
}Xn ´X}p Ñ 0 as n Ñ 8.

As long as we do not impose any further assumptions (which we don’t do for the time being),
none of the above two types of convergence is actually stronger than the other.

Example 3.5.5. Let P denote the uniform distribution on r0, 1q

(a) Consider for n ě 1 and k P t0, 1, . . . , 2n ´ 1u the random variables

Xn,k :“ 1rk2´n,pk`1q2´nq

and define Y1 :“ X1,0, Y2 :“ X1,1, Y3 :“ X2,0, Y4 :“ X2,1, . . . (this is the ‘lexicographic
ordering’). Then lim supnÑ8 Yn “ 1 and lim infnÑ8 Yn “ 0, and in particular Yn does not
converge almost surely. On the other hand, for p ą 0, any n P N, and k P t0, . . . , 2n ´ 1u
we have

Er|Xn,k ´ 0|ps “ Ppr0, 2´nqq “ 2´n,

and the right-hand side converges to 0 as n Ñ 8. Therefore, Yn
LpÝÑ 0 as n Ñ 8.

This example shows that convergence in Lp does not imply almost sure convergence.

(b) Fix p ą 0 and consider the random variables Xn :“ n
1
p1r0,1{ns. Then for any ω P p0, 1q

fixed we have

Xnpωq “ n
1
p1r0,1{nspωq,

and the right-hand side converges to 0 as n Ñ 8. Therefore,

 
lim
nÑ8

Xn “ 0
(

“ p0, 1q,
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and since Ppp0, 1qq “ 1 this implies that limnÑ8Xn “ 0 almost surely.

On the other hand, a moment’s thought reveals that since Xn Ñ X holds P-a.s. as n Ñ 8,

the only possible limit in Lp would be an almost surely constant random variable X “ 0.
Now for all n P N one has

Er|Xn ´ 0|ps “ 1,

and therefore Xn does not converge to 0 in Lp.

This example shows that almost sure convergence does not imply convergence in Lp.

3.5.3 Convergence in probability

Definition 3.5.6. Let pXnq be a sequence of random variables defined on pΩ,F ,Pq mapping
into a separable metric space pS,dq, and let X be another such random variable. We say that
Xn converges in probability (‘konvergiert in Wahrscheinlichkeit’ oder ‘konvergiert stochastisch’)
to X if for all ε ą 0,

PpdpXn,Xq ě εq Ñ 0 as n Ñ 8. (3.5.3)

In this case we write

Xn
PÝÑ X as n Ñ 8.

Again, as a consequence of Lemma 3.5.1, the probability appearing in (3.5.3) is well-defined.

3.5.4 Convergence in distribution

In a slight abuse of notation, we will say that µ is a measure on a metric space pS,dq if, in fact,
it is a measure on the measurable space pS,BpSqq, where as before the Borel-σ-algebra on S is
defined as the σ-algebra generated by the open sets of S (which again are induced by the metric
d).

Definition 3.5.7. Let pµnq be a sequence of finite measures on a separable metric space pS,dq
and let µ be yet another finite measure on pS,dq. We say that pµnq converges in weakly (‘kon-
vergiert schwach’) to µ if for all continuous bounded functions f P CbpSq from S to R we
have ż

S

f dµn Ñ
ż

S

f dµ as n Ñ 8.

In this case we write

µn
wÝÑ µ as n Ñ 8,

where w stands for ‘weakly’.

In addition, given pS,dq-valued random variables Xn and X defined on possibly different proba-
bility space pΩn,Fn,Pnq and pΩ,F ,Pq, we say that Xn converges to X in distribution as n Ñ 8,
if

Pn ˝X´1
n

wÝÑ P ˝X´1 as n Ñ 8.

In this case we write

Xn
LÝÑ X as n Ñ 8,

or also

Xn
DÝÑ X as n Ñ 8.

Here, L and D stand for ‘law’ and ‘distribution’, respectively. Yet another very common notation
is

Xn ùñ X as n Ñ 8.
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Theorem 3.5.8. If pS,dq is a metric space and µ, ν are two finite measures on pS,dq with

ż
f dµ “

ż
f dν @f P CbpSq with f ě 0,

then µ “ ν.

Proof. According to Theorem 1.2.17 it is sufficient to show that µ and ν coincide on the π-system
of open sets (which is generating BpSq).
For this purpose, let U Ă S be open and for x P S define dpx,U cq :“ infyPUc dpx, yq. Then for
any n P N, the function fnpxq :“ 1 ^ ndpx,U cq is in CbpSq and we have fn Ò 1U . Therefore, by
assumption and the MCT we infer that

µpUq “ lim
nÑ8

ż
fn dµ “ lim

nÑ8

ż
fn dν “ νpUq.

The following result gives a powerful characterization of weak convergence. As we will see in the
proof of Corollary 3.5.10 already, it will turn out very useful to have different characterizations
of weak convergence available.

Theorem 3.5.9 (Portmanteau theorem). For a sequence pµnq of probability measures on the
metric space pS,dq and µ another probability measure, the following conditions are equivalent:

(a)

µn Ñ µ weakly;

(b)

lim
nÑ8

ż
f dµn “

ż
f dµ

for all f P CbpSq which are uniformly continuous;

(c)

lim sup
nÑ8

µnpF q ď µpF q

for all F Ă S closed;

(d)

lim inf
nÑ8

µnpOq ě µpOq

for all O Ă S open;

(e)

lim
nÑ8

µnpAq “ µpAq

for all A P BpSq with µpBAq “ 0 (such a set A is also called a µ-continuity set).

Proof. ‘paq ùñ pbq’: This is immediate from the definition.

‘pbq ùñ pcq’: Similarly to the proof of Theorem 3.5.8, setting

fmpxq :“ p1 ´mdpx, F qq`,

we get, since each fm is bounded and uniformly continuous, and since 1F ď fm ď 1Fm , that

lim sup
nÑ8

µnpF q ď lim sup
nÑ8

ż
fm dµn “

ż
fm dµ ď µpF 1

m q,
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where for ε ą 0 we define F ε :“ tx P S : dpx, F q ă εu.
If F is closed, then by the continuity of µ from above we obtain taking m Ñ 8 that (c) holds.

‘pcq ùñ pdq’: (d) follows from (c) by taking complements.

‘pcq&pdq ùñ peq’: We obtain

µpAq
pcq
ě lim supµnpAq ě lim supµnpAq ě lim inf

nÑ8
µnpAq ě lim inf

nÑ8
µnpAoq

pdq
ě µpAoq.

For A a µ-continuity set the left-hand side and the right-hand side of the previous display
coincide, which yields (e).

‘peq ùñ paq’: we choose f P CbpSq arbitrary, but by linearity of the integral, we assume without
loss of generality that fpSq Ă r0, 1s. Then using Example 2.1.8 we obtain that

ż

S

f dµ “
ż 8

0
µpf ą tq dt “

ż 1

0
µpf ą tq dt.

Now since f is continuous, we deduce that Btf ą tu Ă tf “ tu. But we know that we can have
µpf “ tq ą 0 for at most countably many t P r0, 1s, so (e) implies that for λ-almost all t P r0, 1s,
we have that µnpf ą tq Ñ µpf ą tq as n Ñ 8, which in combination with the DCT implies

ż
f dµn “

ż 1

0
µnpf ą tq dt Ñ

ż 1

0
µpf ą tq dt “

ż
f dµ,

which implies (a).

Oftentimes we will be dealing with real random variables, and the following equivalent criterion
for convergence in distribution of real random variables will come handy (which we had proven
separately in the introductory lecture).

Corollary 3.5.10. Let pXnq be a sequence of real random variables and let X also be a real
random variable. Denote the corresponding distribution functions by Fn and F, respectively.
Then the following are equivalent:

(a)

XnùñX;

(b) For all points t of continuity of F , one has

Fnptq Ñ F ptq as n Ñ 8. (3.5.4)

Proof. We only prove ‘paq ùñ pbq here. The key point is to observe that t is a point of continuity
of F if and only if p´8, ts is a P ˝ X´1-continuity set. Indeed, F is right-continuous due to
Theorem 1.5.2, so we have that F is continuous at t if and only if

0 “ F ptq ´ lim
hÓ0

F pt´ hq
loooooomoooooon

“P˝X´1pp´8,tqq due to Prop. 1.2.16

,

and the right-hand side of the last display equals P ˝ X´1pttuq, i.e., P ˝ X´1pBp´8, tsq, which
establishes the claim.

The last equivalence of the Portmanteau theorem now immediately supplies us with (3.5.4).



3.5. CONVERGENCE OF RANDOM VARIABLES 85

3.5.5 Some fundamental tools

Markov’s and Chebyshev’s inequalities

We will introduce some fundamental inequalities. These play a central role in probability and
are some of the standard tools one has to feel comfortable to apply.

Proposition 3.5.11 (Markov’s inequality (Andrey Andreyevich Markov (1856–1922))). Let X
be a real random variable and let ε ą 0. Then, for any increasing function ϕ : r0,8q Ñ r0,8q
with ϕpεq ą 0 one has

Pp|X| ě εq ď Erϕp|X|qs
ϕpεq . (3.5.5)

The proof is contained in [Dre18], but since it is short we reproduce it here.

Proof. Since ϕ is monotone increasing we have the inequality

ϕp|X|q ě 1|X|ěεϕpεq,

and taking expectations on both sides supplies us with

Erϕp|X|qs ě Pp|X| ě εqϕpεq,

which implies (3.5.5).

Corollary 3.5.12 (Chebyshev’s inequality (Pafnuty Chebyshev (1821–1894))). Let X be in
L1pΩ,F ,Pq. Then

Pp|X ´ ErXs| ě εq ď ErpX ´ ErXsq2s
ε2

“ VarpXq
ε2

. (3.5.6)

Proof. This follows from Proposition 3.5.11 by choosing the random variable in (3.5.5) as X ´
ErXs and ϕpxq :“ x2.

Remark 3.5.13. Inequalities of the type (3.5.6) which bound the probability that X deviates
from a certain quantity, such as its expectation, are also referred to as ‘concentration inequali-
ties’.

Theorem 3.5.14 (Jensen’s inequality (Danish mathematician Johan Jensen (1859 – 1925))).
Let X be a real random variable in L1 and let ϕ : R Ñ R be a convex function (if X is a non-
negative random variable, then it is sufficient for ϕ to be a convex function defined on r0,8q).
Then

ϕpErXsq ď ErϕpXqs P p´8,8s. (3.5.7)

The proof is that of [Dre18, Thm. 1.12.9].

Remark 3.5.15. (a) Using Theorem 1.4.4 in combination with the fact that convex functions
from R (or r0,8q) to R are pR,BpRqq ´ pR,BpRqq measurable (either exercise, or: for
affine functions this is clear, and otherwise it follows from the proof of Theorem ?? below)
we deduce that ϕ ˝ X is a random variable again, and hence at least we do have the
measurability assumptions to speak of the expectation of ϕ ˝ X.

(b) If rϕ is a concave function on R, then ´rϕ is a convex function, hence Theorem 3.5.14
yields

rϕpErXsq ě ErrϕpXqs

for X P L1.
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(c) This immediately supplies us with another proof for the inclusion Lq Ă Lp for q, p P p0,8q
with q ą p which we had derived in (3.4.4). Indeed, since the function rϕpxq :“ x

p
q is

concave on r0,8q and since |X| is non-negative, we get for X P Lq that

8 ą rϕpEr|X|qsq ě Errϕp|X|qqs “ Er|X|ps.
Thus, Er|X|ps ă 8 which implies X P Lp.

Example 3.5.16. (a) The absolute value function ϕpxq :“ |x| yields
|ErXs| ď Er|X|s.

(b) Choosing the convex function ϕpxq :“ x2, Jensen’s inequality supplies us with

Er|X|s2 ď ErX2s.

3.5.6 Interdependence of types of convergence of random variables

Having introduced all the above types of convergence, it is natural to try to order them in
terms of strength. As we have seen in Example 3.5.5, there is no general implications between
convergence in LppΩ,F ,Pq and P-almost sure convergence. However, for the remaining ones we
do have the following hierarchy.

Theorem 3.5.17. Let Xn, X be real random variables on pΩ,F ,Pq and let p ą 0.

(a) If either limnÑ8 Xn “ X almost surely, or if X, Xn P Lp and Xn
Lp

ÝÑ X, then

Xn
PÝÑ X.

(b) If Xn
PÝÑ X, then

XnùñX. (3.5.8)

(c) If 0 ă p ă q ă 8 and if pXnq and X are in Lq such that Xn
Lq

ÝÑ X, then Xn
Lp

ÝÑ X as
well.

(d) If

for all ε ą 0 one has
8ÿ

n“1

Pp|Xn ´X| ě εq ă 8, (3.5.9)

then limnÑ8Xn “ X P-a.s.3

In particular, if Xn
PÝÑ X, then there exists a subsequence pXnk

q of pXnq such that

Xnk
ÝÑ X P ´ a.s.

The proof is exactly that of [Dre18, Thm. 1.13.1], so we omit it here.

Remark 3.5.18. (a) Show that the converses of the convergence implications given in The-
orem 3.5.17 (a) to (c) do not hold true in general.

(b) Also note that a substantial part of the above implications might break down if instead of
P we consider an infinite measure on pΩ,Fq.

Theorem 3.5.19 (Egorov’s theorem). Let Xn, X P MpΩ,F ,Pq be real random variables such
that P-a.s., Xn Ñ X.

Then for every ε ą 0 there exists A P F such that PpAq ă ε and such that Xn converges to X
uniformly on Ac.

Exercise 3.5.20. Let pΩ,F ,Pq be a discrete probability space. Show that in this setting, if

Xn
PÝÑ X already implies that limnÑ8Xn “ X holds P-almost surely.

3If (3.5.9) holds true one says that Xn converges fast or almost completely to X.
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3.6 Laws of large numbers

One central topic in probability theory is the asymptotic analysis of random systems and one of
the simplest and more or less realistic situations to imagine is arguably a very long (or, possibly
slightly less realistic, an infinite) sequence of independent coin tosses or dice rolls. For the sake
of simplicity let’s have a look at the situation of independent fair coin tosses, and define for
n P N a random variable Xn on pΩ,F ,Pq that takes the value 1 if the coin of the n-th toss shows
heads, whereas it takes the value ´1 if the coin shows tails.4 Now we know that ErXns “ 0,
and also for the sum

Sn :“
nÿ

j“1

Xj (3.6.1)

we have ErSns “ 0 by the linearity of expectation.

Definition 3.6.1. The sequence Sn as defined in (3.6.1) is also called simple random walk
(SRW) (‘einfache Irrfahrt’).
For x P Z we will sometimes write PxpSn P ¨q :“ PpSn ` x P ¨q to denote the law of simple
random walk started in x.

If you have attended the introductory class, it might be worthwhile to notice that simple random
walk is a very basic example of a Markov chain.
Oftentimes, instead of investigating the expectation, one is interested e.g. in realizationwise
statements, or statements concerning probabilities of certain events. In our current setting for
example, one might want to ask what values Snpωq ‘typically’ takes. Now, although ErSns “ 0
for all n P N, it is obvious that Snpωq “ 0 can only hold true if n is even. In fact, even when
n is even, 0 is not the typical value for Sn to take, in the sense that it is realised with a high
probability or at least with a probability that is bounded away from 0 for n Ñ 8. Indeed, for
n “ 2k even we get with Stirling’s formula that

PpSn “ 0q “
ˆ

2k

k

˙´1

2

¯n

„ p2k{eq2k
?

2π ¨ 2k
`
pk{eqk

?
2πk

˘2 2´2k “ 1?
kπ
, (3.6.2)

where for sequences panq and pbnq of positive real numbers we write an „ bn if limnÑ8 an{bn “ 1.

Exercise 3.6.2. Using an explicit computation as in (3.6.2), show that although PpSn “ 0q Ñ 0
due to (3.6.2), for n “ 2k the function Z Q m ÞÑ PpSn “ mq is maximised for m “ 0.

Thus (3.6.2) tells us that PpSn “ 0q goes to zero at the order of n´ 1
2 . One might therefore

be tempted to guess that if instead of just considering 0, we were replacing it by intervals of
the type r´c?n, c?ns, then we would obtain a non-trivial limiting probability for Sn to take
values in such intervals. This is indeed the case (and not only if the Xn describe coin tosses, but
for far more general distributions of X) as will be established in the central limit theorem (see
Theorem 3.8.1 below). For the time being, however, we start with having a look at a simpler
result at cruder scales.

3.6.1 Weak law of large numbers

We will start with investigating the so-called empirical mean.

Definition 3.6.3. Given a realization X1pωq, . . . ,Xnpωq of Rd-valued random variables, its
empirical mean is defined as

1

n
Snpωq “ 1

n

nÿ

j“1

Xjpωq. (3.6.3)

4The corresponding distribution P ˝ Xn is also called Rademacher distribution, named after the German-
American mathematician Hans Rademacher.
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In order to be able to prove something meaningful about the empirical mean, we will take
advantage of Chebyshev’s inequality introduced in Corollary 3.5.12 above.
As suggested by (3.6.2) and the heuristics developed subsequently, we might guess that the
empirical mean defined in (3.6.3) will converge to 0 under suitable assumptions on the sequence
pXnq.
In order to be able to treat the d-dimensional case at once, we generalize our definition of
expectation to random variable X : pΩ,F ,Pq Ñ pRd,BpRdqq we define its expectation as

¨
˚̋

Erπ1pXqs
...

ErπdpXqs

˛
‹‚ (3.6.4)

where we recall that the measurability of the coordinate functions πipXq comes as a consequence
of Proposition 1.4.11. It will then be left as an easy exercise to generalize the laws of large
numbers below to Rd-valued random variables whose coordinate functions fulfil the assumptions
of those results.

Definition 3.6.4. A sequence pXnq of elements of L1pΩ,F ,Pq satisfies a weak law of large
numbers if

1

n

´ nÿ

j“1

Xj ´ ErXjs
¯

PÝÑ 0 as n Ñ 8. (3.6.5)

Historically, a weak law of large numbers had first been rigorously derived by Jakob Bernoulli
in [Ber13]. Nevertheless, the intuition for such a statement must have been around at that
time already since in a correspondence Jakob Bernoulli writes to Gottfried Wilhelm Leibniz in
October 1703 [vdWB75, pp. 509–513]: ‘Obwohl aber seltsamerweise durch einen sonderbaren
Naturinstinkt auch jeder Dümmste ohne irgend eine vorherige Unter- weisung weiss, dass je mehr
Beobachtungen gemacht werden, umso weniger die Gefahr besteht, dass man das Ziel verfehlt,
ist es doch ganz und gar nicht Sache einer Laienuntersuchung, dieses genau und geometrisch zu
beweisen.’

Theorem 3.6.5 (Weak law of large numbers). Let pXnq be a sequence of pairwise uncorrelated
random variables in L2pΩ,F ,Pq and let pαnq be a sequence of real numbers such that

řn
j“1 VarpXjq

α2
n

Ñ 0. (3.6.6)

Then for all ε ą 0,

P

´ˇ̌
ˇ
řn

j“1pXj ´ ErXjsq
αn

ˇ̌
ˇ ě ε

¯
ď

řn
j“1 VarpXjq
α2
nε

2
Ñ 0 as n Ñ 8. (3.6.7)

In particular, if the sequence pXnq is even i.i.d., then it satisfies a weak law of large numbers.

The proof is a consequence of Chebychev’s inequality (Corollary 3.5.12) and Bienaymeé’s for-
mular (Corollary 3.3.11). We omit the details and refer to [Dre18, Thm. 1.14.6] for a proof.

Example 3.6.6. Let a sequence pXnq as in Definition 3.6.1 of simple random walk be given.
Then the sequence pXnq satisfies a weak law of large numbers.
Indeed, by assumption the pXjq are independent and hence in particular pairwise uncorrelated.
In addition, we have

VarpXjq “ ErX2s ´ ErXs2 “ 1 ´ 0 “ 1.

Thus, in particular Xj P L2, and the assumption of Theorem 3.6.5 are satisfied for any sequence
pαnq of positive reals with αn{?

n Ñ 8 as n Ñ 8, which supplies us with

1

αn

nÿ

j“1

Xj
PÝÑ 0
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and in particular
1

n

nÿ

j“1

Xj
PÝÑ 0.

In particular the sequence pXnq satisfies a weak law of large numbers.

It occurs quite frequently in probability theory that triangular arrays pXn,kq, 1 ď k ď n, of
random variables play an important role. In this setting we get the following generalization of
Theorem 3.6.5.

Theorem 3.6.7. Let pXn,kq, 1 ď k ď n, n P N be a triangular array of random variables
in L2pΩ,F ,Pq such that for each n P N, the random variables Xn,1, . . . ,Xn,n are pairwise
uncorrelated. Furthermore, let pαnq be a sequence of real numbers such that setting

Sn :“
nÿ

j“1

Xn,j,

we have that
VarpSnq
α2
n

Ñ 0. (3.6.8)

Then
Sn ´ ErSns

αn

PÝÑ 0 as n Ñ 8.

The proof is exactly the same as that of [Dre18, Theorem 1.14.9].

3.6.2 Strong law of large numbers

Definition 3.6.8. A sequence pXnq of elements of L1pΩ,F ,Pq satisfies the strong law of large
numbers if

P

´
lim sup
nÑ8

ˇ̌
ˇ 1
n

nÿ

j“1

`
Xj ´ ErXjs

˘ˇ̌
ˇ “ 0

¯
“ 1,

which is the same as saying that

lim
nÑ8

1

n

nÿ

j“1

`
Xj ´ ErXjs

˘
“ 0 P ´ a.s.

Theorem 3.6.9 (Strong law of large numbers). Let pXnq be a sequence of independent iden-
tically distributed random variables in L4pΩ,F ,Pq. Then pXnq satisfies a strong law of large
numbers.

Proof. Possibly replacing Xi by Xi ´ ErXis we can assume without loss of generality that
ErXis “ 0. Setting Sn :“ řn

i“1Xi, according to Theorem 3.5.17 (d) it is sufficient to show that
for all ε ą 0 we have 8ÿ

n“0

Pp|n´1Sn| ě εq ă 8. (3.6.9)

For this purpose, we apply Markov’s inequality with the function ϕpxq “ x4, which entails

Pp|n´1Sn| ě εq ď Ern´4S4
ns

ε4
. (3.6.10)

Now

ErS4
ns “

ÿ

1ďi,j,k,lďn

ErXiXjXkXls.



90 CHAPTER 3. CLASSICAL AND BASIC RESULTS IN PROBABILITY THEORY

Using that the pXnq are independent we deduce that ErXiXjXkXls can be non-zero only if each
of the indices i, j, k, l appears at least twice among i, j, k, l. We can therefore continue the above
equality to get

ErS4
ns ď

nÿ

i“1

ErX4
i s ` C

nÿ

i,j“1
i‰j

ErX2
iX

2
j s ď nErX4

1 s `Cn2ErX2
1 s2,

with C a finite constant. Plugging this into (3.6.10) we get

Pp|n´1Sn| ě εq ď nErX4
1 s ` Cn2ErX2

1 s2
n4ε4

,

which is summable over n P N since ErX2
1 s,ErX4

1 s ă 8. Therefore, (3.6.9) follows which finishes
the proof.

Remark 3.6.10. (a) The implications of Theorem 3.6.9 also hold if we replace the
condition X P L4pΩ,F ,Pq by X P L1pΩ,F ,Pq. This has been proven
by Etemadi [Ete81]; the proof is elementary and you should feel encouraged
to read it (the article is available online through the university network at
http: // link.springer.com/article/10. 1007%2FBF01013465 )

(b) As the name suggests, if pXnq satisfies a strong law of large numbers it also satisfies a
weak law of large numbers. This is a direct consequence of Theorem 3.5.17 (a) applied to
the sequence pn´1

řn
i“1Xiq of random variables and where the limiting random variable

in Theorem 3.5.17 (a) is given by the constant 0.

3.7 Convolution of measures

As outlined above, the scaling (i.e., division by n) in the law of large numbers does not look
like the most accurate information one might be able to obtain on a sequence of i.i.d. variables
under nice assumptions. In order to prepare for the Central Limit Theorem, we will therefore
introduce some tools that will prove helpful in its derivation.

Definition 3.7.1. Let µ, ν be two finite (possibly signed) measures on pRd,BpRdqq. Then their
convolution is defined as

pµ ˚ νqpBq :“
ż

Rd

νpB ´ xqµpdxq, B P BpRdq, (3.7.1)

where B ´ x :“ ty P Rd : y ` x P Bu.
Alternatively, if f, g P L1pRd,BpRdq, λdq, then their convolution is defined as the function

pf ˚ gqpyq :“
ż

Rd

fpy ´ xqgpxq dx
x ÞÑy´x“

ż

Rd

gpy ´ xqfpxq dx “ pg ˚ fqpyq.

Note that due to

νpB ´ xq “
ż

Rd

1Bpx` yq νpdyq, (3.7.2)

the right-hand side of (3.7.1) is well-defined. Furthermore, plugging (3.7.2) into (3.7.1) and
applying Tonelli’s theorem we also infer that

µ ˚ ν “ ν ˚ µ (commutativity of convolution).

Also, using Tonelli’s theorem it can be shown that f ˚ g is well-defined and in L1 once f, g P L1

(exercise).
The following result is the main reason the convolution plays an important role in probability
theory.

http://link.springer.com/article/10.1007%2FBF01013465
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Theorem 3.7.2. Let X,Y : pΩ,F ,Pq Ñ pRd,BpRdqq be independent random variables. Then

PX`Y “ PX ˚ PY .

Proof. Writing σ : Rd ˆRd Q px, yq ÞÑ x` y P Rd and noting that PX`Y “ pPX bPY q ˝σ´1 (c.f.
(3.3.3)), we obtain for B P BpRdq that

PX`Y pBq Thm. 2.2.19“
ż

RdˆRd

1Bpx` yq pPX b PY qpdpx, yqq “
ż

Rd

PY pB ´ xqPXpdxq

“ pPX ˚ PY qpBq,

where in the penultimate equality we took advantage of Tonelli’s theorem.

Lemma 3.7.3. Let X1, . . . ,Xn be independent real random variables whose distributions have
densities ϕ1, . . . , ϕn with respect to the Lebesgue measure λ. Then the distribution of the random
variable

řn
i“1Xi is absolutely continuous with respect to λ with density

ϕ1 ˚ ϕ2 ˚ . . . ˚ ϕn,

which is well-defined due to the associativity of convolution.

Proof. Exercise.

3.8 Central limit theorem

As the name suggests, the central limit theorem is one of the main result in probability theory.
On the one hand, it gives us a somewhat more precise result of the fluctuations of the sum
of well-behaved independent identically distributed random variables than the results we know
from the laws of large numbers. On the other hand, it plays an important role in statistics since
it justifies using the normal distribution in many models.
To motivate the central limit theorem, let us get back to (3.6.2) where we had shown that for
simple random walk Sn,

PpS2k “ 0q „ 1?
2kπ

.

In fact, in this setting it is not hard to show that not only the probability of finding simple
random walk in 0 at time 2k has a square root decay in k, but also the probabilities of finding
simple random walk at a distance of order

?
k at time 2k (we restrict ourselves to even times

for simplicity), see [Dre18, Section 1.15] for further details.
As a consequence, if we look for a rescaling of Sn by some scale function ϕpnq such that Sn{ϕpnq
converges in distribution to a non-trivial limiting distribution, then the above suggests that

?
n

is the only possible order of ϕpnq – and, as it will turn out below, the desired convergence does
indeed take place.
Yet another motivation for the central limit theorem can be derived from the laws of large
numbers: From those we know that under suitable assumptions on a sequence of i.i.d. random
variables we have

lim
nÑ8

´ 1

n
Sn ´ ErX1s

¯
“ 0.

To obtain information on a finer scale than in the central limit theorem we can now ask if
there exists an exponent β P p0,8q such that the sequence nβp 1

n
Sn ´ ErX1sq might hopefully

converge to a non-trivial limiting random variable instead of 0. The first motivational thread
via the investigation of simple random walk then suggests that β “ 1{2. Indeed, this always has
to be the case as long as the Xn are assumed to have finite variance since due to Bienaymé’s
formula we have

Var
´
nβpn´1Sn ´ ErX1sq

¯
“ n2β

1

n2
n “ n2β´1,
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which can only converge to a non-trivial limit if β “ 1
2 .

While the central limit theorem will not give us any information on probabilities of finding e.g.
simple random walk at single points, it does indeed imply that the right scale for rescaling is

?
n;

and not only does it do so for simple random walk, but for a very general class of distributions.

Theorem 3.8.1 (Central limit theorem). Let a sequence pXnq of independent identically dis-
tributed random variables with Xn : pΩ,F ,Pq Ñ pRd,BpRdqq such that ErX1s “ µ P Rd and
Er|X1 ´ µ|2s P p0,8q be given. Then the sequence of random variables defined via

Yn :“
řn

i“1pXi ´ µq?
n

, n P N, (3.8.1)

converges in distribution to a N p0,Σq distributed random variable where Σi,j :“
CovpπipX1q, πjpX1qq, 1 ď i, j ď d, is the (positive semi-definite) covariance matrix.

Remark 3.8.2. (a) The Yn are shifted in such a way that ErYns “ 0 and
CovpπipYnq, πjpYnqq “ Σi,j (the latter being a consequence of Bienaymé’s formula, see
Cor. 3.3.11), so expectation and covariance structure already coincide with those of a
N p0,Σq-distributed variable.

(b) It is surprising that, as long as the Xn have finite second moments the limiting distribu-
tion is the normal distribution, independent of the specific distribution of the Xis. This
phenomenon is also called universality (of the normal distribution).

The fact that the normal distribution appears in this context is due to the fact that if the
Xn are i.i.d. N p0,Σq distributed, then

1?
n

nÿ

i“1

Xi „ N p0,Σq, (3.8.2)

i.e., the Yn as defined in (3.8.1) are again N p0,Σq distributed for all n P N.

(c) There is a plethora of other, more general conditions which imply the validity (3.8.1). In
particular, similarly to the case of the weak law of large numbers Theorem 3.6.7, there is
a version of the central limit theorem for triangular arrays as well.

(d) The finiteness of the second moment is in fact essential in Theorem 3.8.1. If it is not
assumed, however, then one can still obtain other types of convergence results to non-trivial
distributions (so-called α-stable distributions) for different rescalings than the division by?
n in (3.8.1).

(e) One can ask whether the sequence pYnq might even converge in probability to some random
variable Z. In fact, in this case we would have that Y2n ´ Yn would converge to 0 in
probability due to

Pp|Y2n ´ Yn| ě εq ď Pp|Y2n ´ Z| ě ε{2q ` Pp|Yn ´ Z| ě ε{2q Ñ 0, as n Ñ 8,

and using Theorem 3.5.17 we would deduce that

Y2n ´ Ynùñ0 as n Ñ 8. (3.8.3)

However, assuming d “ 1, µ “ 0 and σ2 “ 1 for simplicity of notation, we rewrite

Y2n ´ Yn “ 1?
2

ř2n
i“n`1Xi?

n
´ p1 ´ 1?

2
q
řn

i“1Xi?
n

,
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and observe that due to the CLT, both
ř2n

i“n`1 Xi?
n

and
řn

i“1 Xi?
n

converge in distribution to

a N p0, 1q-variable, both of which are independent. Using Part (a) of Example 3.3.12 we
can therefore infer that Y2n ´ Yn must converge to a N p0, p 1?

2
q2 ` p1 ´ 1?

2
q2q-distributed

random variable. In particular, this contradicts (3.8.3), hence Y2n ´ Yn cannot converge
to 0 in probability, so there cannot exist a random variable Z as postulated above.

There are at least two essentially different strategies to prove the central limit theorem. The
first one works well in the case d “ 1 and is a more or less self-contained and direct proof
along the lines of the proof of [Geo09, Theorem 5.28]. The second one uses the technique of
characteristic functions. It has the disadvantage that it is less self-contained; it is, however,
more robust under variations of the very setting given in Theorem 3.8.1 and can be extended
without too much effort to more general situations, such as higher dimensions or dependencies
between the random variables Xn. We will follow the second approach and need a couple of
general and auxiliary result which will also prove to be beneficial later on and in the lecture
Probability II when establishing so-called ‘functional Central limit theorems’.

There are a couple of important properties of characteristic functions which are not hard to
prove.

Lemma 3.8.3. Let X and Y be random variables mapping to pRd,BpRdqq, and let a P R as
well as b, t P Rd be arbitrary. Then

(a)

ϕXp0q “ 1;

(b)

ϕaX`bptq “ eib¨tϕXpatq;

(c)

|ϕXptq| ď 1 @t P Rd; (3.8.4)

(d) If X and Y are independent, then

ϕX`Y ptq “ ϕXptqϕY ptq;

(e) The function Rd Q t ÞÑ ϕXptq is uniformly continuous.

Proof. (a) Obvious, since e0 “ 1.

(b) We have

ϕaX`bptq “ Ereit¨paX`bqs “ eib¨tϕXpatq.

(c) If eit¨X was a real random variable, the statement would follow immediately with Jensens
inequality applied to the convex function R Q x ÞÑ |x|. Since eitX is not real, however,
we can approximate it by simple pC,BpCqq-valued random variables Xn (as we did with
real-valued functions) such that |Xn| ď 1 and Xn Ñ eit¨X . For simple random variables,
(3.8.4) is a simple consequence of the fact that the unit ball around 0 in C is a convex set.
Taking the limit and using Fubini’s theorem then implies the result.

(d) If X and Y are independent random variables, then so are eit¨X and eit¨Y , for each t P Rd.

Therefore,

ϕX`Y ptq “ Ereit¨pX`Y qs “ Ereit¨X sEreit¨Y s “ ϕXptqϕY ptq.

(e) Exercise.
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We recall the following result that we had mentioned before already, and we will actually prove
it here.

Theorem (Theorem 2.6.5). Any finite measure on pRd,BpRdqq is uniquely characterized by its
characteristic function.

For µ a finite measure as above, denote for σ ą 0 by

µpσq :“ µ ˚ N p0, σ2Idq, (3.8.5)

i.e., the convolution of µ with a d-dimensional Normal distribution with mean 0 and covariance
matrix σ2Id, where Id is the identity matrix in Rdˆd (recall Example 1.5.8).
The following is a common paradigm in Fourier analysis: If we put in an arbitrarily ’rough’
measure µ, then convoluting it with something ’smooth’ (in our case a measure which is abso-
lutely continuous with respect to λ) supplies us with something smooth as well. Here and in
the lemma below, the ’smooth’ measure N p0, σ2Idq plays the role of a ’mollifier’, just in case
you’ve seen this concept in functional analysis.

Lemma 3.8.4. Let µ be a finite measure on pRd,BpRdqq. Then the convolution µpσq has a
density f pσq with respect to λd which is given by

f pσqpxq “ 1

p2πqd
ż

Rd

ϕµptq exp
!

´ ix ¨ t´ σ2pt ¨ tq
2

)
dt, (3.8.6)

where we recall that ϕµ denotes the characteristic function of µ.

Proof. We write

hpσqpxq :“ 1

p2πσ2q d
2

e
´ x¨x

2σ2 , x P Rd, (3.8.7)

for the density of an Rd-valued N p0, σ2Idq-distributed random variable Z.
We start with observing that

µpσqpBq “
ż

Rd

PZpB ´ xqµpdxq “ 1

p2πσ2q d
2

ż

Rd

ż

Rd

1Bpx ` yqe´ y¨y

2σ2 λdpdyqµpdxq

y ÞÑy´x“
ż

Rd

ż

Rd

1Bpyqhpσqpy ´ xqλdpdyqµpdxq “
ż

B

´ż

Rd

hpσqpy ´ xqµpdyq
¯
λdpdyq,

where the penultimate equality follows from the change of variable formula Theorem 2.2.19 and
the last equality is due to Tonelli’s theorem. Thus, µpσq has density

f pσqpxq “
ż

Rd

hpσqpy ´ xqµpdyq (3.8.8)

with respect to λd.
Then, generalizing Example 2.6.4 to the d-dimensional case, we obtain that

ϕN p0,σ2Idqptq “ e´σ2t¨t
2 .

and hence the identity

1

p2π{σ2q d
2

ż

Rd

eit¨xe´σ2x¨x
2

def“ ϕN p0, 1
σ2 Idqptq “ e

´ t¨t
2σ2 “ p2πσ2q d

2hpσqptq.

Plugging this into the right-hand side of (3.8.8), we deduce that

f pσqpxq “
ż

Rd

hpσqpy ´ xqµpdyq “
ż

Rd

1

p2πqd
ż

Rd

exp
!

ipy ´ xq ¨ t´ σ2t ¨ t
2

)
dt µpdyq.
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Using Fubini’s theorem the latter equals

1

p2πqd
ż

Rd

´ ż

Rd

eiy¨t µpdyq
¯

exp
!

´ ix ¨ t´ σ2t ¨ t
2

)
dt

“ 1

p2πqd
ż

Rd

ϕµptq exp
!

´ ix ¨ t´ σ2t ¨ t
2

)
dt,

which establishes (3.8.6) and hence finishes the proof.

Lemma 3.8.5. For µ and µpσq as above we have that

µpσq wÝÑ µ, as σ Ó 0. (3.8.9)

(So far we’ve only been concerned with convergence of sequences, not families of measures. We
can either retreat to considering µp1{nq instead of µpσq and then take n Ñ 8, or otherwise the
real meaning of the convergence in (3.8.9) is that the stated convergence takes place along any
subsequence pσnqn with σn ą 0 and limnÑ8 σn “ 0.)

Proof. µ and µpσq have the same mass µpRdq P p0,8q, so w.l.o.g. we can assume that it equals
one. Then choose independent Rd-valued random variables X and Y on the same probability
space such that P ˝X´1 “ µ and P ˝ Y ´1 “ N p0, Idq. Then X ` σY has law µpσq, and P-a.s.

X ` σY Ñ X.

As a consequence, Theorem 3.5.17 implies that µpσq converges weakly to µ, which finishes the
proof.

The following result is not explicitly needed for proving Theorem 2.6.5, but we nevertheless give
it here since it is important and interesting on its own.

Corollary 3.8.6 (Fourier inversion formula). Let µ “ f ¨ λd for some probability density f

defined on Rd. Then, if ϕµ P L1pRd,BpRdq, λdq, we have for λd-almost all x P Rd that

fpxq “ 1

p2πqd
ż

Rd

ϕµptqe´ix¨t dt.

Proof. We have that the integrand on the right-hand side of (3.8.6) converges to ϕµptqe´ix¨t as
σ Ó 0, and furthermore, for each σ ą 0, its absolute value is upper bounded by |ϕµ|, which by
assumption is in L1. Therefore, using the DCT and taking σ Ó 0 in (3.8.6),

lim
σÓ0

f pσqpxq “ 1

p2πqd
ż

Rd

ϕµptqe´ix¨t dt “: hpxq.

In combination with the fact that µpσq “ f pσq ¨λd according to Lemma 3.8.4 and using our result
on integration with respect to measures with densities (Theorem 2.2.19), this implies (due to
the DCT and the fact that

sup
xPRd

f pσqpxq ď 1

p2πqd
ż

Rd

|ϕµptq|dt “: C P p0,8q,

that for any continuous function v ě 0 with compact support we have that

C sup
xPRd

vpxq ě |vf pσqpyq| @y P Rd,
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and hence the left-hand side of the previous display is an integrable majorising function, so the
DCT gives ż

v dµpσq “
ż
vf pσq dλd Ñ

ż
vhdλd, as σ Ó 0.

On the other hand, Lemma 3.8.5 implies that
ż
v dµpσq Ñ

ż
v dµ “

ż
vf dλd, as σ Ó 0,

so the right-hand sides of the last two displays coincide for all such v, i.e., we have
ż
vhdλd “

ż
vf dλd (3.8.10)

for all v ě 0 in CbpRdq with compact support.
Now if only v P CbpRdq instead of v having compact support as well, then we can choose a
sequence a monotone increasing sequence pvnq of functions with

• vn ě 0, vn P CbpRdq with compact support;

• vnpxq P r0,maxxPRd |vpxq|s Ă r0,8q;

• For all x P Rd we have vnpxq Ñ vpxq as n Ñ 8.

As a consequence (3.8.10) implies

ż
vhdλd “ lim

nÑ8

ż
vnhdλd

(3.8.10)“ lim
nÑ8

ż
vnf dλd “

ż
vf dλd,

where the first and third equality are due to the MCT.
Therefore, Theorem 3.5.8 implies that

f ¨ λd “ h ¨ λd,

so f “ h holds λd-almost everywhere according to Proposition 2.2.10.

Proof of Theorem 2.6.5. Assume that ϕµ “ ϕν . Then, by Lemma 3.8.4 we get that

µpσq “ νpσq,

and due to Lemma 3.8.5 the left-hand side converges weakly to µ, whereas the right-hand side
converges weakly to ν. I.e.,

ż

Rd

v dµ “ lim
σÓ0

ż

Rd

v dµpσq “ lim
σÓ0

ż

Rd

v dνpσq “
ż

Rd

v dν

for all v P CbpRdq. Therefore, by Theorem 3.5.8, µ “ ν, which finishes the proof.

We will give a couple of important implications of Theorem 2.6.5. We start with generalizing
Example 3.3.12 (a) and giving a small hit parade of characteristic functions.

Proposition 3.8.7. The following distributions have the given characteristic functions:

(a) δx with x P R:
ϕptq “ eitx.

(b) Berp with p P p0, 1q:
ϕptq “ peit ` p1 ´ pq.
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(c) Binn,p with p P p0, 1q, n P N :

ϕptq “ ppeit ` p1 ´ pqqn.

(d) Poiν with ν P p0,8q:
ϕptq “ eνpeit´1q

(e) Ur0,as with a P p0,8q :

ϕptq “ eiat ´ 1

iat

(f) Expκ with κ P p0,8q:
ϕptq “ κ

κ´ it
.

(g) N pµ, σ2q with µ P R, σ2 P p0,8q:

ϕptq “ eiµt´
σ2t2

2 .

Proof. For the normal distribution this has been shown in Exercise 2.6.4, the remaining parts
are left as an exercise.

Combining Proposition 3.8.7 and Theorem 2.6.5, we directly obtain the following important
result which (see Theorem 3.7.2) tells us how some sums of two independent random variables
with the same type of distributions is distributed.

Corollary 3.8.8. (a) For µ1, µ2 P R, σ21 , σ
2
2 P p0,8q, we have

Nµ1,σ
2
1

˚ Nµ2,σ
2
2

“ Nµ1`µ2,σ
2
1`σ2

2
;

(b) For ν1, ν2 P p0,8q, we have
Poiν1 ˚ Poiν2 “ Poiν1`ν2 ;

(c) For p P p0, 1q and m,n P N we have

Binn,p ˚ Binm,p “ Binn`m,p.

We now proceed with our preparations to proving the Central Limit theorem and start with the
following auxiliary result, which we use in the proof of Theorem 3.8.10, but it is also of general
interest.

Lemma 3.8.9. Let µ, ν be probability measures on pRd,BpRdqq, and assume that µ “ f ¨ λd for
some density f. Then µ ˚ ν has density

gpxq :“
ż

Rd

fpx´ yq νpdyq

with respect to λd.

Proof. For B P BpRdq arbitrary we get

pµ ˚ νqpBq “
ż

Rd

µpB ´ yq νpdyq “
ż

Rd

ż

Rd

1Bpx` yqµpdxq νpdyq

“
ż

Rd

ż

Rd

1Bpx ` yqfpxq dx νpdyq “
ż

B

ż

Rd

fpx´ yq νpdyq dx,

which proves the result, and where to obtain the last equality we substituted x ÞÑ x ´ y and
used Tonelli’s theorem.
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The following is actually a weak version of Lévy’s continuity theorem. It is, however, significantly
easier to prove than the general version and still sufficient for our purposes for the time being.

Theorem 3.8.10. Assume probability measures µ, µ1, µ2, . . . on pRd,BpRdqq to be given, and
denote the corresponding characteristic functions by ϕ,ϕ1, ϕ2, . . . .

If

lim
nÑ8

ϕnptq “ ϕptq @t P Rd,

then

µn
wÑ µ as n Ñ 8. (3.8.11)

Proof. Let g P CbpSq have compact support. In particular, this implies that g is uniformly
continuous. Then using the notation from (3.8.5) for µpσq for any σ ą 0, the triangle inequality
implies

ˇ̌
ˇ
ż
g dµn ´

ż
g dµ

ˇ̌
ˇ ď

ˇ̌
ˇ
ż
g dµn ´

ż
g dµpσq

n

ˇ̌
ˇ

`
ˇ̌
ˇ
ż
g dµpσq

n ´
ż
g dµpσq

ˇ̌
ˇ `

ˇ̌
ˇ
ż
g dµpσq ´

ż
g dµ

ˇ̌
ˇ

(3.8.12)

Recalling that µpσq was defined as the convolution µ ˚ N p0, σ2Idq, using the notation hpσq from
(3.8.7) for denoting the mollifier, and using Lemma 3.8.9, we can write that

ż
g dµpσq

n “
ż ´ ż

gpxqhpσqpx ´ yqµnpdyq
¯
λdpdxq “

ż
g ˚ hpσq dµn,

where in the last equality we used Fubini’s theorem (since the function px, yq ÞÑ gpxqhpσqpx´ yq
is µb λd-integrable due to

ż
|gpxqhpσqpx ´ yq|µn b λdpdx,dyq “

ż ´ ż
|gpxq|hpσqpx´ yqµnpdyq

¯
λdpdxq

“
ż

|g| dµpσq
n ă 8,

where in the first equality we used Tonelli’s theorem, in the second we used Lemma 3.8.9, and

the inequality comes from the fact that µ
pσq
n is a finite measure and g is bounded.) Therefore,

and taking advantage of Lemma 3.8.9 and Tonelli’s theorem, we can upper bound

ˇ̌
ˇ
ż
g dµn ´

ż
g dµpσq

n

ˇ̌
ˇ ď

ż ˇ̌
gpxq ´ pg ˚ hpσqqpxq

ˇ̌
µnpdxq,

and due to the uniform continuity and the boundedness of g we get that g ˚ hpσq converges
uniformly to g, i.e., for any ε ą 0, for all σ ą 0 small enough we have

sup
xPRd

ˇ̌
gpxq ´ pg ˚ hpσqqpxq

ˇ̌
ă ε.

Thus, for any ε ą 0 we have that for all σ ą 0 small enough and all n P N,

ˇ̌
ˇ
ż
g dµn ´

ż
g dµpσq

n

ˇ̌
ˇ ď ε. (3.8.13)

The exact same argument works for the last term on the RHS to yield

ˇ̌
ˇ
ż
g dµpσq ´

ż
g dµ

ˇ̌
ˇ ď ε. (3.8.14)
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Now in order to digest the second summand on the RHS of (3.8.12), note that Lemma 3.8.4

implies that µpσq and µ
pσq
n have densities

x ÞÑ 1

p2πqd
ż

Rd

ϕµptq exp
!

´ ix ¨ t´ σ2pt ¨ tq
2

)
dt

and

x ÞÑ 1

p2πqd
ż

Rd

ϕµnptq exp
!

´ ix ¨ t´ σ2pt ¨ tq
2

)
dt

with respect to λd. Thus, we get

ˇ̌
ˇ
ż
g dµpσq

n ´
ż
g dµpσq

ˇ̌
ˇ ď

ż ż
|gpxq||ϕµptq ´ ϕµnptq| exp

!
´ σ2pt ¨ tq

2

)
dt dx (3.8.15)

and the integrand on the right-hand side can be upper bounded by

Rd ˆ Rd Q px, yq ÞÑ 2|gpxq| exp
!

´ σ2pt ¨ tq
2

)

which is integrable with respect to λdbλd since g is continuous with compact support. Therefore,
the assumptions of the DCT are fulfilled and hence for any σ ą 0 the RHS of (3.8.15) converges
to 0 as n Ñ 8.
In combination with (3.8.13), (3.8.14) and(3.8.12), this proves that

ˇ̌
ˇ
ż
g dµn ´

ż
g dµ

ˇ̌
ˇ Ñ 0 (3.8.16)

for g as above. The Portmanteau Theorem (Theorem 3.5.9), however, demands the convergence
of bounded continuous functions with non-compact support also. In order to derive the required
convergence, let g P CbpRdq not necessarily with bounded support, and choose a sequence of
continuous functions phmq with hm P r0, 1s and compact support (in particular, hm is uniformly
continuous) such that hm Ò 1. In particular, the reasoning above implies

ż
hm dµn Ñ

ż
hm dµ as n Ñ 8, (3.8.17)

and ż
ghm dµn Ñ

ż
ghm dµ as n Ñ 8,

since hm and ghm are bounded and continuous with compact support. Furthermore,
ˇ̌
ˇ
ż
ghm dµn ´

ż
g dµn

ˇ̌
ˇ ď sup |gpxq|

ż
p1 ´ hmq dµn (3.8.18)

and ˇ̌
ˇ
ż
ghm dµ´

ż
g dµ

ˇ̌
ˇ ď sup |gpxq|

ż
p1 ´ hmq dµ, (3.8.19)

From (3.8.17) and the fact that the µn and µ are probability measures we infer that
ż

p1 ´ hmq dµn Ñ
ż

p1 ´ hmq dµ as n Ñ 8.

In particular, for ε ą 0 we can choose m P N such that for all n large enough, the right-hand
sides of (3.8.18) and (3.8.19) are upper bounded by ε. All in all, putting things together we
obtain for g P CbpSq and hm as above that for any ε ą 0 there exist m,n0 P N such that
ˇ̌
ˇ
ż
g dµn ´

ż
g dµ

ˇ̌
ˇ ď

ˇ̌
ˇ
ż
g dµn ´

ż
ghm dµn

ˇ̌
ˇ

looooooooooooomooooooooooooon
(3.8.18)

ď ε

`
ˇ̌
ˇ
ż
ghm dµn ´

ż
ghm dµ

ˇ̌
ˇ

looooooooooooooomooooooooooooooon
(3.8.16)

ď ε

`
ˇ̌
ˇ
ż
ghm dµ´

ż
g dµ

ˇ̌
ˇ

loooooooooooomoooooooooooon
(3.8.19)

ď ε

for all n ě n0. This shows the desired weak convergence (3.8.11) and hence finishes the proof.
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Theorem 3.8.11. Let X be an pRd,BpRdqq-valued random variable with Er}X}m2 s ă 8 for
some m P N. Then for t P Rd fixed we obtain for h P R with h ‰ 0 that

ϕXphtq “
mÿ

k“0

ikErpht ¨Xqks
k!

` op|h|mq, as h Ñ 0. (3.8.20)

Proof. For h P R set
ψphq :“ ϕXphtq.

For h P R as well as k P t0, . . . ,mu we obtain

ψpkqphq “ E
“
pit ¨ Xqkeiht¨X

‰
. (3.8.21)

Indeed, we use induction. The equality is clear for k “ 0, and for k P t1, . . . ,m ´ 1u we obtain

ψpkqphq “ lim
αÑ0

ψpk´1qph ` αq ´ ψpk´1qphq
α

“ lim
αÑ0

E
“
pit ¨ Xqk´1eiph`αqt¨X‰

´ E
“
pit ¨Xqk´1eiht¨X

‰

α

“ lim
αÑ0

E

”pit ¨Xqk´1eiht¨Xpeiαt¨X ´ 1q
α

ı
,

where in the second equality we took advantage of the induction assumption. Due to the fact
that |eih ´ 1| ď |h| for h P R arbitrary, we obtain that

ˇ̌
ˇpit ¨Xqk´1eiht¨Xpeiαt¨X ´ 1q

α

ˇ̌
ˇ ď |t ¨X|k, @α P R, α ‰ 0.

According to our assumptions, the right-hand side is in LkpΩ,F ,Pq, and furthermore we have

lim
αÑ0

pit ¨Xqk´1eiht¨Xpeiαt¨X ´ 1q
α

“ pit ¨Xqkeiht¨X .

Therefore, the dominated convergence theorem (see Theorem 2.1.7) implies that (3.8.21) holds.
Therefore, (3.8.20) follows in combination with Taylor’s formula.

Proof of Theorem 3.8.1. Without loss of generality we can assume that the Xn are centered for
all n P N. Denote the characteristic function of Xn by ϕX and let ϕn denote the characteristic

function of Yn “
řn

i“1 Xi?
n

. Then for any t P Rd fixed, using that Ert ¨Xns “ řd
i“1 tiErπipXnqs “ 0

as well as that
Erpt ¨Xnq2s “

ÿ

1ďi,jďn

titj ErπipXnqπjpXnqslooooooooomooooooooon
Σi,j

“ tTΣt,

we obtain

ϕnptq Lemma 3.8.3“
´
ϕXpt{

?
nq
¯n Thm. 3.8.11 for m “ 2“

´
1 ´ tTΣt

2n
` opn´1q

¯n

Ñ e´ tT Σt
2 , as n Ñ 8.

(3.8.22)

The result now follows using Theorem 3.8.10 in combination with the fact that the right-hand
side of (3.8.22) is the characteristic function of a N p0,Σq-distributed random variable.

Exercise 3.8.12. For a sequence of random variables pXnq as in the assumption of Theorem
3.8.1, the central limit theorem implies the validity of a weak law of large numbers for pXnq.
Indeed, since the distribution function Φ of the standard normal distribution (see (3.1.4)) is
continuous, Theorem 3.8.1 implies that for arbitrary M ą 0 we have

P

´ řn
i“1pXi ´ µq?

σ2n
R p´M,M s

loooooooooooooooomoooooooooooooooon
An,M

¯
Ñ Φp´Mq ` p1 ´ ΦpMqq. (3.8.23)
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Now for any M P p0,8q and ε ą 0 there exists N P N such that for all n ě N one has

Bn,ε :“
!ˇ̌
ˇ
řn

i“1pXi ´ µq
n

ˇ̌
ˇ ą ε

)
Ă An,M .

As a consequence, we obtain for any such M and ε, in combination with (3.8.23), that

lim sup
nÑ8

PpBn,εq ď Φp´Mq ` p1 ´ ΦpMqq.

Since M was arbitrary and limMÑ8 Φp´Mq ` p1 ´ ΦpMqq “ 0, this implies

lim
nÑ8

PpBn,εq “ 0.

As in addition ε ą 0 was arbitrary, this implies the desired weak law of large numbers for pXnq.

Example 3.8.13. (a) Using the strong law of large numbers, for a random walk with drift
(i.e., Sn “ řn

j“1Xj where the Xj are i.i.d. with PpX1 “ 1q “ p, PpX1 “ ´1q “ 1 ´ p,
and p P p1{2, 1q) one has that for all ε ą 0,

Pp|Sn ´ np2p´ 1q| ě nεq Ñ 0.

Therefore, the first order (i.e. linear in n) term of the position of Sn at time n will
asymptotically be given by 2p´ 1. In order to obtain a better understanding, it is of course
tempting to ask for the lower order corrections. For this purpose we apply the central limit
theorem; using that the variance of Xn is given by

VarpXnq “ ErX2
ns ´ ErXns2 “ 1 ´ p2p´ 1q2 “ 1 ´ 4p2 ` 4p´ 1 “ 4pp1 ´ pq :“ σ2

we obtain
Sn ´ np2p ´ 1q?

σ2n

LÝÑ N p0, 1q.

In particular, this implies that the ‘typical’ fluctuations of Sn around its expected value
np2p ´ 1q are of the order

?
n.
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Chapter 4

A primer on stochastic processes

4.1 Stochastic processes

Definition 4.1.1. A stochastic process is a family pXtq, t P T, of random variables mapping
from some probability space pΩ,F ,Pq into a measurable space pE, Eq. Here, T is an arbitrary
non-empty set.

Example 4.1.2. In the setting of the law of large numbers and the central limit theorem, the
sequences

pXnq, n P N,
řn

i“1pXi ´ ErXisq
n

, n P N,

and řn
i“1Xi?
n

, n P N,

are all stochastic processes (with T “ N or T “ N0, respectively, and pE, Eq “ pRd,BpRdqq.).
We will primarily consider the setting that the Xt are real random variables, and in this case
we also refer to pXtq as a real stochastic process.1

Most of the times we will actually interpret t as ‘time’, and hence natural choices are T “ N0

or also T “ r0,8q. The above definition, however, is more general.
We have seen in the theory of random variables that the distribution of random variables has
played a very important role. In fact, the very structure of the probability space pΩ,F ,Pq
underlying a random variable X was often irrelevant, and what was more crucial to us was the
law PX of the random variable.
In a similar way, in the theory of stochastic processes, a key role is played by the distribution
of a process. By definition, the distribution of a real process pXtq, t P T, would be a probability
law on RT endowed with a suitable σ-algebra T on RT which makes the mapping

pΩ,Fq Ñ pRT ,T q
Ω Q ω ÞÑ pXtpωqqtPT

itself a F ´ T -measurable random variable. Since by definition of a stochastic process, the
only ‘regularity’ assumption we made was that the Xt were random variables (i.e., they are
F ´ BpRq-measurable functions from pΩ,F ,Pq to pR,BpRq), the natural σ-algebra to choose
for RT is the product-σ-algebra (recall Definition 2.3.5). We recall that the product σ-algebra
had been generated by the coordinate projections πt, t P T , and equivalently the product σ-
algebra is generated by the cylinder sets (recall Definition 2.3.7). Thus, those subsets of RT for
which finitely many coordinates are contained in certain measurable subsets of R will play an
important role; this then leads to the following concept.

1In fact, if not mentioned otherwise, we will assume all the stochastic processes to be real in the following.
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Definition 4.1.3. Let a stochastic process pXtq, t P T, be given. The finite dimensional distri-
butions of the process are given by the probability measures

µSpBq :“ PppXsqsPS P Bq, B P BpRSq,

on pRS ,BpRSqq, where S Ă T finite.

In particular in the case of say continuous time (as opposed to discrete such as T “ N0), i.e.
if e.g. T “ R, then the finite dimensional distributions do not contain all the mathematically
interesting information. However, this issue will only play a role and be adressed in more
advanced classes.

For the time being, it is worthwhile to notice that for any given stochastic process pXtq, t P T,
the family of finite dimensional distributions satisfies the following consistency condition:

PppXtqtPJ P pπJI q´1pBqq “ PppXtqtPI P Bq @I Ă J Ă T, J finite, B P BpRIq, (4.1.1)

or, which is the same,

PppXtqtPJ q ˝ pπJI q´1 “ PppXtqtPIq @I Ă J Ă T, J finite, (4.1.2)

where the projection

πJI : RJ Q pxjqjPJ ÞÑ pxiqiPI P RI

had been introduced in Definition 2.3.3.

Remark 4.1.4. In fact, some authors index the family of finite dimensional distributions by
ordered tuples pt1, . . . , tnq with n P N, ti P T for all i P t1, . . . , nu. This, however, turns out to be
more complicated since one has to impose a condition on how permuting acts on the elements
of the family, i.e., how µt1,...,tn and µtπp1q,...,tπpnq

are related to each other for an arbitrary per-
mutation π of t1, . . . , nu (i.e., π P Sn with Sn denoting the symmetric group). Indeed, if the
family of finite dimensional distributions is to be generated by a stochastic process in the sense
that

µt1,...,tnpB1 ˆ . . . ˆBnq “ PppXt1 , . . . ,Xtnq P B1 ˆ . . . ˆBnq,

then one obviously must have the condition that

µt1,...,tnpB1 ˆ . . . ˆBnq “ µtπp1q,...,tπp1q
pBπp1q ˆ . . . ˆBπp1qq. (4.1.3)

Therefore, once one has specified µtπp1q,...,tπp1q
for some t1, . . . , tn P T and an arbitrary permu-

tation π P Sn, then (4.1.3) already characterizes µtrπp1q,...,trπp1q
for any rπ P Sn. Therefore, it is

sufficient and more convenient to index the finite dimensional distributions just by finite subsets
of T (i.e., unordered tuples) instead of by ordered tuples t1, . . . , tn with ti P T.

Motivated the observation in (4.1.2), we introduce the notion of a consistent family of probability
measures. For this purpose, recall the definition of the projection operators given in Definition
2.3.3.

Definition 4.1.5. Let T be an arbitrary non-empty set. If PI , I Ă T finite, is a family of
probability measures such that PI is a probability measure on pRI ,BpRqbIq, then we call the
family consistent, if we have

PJ ˝ pπJI q´1 “ PI @I Ă J Ă T, J finite. (4.1.4)
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4.2 Kolmogorov’s existence and uniqueness theorem

The following result has first appeared (in slightly weaker form) in [Kol33, III § IV]

Theorem 4.2.1 (Kolmogorov’s existence and uniqueness theorem). Let pEλq, λ P Λ, be an
arbitrary family of Polish spaces, and let pBλq, λ P Λ, be the corresponding family of Borel
σ-algebras.

Furthermore, let PI , I Ă Λ finite, be a consistent family of probability measures PI on
pˆλPIEλ,bλPIBλq.
Then there exists a unique probability measure P on p

Ś
λPΛEλ,

Â
λPΛ Bλq such that

P ˝ pπJq´1 “ PJ @J Ă Λ finite, (4.2.1)

where

πJ :
ą

λPΛ
Eλ Q pωλqλPΛ ÞÑ pωλqλPJ P

ą

λPJ
Eλ

is again the projection.

P is also called the projective limit (‘projektiver Limes’) of the family pPJ q, J Ă Λ finite.

For the proof, we will need the following notation and auxiliary result.

Definition 4.2.2. Let E be a Hausdorff topological space or else a metric space, and let µ be a
measure defined on the Borel σ-algebra BpEq.

(a) µ is called a Borel measure (‘Borelmaß’), if

µpKq ă 8 @K Ă E compact.

(b) µ is called inner regular (‘regulär von innen’) if

µpBq “ sup
 
µpKq : K Ă B compact

(
.

(c) µ is called outer regular (‘regulär von außen’) if

µpBq “ inf
 
µpOq : O Ą B open

(
.

(d) µ is called regular (‘regulär’) if it is inner regular and outer regular.

It should be noted that there is a variety of different definitions of the term ‘Borel measure’.
We will stick to the one above.

Lemma 4.2.3. Let µ be either a finite Borel measure on a Polish space E, or let µ be a
measure on pRd,Bdq such that µpAq ă 8 for any bounded A P BpEq.
Then µ is regular.

Remark 4.2.4. In the Polish space setting the above result is sometimes referred to as Ulam’s
theorem.

Proof. Since our main emphasis is on E “ Rd, we will restrict ourselves to giving the proof in
this simpler case (as a treat, we may on the other hand discard with the finiteness of µ and only
require µpAq ă 8 for any A P BpRdq bounded – in particular, we include the Lebesgue measure
this way). For a proof of the general version, see [Bau92, Lemma 26.2] for instance.

We start with showing the following claim.
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Claim 4.2.5. For all A P BpRdq,

µpAq “ inf
 
µpOq : O Ą A open

(
“ sup

 
µpF q : F Ă A closed

(
. (4.2.2)

Proof. We start with proving the first equality. Recalling the notation Id for the semi-ring of
rectangles in Rd, according to Theorem 1.3.9 we can extend µ|Id to an outer measure µ˚ on

2R
d
. Now Theorem 1.3.5 in combination with Theorem 1.3.9 imply that µ˚|BpRdq is a measure,

and due to Theorem 1.2.17, we obtain that

µ˚|BpRdq “ µ.

Using (1.3.5) we therefore get

µpAq “ inf
! 8ÿ

i“1

µpAiq : A1, A2, . . . P Id, and A Ă
8ď

i“1

Ai

)
, A P BpRdq. (4.2.3)

Using furthermore that µ is continuous from above, for every ε ą 0 and any sequence of pAiq
on the right-hand side of (4.2.3) we deduce the existence of a sequence pOiq of open rectangles
with

• Ai Ă Oi, and

• µpOiq ă µpAiq ` 2´iε

for all i P N. In combination with (4.2.3) this yields the outer regularity of µ.
Passing to complements we deduce

µpAq “ suptµpF q : F Ă A closedu

and thus recover the second equality in (4.2.2).

Since measures are continuous from below (see Prop. 1.2.16), for any F Ă A closed we get that
µpF q “ supnPN µpFnq, where Fn :“ F X Bp0, nq is compact, with Bp0, nq denoting the closed
unit ball of radius n in Rd. In combination with (4.2.2) this implies the desired regularity.

Proof of Thm. 4.2.1. We know from Exercise 2.3.8 that the cylinder sets form an algebra overŚ
λPΛEλ, which we will denote by A for simplicity.

From Definition 2.3.5 we infer that A is a generator of
Â

λPΛ Bλ, and being an algebra, we deduce
that A is a π-system. Hence, we may readily check that the assumptions of the newly added
Corollary 1.2.19 are fulfilled and we deduce uniqueness, i.e., there is at most one probability
measure on pŚλPΛEλ,

Â
λPΛEλq satisfying (4.2.1).

It remains to show the existence of such a probability measure,2 and we will take advantage of
Carathéodory’s existence theorem, or rather its Corollary 1.3.10. For that purpose, we have to
show that

the right-hand side of (4.2.1) defines a σ-subadditive content P on the semiring A (4.2.4)

via

P pZq :“ PIpBq, all Z P A, i.e., Z “ pπIq´1pBq, where B P
â

λPI
Bλ, I Ă Λ finite. (4.2.5)

We start with showing that P as in (4.2.5) is actually well-defined. For this purpose assume that
there are B1 P Â

λPI Bλ and B2 P Â
λPJ Bλ, where I, J Ă Λ finite such that Z “ pπIq´1pB1q “

pπJq´1pB2q. Then there exists B3 P Â
λPIYJ Bλ such that

Z “ pπIYJq´1pB3q.
2In fact, if any such measure exists, it must be a probability measure since

Ś
λPΛ Eλ P A, and we know that

e.g. P p
Ś

λPΛ Eλq “ PλpEλq “ 1 for arbitrary λ P Λ, since the Pλ are probability measures.
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From the consistency condition (4.2.1) and the fact that B3 “ tx P Ś
λPIYJ Eλ : πIYJ

I pxq P B1u,
we deduce that

PIYJpB3q “ PIpB1q,
and similarly we obtain

PIYJpB3q “ PJpB2q,
so P pZq as introduced in (4.2.5) does not depend on the specific representation of Z, and hence
P is well-defined.
Next, we have to show (4.2.4). It is obvious that P pHq “ 0 and that P ě 0. To show additivity,
let Z1, Z2 P A be two disjoint sets. Then there exist I Ă Λ finite as well as B1, B2 P Â

λPI Bλ

disjoint such that
Z1 “ π´1

I pB1q and Z2 “ π´1
I pB2q. (4.2.6)

Since Z1 and Z2 are disjoint, we get that B1 and B2 must be disjoint as well, and thus we
deduce, using (4.2.6), the fact that

π´1
I pB1 YB2q “ π´1

I pB1q Y π´1
I pB2q,

as well as that PI is a measure on
Â

λPI Bλ, that

P pZ1 9YZ2q “ PIpB1 9YB2q “ PIpB1q ` PIpB2q “ P pZ1q ` P pZ2q,

hence P is additive and a content on A.

In order to show that P is σ-subadditive, due to Proposition 1.2.16 it is sufficient to check that
P is continuous in H.

We will prove this by contradiction. Indeed, assume otherwise that there is a decreasing sequence
pZnq, n P N, of sets Zn P A with limnÑ8Zn “ H and such that lim supnÑ8 P pZnq ą 0. By
possibly passing to a subsequence, w.l.o.g. assume that P pZnq ě δ for some δ ą 0 and all n P N.

Furthermore, we can assume Zn “ π´1
In

pAnq some An P Â
λPIn Bλ for all n P N, where In Ă Λ

finite (w.l.o.g., the In can and will be chosen to be increasing sets in n P N). Now recall thatŚ
λPIn Eλ is Polish (due to Theorem 2.3.9). Using Lemma 4.2.3, we therefore deduce that there

exists a sequence pKnq, n P N, of compact sets Kn P Â
λPIn Bλ, and such that Kn Ă An for all

n P N, and
PInpKnq ě δp1 ´ 2´pn`1qq for all n P N. (4.2.7)

We set Yn :“ pπ´1
In

qpKnq and furthermore

rYn :“
nč

i“1

Yi P A.

Then prYnq is a non-increasing sequence of elements of
Â

λPΛEλ with

rYn ‰ H, @n P N. (4.2.8)

Indeed, since rYn Ă Zn, we have

P pZnq ´ P prYnq “ P pZnzrYnq ď P
´ nď

i“1

pZizYiq
¯

ď
8ÿ

i“1

P pZizYiq

“
8ÿ

i“1

PIipAizKiq
(4.2.7)

ď δ

8ÿ

i“1

2´pi`1q ď δ

2
,

where the first inequality we took advantage of the fact that

ZnzrYn “
nď

i“1

ZnzYi
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as well as the fact that the Zn are monotone decreasing. Therefore P prYnq ą 0 since P pZnq ě δ,

so in particular rYn ‰ H.

Our goal now is to construct from this an element z P limnÑ8 Zn, which would finish our proof
by contradiction. For this purpose, due to (4.2.8), we can and do choose a sequence pynq, n P N,

such that yn P rYn, and the monotonicity of prYnq implies that

yn P rYk @n ě k.

Hence, choosing t in some In, n P N, and projecting both sides of the previous display on the
t-th coordinate, we deduce that

πtpymq P rYn Ă πInt pKnq @m ě n. (4.2.9)

Since
Ť

nPN In “ limnÑ8 In is a countable subset of Λ, we can order its elements as t1, t2, . . . .
We now apply a diagonal argument in combination with (4.2.9) to deduce that there exists a
subsequence pynk

q, k P N, such that for each j P N the sequence pπtj pynk
qq converges in each

of the πImtj pKmq, m P N, as k Ñ 8 (mind that the πIntj pKnq are compact subsets of Etj since

the projections πIntj are continuous and the Kn are compact in
Ś

λPIn Eλ.) Hence, for each
t P Ť

nPN In, the limit
lim
kÑ8

πtpynk
q “: ryptq P πImt pKmq Ă πtpZmq (4.2.10)

(for all m P N) exists.
For some x P Ś

λPΛEλ we now define z P Ş
nPN rYn via

yptq :“
"

ryptq, if t P Ť
nPN In,

xptq, otherwise.

Then y P Ş
nPN Zn due to (4.2.10), so the intersection is non-empty which was all that remained

to finish the proof.

Remark 4.2.6. One can also prove Kolmogorov’s extension theorem by first establishing it for
the case that T is countable (using the so-called Ionescu-Tulcea theorem) and then generalize it
to uncountable T ; See [Kle14, Section 14.3] for this approach.
In particular, if one is only interested in the result for T “ N0, then there are easier proofs
available than the one we gave (and the consistency condition is also easier to formulate).

Example 4.2.7. (a) We are now in the position to show that i.i.d. sequences of random
variables, such as e.g. postulated in the strong law of large numbers, actually do exist! For
this purpose, all we have to show is the existence of an i.i.d. sequence of random variables
pXnq on some probability space pΩ,F ,Pq such that PXn “ µ for all n P N, where µ is some
given probability measure on pRd,BpRdqq.
We now apply Kolmogorov’s extension theorem to the case Λ :“ N and En :“ Rd, En :“
BpRdq, for all n P Λ, and we define the measures Pn :“ µ on pEn, Enq. For I Ă N finite
we consider the finite product measure

PI “
â

nPI
Pn “ µ

Â
nPI

on p
Ś

nPI En,bnPIEnq, as defined in Theorem 2.4.5.

It is not hard to show that the PI , I Ă Λ finite, form a consistent family of probability
measures. Indeed, for I Ă J Ă N with J finite, we have for

B “
ą

nPI
Bn P

â

nPI
En
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(i.e., Bn P En for each n P I), that

pπJI q´1pBq “
´ą

nPI
Bn

¯
ˆ
`
pRdqJzI˘ Ă ˆnPJEn.

So, according to the definition of the product measure,

PJppπJI q´1pBqq “ PJ

´´ą

nPI
Bn

¯
ˆ
`
pRdqJzI˘¯ “

ź

nPI
PnpBnq

ź

nPJzI
PnpEnq

“
ź

nPI
PnpBnq “ PIpBq.

Using Theorem 1.2.17 we thus deduce that

PJ ˝ pπJI q´1 “ PI ,

and as a conseqeunce, Theorem 4.2.1 implies that there exists a probability measure P on

`
pRdqN,BpRdqbN

˘

such that for any I Ă N finite, P ˝ π´1
I “ PI . In particular, defining we can define a

sequence of random variables pXnq on the probability space ppRdqN,BpRdqbN,Pq via

Xn : pRdqN Q ω ÞÑ ωpnq P Rd

with the desired properties as required above.

(b) Bernoulli percolation on Zd

Fix p P r0, 1s. For T Ă Zd finite define the probability measure P
p
T on pt0, 1uT ,BpRT qq “

pt0, 1uT , 2t0,1uT q by setting

P
p
T ptfuq :“

ź

xPT
pfpxqp1 ´ pq1´fpxq (4.2.11)

(with the convention that 00 :“ 0). Then the family of probability measures PT , T Ă Zd

finite, is consistent. Indeed, for S Ă T Ă Zd finite we have for f P 2S that

P
p
T ppπTJ q´1ptfuqq “

ÿ

gPpπT
S

q´1ptfuq

ź

xPT
pgpxqp1 ´ pq1´gpxq

“
ÿ

gPpπT
S

q´1ptfuq

ź

xPS
pgpxqp1 ´ pq1´gpxq ź

xPT zS
pgpxqp1 ´ pq1´gpxq

“
ź

xPS
pfpxqp1 ´ pq1´fpxq “ P

p
Sptfuq;

Since t0, 1uT is a discrete space, this shows P
p
T ˝ pπTJ q´1 “ P

p
S and hence the consistency.

Therefore, Theorem 4.2.1 supplies us with the existence of a probability measure Pp on
pt0, 1uZd

,Bpt0, 1uqbZd qq “ pt0, 1uZd
,Bpt0, 1uZd qq with the property that its projections /

pushforwards on pt0, 1uT , 2t0,1uT q are given by the expression in (4.2.11).

In fact, the existence of this measure can also be derived ‘by foot’, showing that the corre-
sponding content is σ-additive, see [Kle14, Thm. 14.36].

Remark 4.2.8. This will not be of utmost importance to us in this class, but we should note
that in some sense from a certain point of view the σ-algebra RT is not very suitable. Indeed, in
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the case r0,8q it is natural to ask whether or not a stochastic process is a continuous functions,
or the probability of this being the case. I.e., one might be interested in probabilities of the type

P
`
the function r0,8q Q t ÞÑ Xt is continuousq.

In particular, for this to make sense we would need that the set

 
ω P Ω : r0,8q Q t ÞÑ Xtpωq is continuous

(

is contained in BpRqbT . This, however, is generally not the case. This will be investigated in
detail in more advanced probability classes.
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