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Chapter 1

Set functions

In the introductory course ‘Introduction to probability and statistics’ (see | D), a frequent
motivation was the investigation of (finitely many) dice tosses or coin flips. We have seen that
those experiments were suitably described by discrete probability spaces, see | , Section

1.2]. Also in the nice setting of probability distributions with a density we have learned how
to deal with that setting by means of the Riemann integral to some extent. However, quite
quickly we had reached the limit of that approach, since for example pointwise limits of Riemann
integrable functions were not necessarily integrable anymore, see e.g. Section | , Section
1.8.3].

As promised in the introductory class, in this course we will provide a rigorous and self-contained
introduction to the concept of Lebesgue integration, which will in particular comprise and
generalize most of the content of | | regarding random variables and expectations.

The principal goals of the first two chapters are twofold:

e Investigate measures and in particular construct the Lebesgue measure on R? using a
general extension theorem for elementary notions of volume;

e Introduce the Lebesgue integral for suitable functions defined on arbitrary measure spaces;

O
=
[}

Recommended references to accompany this Chapter are | ]
as well as | |. Further sources on measure theory are [ I, [ I, [ I, [ ,

[Hal50].

1.1 Systems of sets

1.1.1 Semirings, rings, and algebras

One of the main goals will be to measure subsets of some a priori abstract set 2. In general,
it will not be possible to do so in an appropriate manner for all subsets of {2 (the so-called
‘MaBproblem’ and ‘Inhaltsproblem’ (see | ]) as well as the Banach-Tarski paradox show the
kind of problems that can arise when trying to do so; due to time constraints, we will not go
into details here).

MaBproblem: We want to construct a function x : 2R _, [0, 0] (supposed to measure subsets
of R%) with the following properties:

(a) For any sequence (A )nen of pairwise disjoint subsets A,, R?, we have

M( U A") - Z w(Ay) (o-additivity);

neN neN

!This course is not a prerequisite, however it might help intuition to have attended that course.



6 CHAPTER 1. SET FUNCTIONS

(b) For any isometry (‘Bewegung’) T of R? and any A < R? one has

w(A) = pu(T(A)) (invariance under isometries);

(c)
1([0,1)%) =1 (normalization);

Theorem 1.1.1 (Satz v. Vitali (1905), Italian mathematician (1875-1932)). Das Mafproblem
ist unlésbar fir d = 1.

Theorem 1.1.2 (Satz v. Banach-Tarski (1924), Polish mathematicians (Stefan Banach, 1892
— 1945, Alfred Tarski, 1901 — 1983)). Ford > 1, let A, B < R? be arbitrary sets with non-empty
interior. Then there exists a sequence (Cy,) of subsets C,, € R? and isometries (Bewegungen)
(T )nen such that

A=) Cu and B={] T(Cy.

Therefore, a key role will be played by certain subsets of the power set 98! of RY which are
nicely behaved. In fact, it will turn out that with little additional effort we will be able to
develop a theory of measures (and subsequently integration) not only on suitable subsets of RY,
but also of more general spaces 2 which will proves useful in many occasions.

In the following we introduce several such systems of subsets which play an integral part in the
construction of those functions (so-called measures, introduced in Definition 1.2.3 below) which
will be measuring the corresponding subsets (which will form so-called o-algebras, see Definition
1.1.18).

The first definition is just a shorthand for systems of subsets of 2 which are closed under finite
intersection.

Definition 1.1.3. Let Q be a non-empty set and let S < 2. S is called a m-system (‘m-System’)
if it is closed under (finite) intersections:

A BeS= AnBEeS. (1.1.1)

Remark 1.1.4. Using induction (‘vollstindige Induktion’) it is not hard to show that if S is a
w-system, n € N, and Ay,..., A, €S, then

ﬁ Al eS.
=1

(see exercise classes).

To us, this property will prove particularly valuable in combination with further properties, as
will be seen in the set systems introduced below.

A standard way to construct functions which are supposed to measure many subsets of a set {2
is to first specify how to measure certain ‘simple’ subsets of €2. Such simple subsets oftentimes
form a semiring as introduced in the following definition.

Definition 1.1.5. Let Q be a non-empty set. A subset S of 2 is called a semiring (‘Halbring’,
‘Semiring’) over Q) if the following properties are fulfilled:

(a)
B eS; (1.1.2)

(b) S is a m-system;
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(c) for any A, B € S, there exist pairwise disjoint Cy,...,Cy, € S such that

*n

AB=]J_ac.

One of the examples most relevant to us will be the following.

Example 1.1.6. Denote by
Z:={(a,b] : a,beR, a <b}

the set of left-open right-closed intervals in R. Then T is a semiring over R.
Proof. See exercise classes. O

The set of Cartesian products of elements of two semirings is a semiring again, as is stated in
the following result.

Lemma 1.1.7. Let 81 be a semiring over 1 and Sy be a semiring over Qo. Then
81 *82 = {A1 X A2 : A1 6817142 GSQ}
s a semiring over 21 X .

Proof. We have to establish the properties of Definition 1.1.5.
Since J € S§; and J € S, we get J € Sp * Ss.
Furthermore, to prove the second item let A = A; x Ay, B = By X By € 81 * Sy. Thus,

AnB= (AlﬂBl) X (AQﬁBQ)ESl *32,
—_—— —
€Sy €So

since 81 and Sy are stable under intersections.
To prove the last item, again let A = Ay x Ay, B = By X By € §1 * S3. Then A\B can be
partitioned via

A\B = ((Al\Bl) X AQ)U ((Al N Bl) X (AQ\BQ)) (113)
Now by assumption there exist C1,...,C), € S pairwise disjoint with

Ai\By = Uj:lci

and Dy, ..., Dy, € Ss pairwise disjoint with

AQ\BQ = U::lDZ

As a result, the right-hand side of (1.1.3) can be written as a pairwise disjoint union of elements
of &1 * Sy, which finishes the proof. O

We will use the standard convention that for a,b € R% we write a < b if a; < b; for all
i€ {l,...,d}, and similarly for other types of (in)equalities. In addition, for a,b € R¢ with
a < b we will use the notation (a,b) := X?zl(ai, b)) = {reR?: a < x < b} for the Cartesian
product of (one-dimensional) intervals, and analogously for other types of intervals.

Corollary 1.1.8. For any d € N, the set
7¢ .= {(a,b] : a,be RY, a < b} (1.1.4)

of hyperrectangles (‘Hyperquader’) is a semiring over RY,
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Proof. We proceed by induction (‘vollstdndige Induktion’) over the dimension d. The case d = 1
is Example 1.1.6.

Assume the statement holds for arbitrary d € N. Then Z¢t! = 79 %« 7, and hence Z9*! is a
semiring due to Lemma 1.1.7 and the induction hypothesis. U

Definition 1.1.9. Let Q be a non-empty set. A subset R of 22 is called a ring over § if the
following properties are fulfilled:

(¢)

FeR; (1.1.5)

(b)
A, B e R implies Au BeTR,; (1.1.6)

(c)
for any A,B € R, one has A\B € R. (1.1.7)

Example 1.1.10. Let Q2 be an arbitrary non-empty set. Then the set R of countable (we use
countable in the sense of ‘at most’ countable, i.e., a set is countable if it is finite or has a
bijection with N) subsets of Q is a ring.

Proof. Since ¢ is countable we have ¢ € R. Furthermore, if A, B € R, then A and B are both
countable and hence so is A\B. In this case, also AU B is countable, and hence R is a ring. [

Example 1.1.11. Let S be a semiring. Then the set
n
R :{USZ- . neN, SieSWe{l,...,n}}
i=1

is a ring. It is also referred to as the ring generated by S, and it is the smallest ring containing

S.

Proof. Since (J € S, we immediately get ¢J € R.

For A,B € R we have A = | Ji, 4;, B = |J;_, Bi, with A4;, B; € S, and we get at once that
AuBeR.

The ‘hard’ part is to show the last property. For that purpose, assume again that A, B € R and
hence that A = J/~, A;, B =J;_, Bi, with A;, B; € S. Then

ﬂ i\Bj :

m

AB = )4\ Lnj B
j=1

[l
I Cg

Since S is a semiring, we deduce that

nij

ang; = o,
k=1

some n; j € N and C’,i’j eSforall ke {l,...,n;;}. Hence,
m n Mg o m
Z?] —_ 7]
-Unuea’=U U ﬂ Crlyy
i=1j=1k=1 i=1 fex ™ (Lo i} =1

eS

which shows that R is a ring.
Furthermore, since rings are stable under finite unions, any ring containing & must also contain

R. Thus, R is the smallest ring containing S.
O
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Lemma 1.1.12. For a non-empty set Q, a subset R < 2 is a ring if and only if one of the
following two conditions holds true:

(a)
JeR,

for any A, B € R one has AABeR, and

for any A, Be R one has Au B € R;

(b)
JeR,

for any A, B € R one has AABeR, and

for any A, Be R one has An B eR;

Proof. Let R be a ring over 2. Since
AAB = (A\B) u (B\A),

we deduce that (a) holds true.
Now assume that R fulfills (a). Then, since

An B = (AU B)A(AAB)

we deduce that (b) holds true.
Now assume (b) to hold true. Then since

A\B = AA(A n B),

(1.1.7) follows. Furthermore, since A u B = AA(B\A), we also deduce (1.1.6). Hence, R is a
ring. ]

Corollary 1.1.13. If R is a ring over a non-empty set 2, then R is also a semiring over €.

Proof. This is an immediate consequence of Lemma 1.1.12 and the very definition of a semiring
and a ring. O

An even stronger (cf. Lemma 1.1.16) concept than that of a ring is given in the following
definition.

Definition 1.1.14. Let Q be a non-empty set. A subset A of 2% is called an algebra® over
(‘Algebra tiber Q') if the following properties are fulfilled:

(a)
Qe A; (1.1.8)

(b)
Ae A implies A° € A, (1.1.9)

2Some authors use the term field instead of algebra, see e.g. [ ]
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(c)
A,B e A implies AU B € A. (1.1.10)

Lemma 1.1.15. Let Q be a non-empty set. A subset A < 2 is an algebra over Q if and only
if the following conditions are fulfilled:

(¢)

Qe A (1.1.11)

(b)
Ae A= A%c A; (1.1.12)

(c)
A BeA= AnBe A (1.1.13)

Proof. Let A be an algebra. It only remains to show (1.1.13). But De Morgan’s laws imply
An B =(A°U B¢ hence if A, B € A, then (1.1.10) and (1.1.9) yield that A n B € A.

Conversely assume that the system A fulfills properties (1.1.11) to (1.1.13). It remains to show
(1.1.10). But again by De Morgan’s laws we obtain A U B = (A° n B°)¢, and hence (1.1.12)
and (1.1.13) imply that A U B € A. Hence, A is an algebra over (). O

Lemma 1.1.16. Let Q) be a non-empty set. A ring R over 2 is an algebra over Q if and only
if Qe R.

Proof. Let R be a ring over 2 with Q € R. Then (1.1.8) immediately holds true. Choosing
A:=Q e Rin (1.1.7), we obtain that for arbitrary B € R we have B¢ = QO\B = Q\B € R,
which implies that (1.1.9) holds true as well. In addition, (1.1.10) immediately follows from
(1.1.6). Hence, R is an algebra.

Conversely, if A is an algebra, then J = Q¢ € A due to (1.1.9) and (1.1.8). Thus, (1.1.5) holds
true. Furthermore, for A, B € A we have A\B = A n B¢, hence (1.1.7) is a consequence of
(1.1.13) and (1.1.9). Lastly, (1.1.6) is implied by (1.1.10). O

As an application, we have seen in Corollary 1.1.8 that 7% is a semiring over R?, and we can
generate a ring from it as in Example 1.1.11. Still R? is not contained in this ring, so due to
the previous lemma this is still not an algebra.

We now go for a short detour to explain the motivation of the terms ‘ring’ and ‘algebra’ in
the above context. For this purpose we recall that in (linear) algebra, a ring (‘Ring’) had been
defined as a set R endowed with operations + : R x R — R (addition) and - : R x R — R
(multiplication) such that (R, +) is an additive commutative group, and such that

(a)

Va,b,ce R: a-(b-c)=(a-b)-c (associativity)

(b)

Va,bce R: a-(b+c¢)=a-b+a-¢, (a+b)-c=a-c+b-c (distributivity)

Furthermore, in linear algebra, one way to introduce the concept of an ‘algebra’ is to demand
it to be a ring R which in addition is a vector space over a field® (‘Kérper’) K such that in
addition, for all u,v € R and o € K one has

a(uv) = (au)v = u(aw).

3 Adding insult to injury, there is again a possible overlap with terms here, since as we have seen before, some
(although seemingly not too many) authors use the term ‘field’ for an algebra (in the set-theoretic sense). It
seems that for notations in German there is slightly less confusion.
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Lemma 1.1.17. Let Q be a non-empty set.

(a) Endow the power set 2 with A (symmetric difference) as addition and ~ (intersection)
as multiplication. Then (22, A, ") is a commutative ring with a zero (‘Nullelement’) &
and a one (‘Einselement’) Q.

(b) A subset R < 2% is a ring in the sense of Definition 1.1.9 if and only if (R,A,N) is a
Ing.

(c) Let A < 2% be a ring or an algebra in the sense of Definition 1.1.1/ or 1.1.9, respectively.
Then (A, A, n) is an algebra over the field {0,1}.* Here we define 0-A := & and 1-A := A
for Ae A.

Proof. See exercise classes. O

1.1.2 o¢-algebras and Dynkin systems

The systems of sets introduced above, i.e., semirings, rings, and algebras, only involved stability
under finite operations (such as intersections and unions, for example). It turns out, however,
that we want to be able to measure not only finite but countable intersections (or unions) of
‘nice’ sets.” As a consequence, we will introduce systems of sets that are stable under such
kinds of operations.

Definition 1.1.18. Let Q be a non-empty set. A subset F of 2% is called a o-algebra over QF
(‘o-Algebra iiber ) if the following properties are fulfilled:

(a)

Qe F; (1.1.14)
(b)
A e F implies A® € F; (1.1.15)
(c)
Ay, Ay, ... e F implies | ] Ane F. (1.1.16)
neN

Exercise 1.1.19. If F is a o-algebra over Q) and F < (), then
Fri=FnF:= {FmG : Ge]—'}
is a o-algebra over F' (it is called the trace o-algebra of F' in F).
Exercise 1.1.20. Let Q) be a non-empty set.
(a) Any o-algebra F also is an algebra, i.e., it is stable under finite unions.

(b) F < 2% is a o-algebra if and only if (1.1.14), (1.1.15), and

Ay, Ay, ... € F implies (| An € F. (1.1.17)

neN

4“Where 0 is the neutral element of addition, and 1 the neutral element of multiplication. In particular,
O+1=1,and 14+1=0.

°In ‘real life experiments’ you might e.g. want to ask whether certain properties are fulfilled by an infinite
sequence of coin tosses or dice rolls.

6 Again, some authors use the term o-field instead, see | ]
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While g-algebras play an important role not only in probability theory but also e.g. analysis,
the following concept of a Dynkins system has primarily been employed in probability theory.

Definition 1.1.21. Let Q be a non-empty set. A subset D of 2 is called a Dynkin (‘Dynkin-
System’)” system (or also A-system (‘A-System’)) over € if the following properties are fulfilled:

(a)
Qe D; (1.1.18)

(b)
A € D implies A° € D; (1.1.19)

If A1, Ao, ... €D is a sequence of pairwise disjoint sets, then U A,eD. (1.1.20)

neN

Exercise 1.1.22. Find an example of a Dynkin system that is not a semiring.

Lemma 1.1.23. Property (1.1.19) in Definition 1.1.21 can be substituted by the following: For
any A, B € D with A = B one has B\A € D.

Proof. Indeed, if this property holds, then for any A € D we obtain, setting B := Q) € F, that
A°=Q0\AeD.
Conversely, if D is a Dynkin system and A, B € D with A < B, then we have
B\A = (AUB°)¢,
and the latter is contained in D since Dynkin systems are closed under disjoint unions and

complements. O

We will investigate the relations between A-systems and o-algebras in more detail in Theorems
1.1.33 and 1.1.32 below.

Proposition 1.1.24. Let A be an arbitrary non-empty set, and let (Ax)aen be a family of
o-algebras (or rings, or algebras, or A-systems) over the same set Q). Then

(14

AEA

is a o-algebra (or ring, or algebra, or \-system) over Q0 again.

Proof. We only give the proof for o-algebras, the remaining cases are proven in a similar way.
Since 2 € Ay for all A € A, we immediately get

Qe ﬂ ./4)\.
AeA

Furthermore, assume A € (1) ,., Ax. Then A € A, for all A € A, therefore A e A, for all X € A,
and hence
Afe ﬂ .A)V
AeA

Lastly, assume that (A, )nen is a sequence of sets such that A, € (), Ax for all n € N. Thus,
for each A € A, we have A, € A, for all n € N, and hence [ J, .y An € Ax. As a consequence,

U An € ﬂ .»4)\
neN PYSN
for each A € A, too, which finishes the proof. O
"In honor of Eugene Dynkin (1924-2014)
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Exercise 1.1.25. Show that Proposition 1.1.24 does not hold true anymore if one replaces
‘o-algebra’ by ‘semiring’.

The following is a generalization of the very specific Example 1.1.11.

Definition 1.1.26. Let Q be a non-empty set, and let £ < 2. Proposition 1.1.2/ implies that

5(&) = N D

D is a A-system over 2
DoE

is a A-system again. It is called the \-system generated by &.

Similarly,
o(€):= ﬂ F

F is a o-algebra over §2
FoE

is a o-algebra again. It is called the o-algebra generated by £.
In an analogous way, one can define rings and algebras generated by subsets of 2.

Note that it follows the previous definition that the o-algebra ¢(€) is at the same time the
smallest o-algebra containing £ (and similarly for the remaining set systems).

Remark 1.1.27. For simpler set systems such as algebras and rings it is possible to explicitly
represent their elements using by applying finitely many combinations of elementary set func-
tions to elements of their generators (see Example 1.1.11, problem 1 on the first homework sheet,
or also [ , Ch.1, §4]). For o-algebras this is generally not possible anymore, see the Section
‘Constructing o-fields’ in [ | pp. 30. However, for many purposes it is actually sufficient
to consider the generator of o-algebras or Dynkin systems instead of the entire set system.

An prominent role will be played by the Borel-o-algebra (French mathematician and politician
Emile Borel (1871-1956)).

Definition 1.1.28. Let Q be a non-empty set. A set 7 < 2 is called a topology (‘“Topologie’)
if the following hold true:

(a)
g, eT;

(b) if (Ox)xen is an arbitrary family of sets Oy € T, then

UO)\ET;

AEA

(c) if O1,09 € T, then
01 M 02 ET.

The pair (2, 7) is called a topological space. The elements of T are called open sets, and the

elements of
{C’ cQ:C e 7'}

are called closed sets.

This definition can be motivated by having a closer look at metric spaces. (E.g., consider R?

endowed with the Euclidean metric defined via d(z,y) := A/3% | (z; — 1), for z,y € R%) In
fact, for a metric space (X,d) a subset O < X had been defined to be open if for each x € O
there exists r € (0,00) such that

By(z):={ye X : d(z,y) <r} < O.
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It can be shown without too much effort that defining 7 as the set of all open sets of the metric
space (X,d), it fulfills the properties of a topology as defined in Definition 1.1.28.

We will mostly be dealing with metric spaces (and, in fact, most of the times with R? endowed
with the Euclidean metric), but the following definition does not come at any additional cost
in its fully-fledged generality.

In the following, instead of 7 for topology we write O to denote the topology (inspired by the
wording ‘open’ sets).

Definition 1.1.29. For an arbitrary topological space (X,Q), the o-algebra

B(X) = 0(0) = N F

F is a o-algebra over 2
Fo0

generated by the open subsets of X is called the Borel-o-algebra (‘Borel-o-Algebra’) on Q. The
sets B € B(X) are called Borel sets or Borel-measurable sets.

Example 1.1.30. (a) Most often we will be interested in the case X = R? deN, and O the
set of open subsets of R? (in the topology induced by the Buclidean metric), i.e., in the
o-algebra B(RY).

(b) It will also turn oul useful to consider the Borel-o-algebra B(R) of the two point com-
pactification R := R u {—o0,0} of R. The open sets of R can be described as the largest
topology (i.e., a system of open sets) on R such that the map

o:[-1,1] - R
{ +oo, ifz = +1,
€T —>
tan(

mx/2), otherwise,

s continuous, where we recall that the map ¢ is continuous if and only if all preimages
0 1(0), O = R open, is open in [—1,1]. Here, [—1,1] is endowed with the usual (trace-)
topology of R, i.e., the open subsets of [—1,1] are just the ones of the form [—1,1] n O,
for any O < R open in the topology induced by the Euclidean metric.

In other words, the open sets of R are given by (unions of) the sets of the form
e V c R open;
® [*OO,(Z), ae R;
e (a,m], a e R;

In particular, we see that {00} and {—o0} are not open in this topology of R.

(c) in fact, it is not easy to construct sets in R which are not in B(R?). An example of such
sets are the so-called Vitali sets; however, apart from possibly peculiar counterexamples,
all subsets of R? that we will encounter in this course are actually contained in B(R?).

Lemma 1.1.31. Fach of the following subsets of 2R? s g generator of the Borel-o-algebra
BRY), and each of them is a T-system:

(a) & = {(a,b) : a,be Q? with a < b} v {T};

(
(b) & = {(a,b] : a,beQ? witha < b} L {F};
(¢) & :={[a,b) : a,be Q? with a < b} U {F};
(d) € :={[a,b] : a,beQ? with a < b} U {T};
(¢) & :={(~0,a] : aeQ'};
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(f) & = {(—0,a) : aeQ};

(9) & = {[a,») : a € Q?};

(h) & :={(a,0) : a e Q};

(i) € :={AcR?: A is compact};
() &10:={Ac R : Ais closed}.

We can replace any Q in the above by R and the statements still hold true.

In addition, in the case d = 1, and considered as subsets of 2%, any of the above systems of
sets is a generator of B(R) also (where in the cases (e) to (h) we have to include 0o and —oo,
respectively, i.e., exchange the corresponding (" or’) by '[" or']’, respectively).

Proof. We prove only part of the result (the remaining cases can be proved in similar ways).
Any open subset of R< can be written as a countable union of elements of &; (or of &, &3, or &
for that matter). Hence, all open subsets of R™ are contained in any o-algebra containing any
of the &, 1 < j <4, and thus we deduce

B(R") c o(&;), foralll<j<4 (1.1.21)

Conversely, since any element of & is open, we immediately get o(£;) < B(R"™), which proves
the desired equality o(&1) = B(R"™).

Furthermore, the complement of any element of & is open, & < B(R?), and hence o(&;) <
B(R%); thus, in combination with (1.1.21) we have

o(&4) = B(RY). (1.1.22)

To continue, any element of & (or of £3) can be written as a countable union of elements of £4;
indeed, we have for a,be Q% with a < b that

(@)= | [0l

reQ4
a<r<b

and similarly in the case of £3. As a consequence, &, &3 < & and thus we obtain o(&2),0(&3) <
0(&4), which in combination with (1.1.21) and (1.1.22) supplies us with

(&) = 0(&) = B(RY).
Furthermore, &, £19 < B(RY), hence
o(&),0(E10) < BRY). (1.1.23)
Conversely all open subsets of R? are contained in o (), hence
o(E10) = B(RY). (1.1.24)

In addition, £ < & and hence in combination with (1.1.23) and (1.1.22) we deduce o(&y) =
B(RY).
For the last point, alternatively we could argue by exhaustion as follows: For C € £y we have

C = U ([n,n]dmC),

neN
compact

and in combination with (1.1.24) we infer (&) = B(R?).
The remaining parts are left as an exercise.
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Theorem 1.1.32. Let D be a A-system over a non-empty set . Then D is a w-system if and
only if it is a o-algebra.

Proof. Let D be a A-system.

Any o-algebra is obviously a m-system (see Exercise 1.1.20 (b), where all but finitely many A,
can be chosen to be ).

Conversely, assume that D is a m-system. Obviously, (1.1.19) and (1.1.18) imply that (1.1.15)
and (1.1.14) hold true, so it remains to show that (1.1.16) is fulfilled as well. For this purpose,
we start with observing that D is \-closed. In fact, if A, B € D, then

A\B=AnBeD.

Now let a sequence (A, )nen of sets with A,, € D for all n € N be given. Define B; := A;, and
for n > 2 set

B, = A\ U A = An\U:Bi.
=1

By definition the B, form a sequence of pairwise disjoint sets, and inductively we obtain that
B, € D for all n € N. As a consequence,

0

o0
An:UBneD.
=1 n=1

n

This implies (1.1.16).
O

The following result is fundamental in probability theory, and in particular it will be helpful in
order to show Theorem 1.2.17 below.

Theorem 1.1.33 (Dynkin’s m-A-Theorem). Let Q be a non-empty set and let A < 22 be a
w-system. Then

5(A) = o(A). (1.1.25)

Proof. Since any o-algebra is a Dynkin system also, it is clear that ‘c’ holds in (1.1.25). For the
converse inclusion, we observe that it is sufficient to show that 6(.A) is a m-system, which due
to Theorem 1.1.32 would imply that 6(.A) is a o-algebra (containing .4), so ‘>’ would follow.
For this purpose we define for arbitrary A € §(A) the set

Sa(A) = {Bed(A) : AnBed(A)}.

We claim that for any A € §(A), the set system d4(A) is a Dynkin system. Indeed, we have
the following:

e Nedg(A), since AnQ = Aeds(A) by choice of A;

o if B € da(A), then also B n A € 6(A); hence, Lemma 1.1.23 supplies us with A n B¢ =
A\(B n A) € §(A), and thus B¢ € §4(A) also;

e if (B),) is a sequence of pairwise disjoint sets such that B,, € d4(.A) for all n € N, then we
have B, n A € §(A) for all n € N, and furthermore those sets are pairwise disjoint. As a

consequence,
feel

(Un_an) A= U:;l(Bn A A) € 8(A),

ie, By eda(A).
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Hence, §4(A) forms a Dynkin system.

Next, we observe that since A is a m-system, we have A < §4(A) for all A € A. Since d4(A) is
a Dynkin systems for A € A due to the above, we deduce that §(A) < 4(A) for any A € A.
This, however, implies that for all B € 6(A) and A € A we have An B € §(.A), hence A < d4(A)
for all A € 6(.A) now, and thus 6(A) < d4(A) for all A € §(A). In particular, this implies that
d(A) is a m-system. In combination with Theorem 1.1.32 this establishes the fact that §(A) is
a o-algebra, hence §(A) > o(.A), which finishes the proof. O

Corollary 1.1.34. In the notation of Lemma 1.1.31 we have for each j € {1,2,...,10} that
B(R?) = 6(&;).

Proof. This is a direct consequence of Lemma 1.1.31 in combination with Theorem 1.1.33. [

1.2 Set functions

1.2.1 Properties of set functions

Definition 1.2.1. For Q a non-empty set and €& < 22, a function p : € — R is called a set
function.
The set function u is called

e monotone if u(A) < p(B) for all A, B € £ with A < B;
e additive if
M( U1 Ai) = Z;M(Ai)
for all pairwise disjoint Ay,...,Ap €& with | J;_, Ai € &;
e subadditive if
n(A) < Z; p(Ai)

(2

for all A, Ay, ..., Ay € € with A < | J;_, Ai;

e og-additive if
M(UAi> = > (A (1.2.1)
i=1 i=1

for any sequence of pairwise disjoint sets Ay, As,... € & with | J;2, Ai € € such that the
right-hand side of the previous equation is well-defined;

e og-subadditive if

p(A) < Z p(Ai)

for any A, A1, Aa, ... € € with A = | 2| A; such that the right-hand side of the previous
equation is well-defined;

Remark 1.2.2. In the context of Definition 1.2.1, as for ‘usual’ functions, we will commonly
write p < v for two set functions on & if for all A€ E we have

u(A) < v(A).
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Apart from a short excursion (see Definition 1.2.11 below which will prove useful later on) we
will only be interested in non-negative set functions. Some types of set functions will occur
frequently, hence we introduce the following terminology.

Definition 1.2.3. Let S be a semiring over §, and let y: S — [0,00] be a set function with
w(F) =0. Then p is called a

(a) content (‘Inhalt’) if p is additive;

(b) pre-measure (‘Pramaf’) if p is o-additive;

(c) measure (‘Maf}’) if u is a pre-measure and S is a o-algebra;

(d) probability measure (‘Wahrscheinlichkeitsmaf’) if u is a measure with p(§2) = 1.

Remark 1.2.4. Show that the items in Definition 1.2.3 become more and more restrictive. Le.,
if (d) is satisfied, then (c) is also satisfied; if (c) is satisfied, then (b) is also satisfied, and so on.
On the other hand, one can find examples of a content which is no pre-measure, of pre-measures
which are no measures, and so on (exercise).

Definition 1.2.5. Let S be a semiring over Q and let pn: S — [0,00] be a content.
(a) Then p is called finite if p(S) < oo for all S € S. Furthermore, p is called o-finite if there

exists a sequence (Sy) of sets Sy, € S with

u(Sp) <o VneN,

and

o0
UJs. =9
n=1

(b) A set N € S is called a (u-)null set (‘Nullmenge’) if u(N) = 0.%

Definition 1.2.6. Let Q # &, F a o-algebra over Q, and p: F — [0,00] a measure, Then the
triplet (2, F, p) is called a measure space.

A measure space (Q, F, ) is called a o-finite measure space if p is o-finite.

If 1 is a probability measure, then a measure space (0, F, 1) is called a probability space.

Example 1.2.7 (Contents, pre-measures). (a) On the semiring Z of left-open right-closed
intervals introduced in Example 1.1.6 we can define a o-finite content as follows. Let
f: R —[0,00) be continuous and set

F(z):= f:f(r) dr, zeR,

and where the integral is to be interpreted in the Riemann sense. Then F' is non-decreasing

and hence
u(l) := F(b) - F(a),

for I = (a,b] € Z defines a content on Z. Indeed, we have u() = F(a) — F(a) (for any
a €R), and for (a;,b;] € Z, 1 < i < n, with

- n

Ui:l(ai’ bz] € I,

8Some authors consider any B <  for which we find N € S with B < N and p(N) = 0 a null set.
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we can, after possibly permuting the indices, write

cn

(a,0] = Uizl(ai, bi

witha =a1 <by=a3<by=a3<...bp,_1 =a, <b, =0b. Hence, since

n n

u((a,b]) = F(b) = F(a) = Y, F(bi) — F(ai) = Y ul(as, bi)),

i=1 i=1

we deduce that p is additive and hence a content indeed.

For S, := (—n,n] € S we obtain that | J, . Sn = R and p(S,) = F(n) — F(—n) < o,
hence u is o-finite.

Using problem 3 of Homework 3 (see also Example 1.1.11) we can uniquely extend u to a
content on not only the semiring S, but also on the ring R generated by S.

(b) For our purposes, the most important content / pre-measure arquably is the d-dimensional
Lebesgue content / pre-measure \%. It is defined on the set of d-dimensional hyper-cuboids
7% introduced in (1.1.4) as follows. For (a,b] € I¢ we have a,b € R? with a < b, and its
d-dimensional Lebesgue pre-measure is defined as

A T8 [0, 0),

d 1.2.2
(a,b] — H(bi — a). (1.2:2)

It is not too hard to verify that A\* defines a content on I% indeed, for the case d = 1 this
is a consequence of Part (a) of this example, where we choose f = 1. For the case d = 2
we refer to the proof of Proposition 1.2.8 (alternatively, see [ , Satz 4.3]).

and again choosing the sets Sy, := (—n,n]¢ € I¢ we get that R = | J, .xy Sn and p(Sy) =

(2n)4, thus X is o-finite.

neN

In fact, \* even defines a pre-measure:

Proposition 1.2.8. The function \? defined in (1.2.2) defines a pre-measure on Z°.

Proof. The proof is slightly more technical than what we did in Part (a) of this example

for the case d = 1; however, the key ideas are present here already. We refer to | , Satz
I1.3.1] for a proof (in this source, several strategies for proving the result are given — the
one following [ , Satz I1.3.8 b)] is closest to Part (a) of this example). O

Example 1.2.9 (Measures). (a) Let Q be an arbitrary set and define the counting measure
(‘“Zéhlmaf}’)

w28 — [0, 0]
A 4],

where for A < Q we denote by |A| the number of elements of A if A is finite, and oo
otherwise.

Exercise 1.2.10. Show that p indeed defines a measure on 2. Is it o-finite?
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(b) Let X be uncountable and define F to be the o-algebra over X that contains all sets A < X
for which either A or A° is countable. (Check that this defines a o-algebra indeed!) For
A € F define the measure p via

pu(A) =

{ 1, if A uncountable, (1.2.3)

0, if A countable.

Check that pv defines a measure on (X, F). We have (&) = 0, and for a sequence (A,,)
of pairwise disjoint sets with Ay, € F for all n € N, we have that | J,, .y An is countable if
and only if A, is countable for each n € N. Thus,

B 1, if some A, is uncountable,
M( U A") N { 0, ifall A, are countable.

neN

neN

In addition, if one A,x is uncountable, then, since the A, are pairwise disjoint and in F,
we get that A, is countable for all n € N with n # n*. Thus,

1, if some A, is uncountable,
Z :U’(An) = { /

0, if all A, are countable.
neN

This shows that p is o-additive and hence a measure.
Also, observe that there are many p-null sets, not just .

Furthermore, u is o-finite; indeed, u is a finite (even a probability) measure since pu(X) <
00, and any finite measure is o-finite as we can choose S, := X for all n € N.

On the other hand, if we replaced 1 by oo in (1.2.3), then p would still be a measure
(check!) but it would not be o-finite anymore. Indeed, if we had a sequence (Sy) with
Sy € F and u(Sy) < o, then this would imply that Sy, is countable for all n € N, and in
particular we would infer that U

S

neN

is countable again. Since we assumed X to be uncountable, a fortiori we would deduce
Uen Sn # X, hence pu cannot be o-finite.

The above were relatively simple examples of set functions, which could be defined explicitly
for all sets we were interested in. If, however, we would try to directly define a measure on
B(RY) which is consistent with the content of d-dimensional volume for the hyperrectangles
7% = B(R?%), we would run into troubles: The reason is just that we do not have an explicit
hold on elements of B(R?) (as we had e.g. for generated algebras, cf. Homework 2 on sheet 1).
Hence, one of our goals will be to give at least an abstract machinery of extending such simple
notions of volume on basic sets to bigger systems of sets, see Section 1.3 below.

We now introduce the concept of a signed measure here for the sake of completeness. This is
not very essential in probability theory, but on the one hand it will turn out that it does not
really make things more complicated, and on the other hand it makes our short introduction to
measure theory a bit more complete.

Definition 1.2.11. For a o-algebra F over 2, we call a set function p : F — [—00,00] with
w(H) = 0 a signed measure if p is o-additive.”

Exercise 1.2.12. (a) Show that if p is a signed measure, then its range is either a subset of
[—o0,0) or of (—w0,0].

°In particular, we require all sums occurring on the right-hand side of (1.3.4) to be well-defined. Alternatively
we could also demand the restriction of the ranges established in Exercise 1.2.12 in the definition already, if that
makes you feel more comfortable.
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(b) If v is a signed measure and A,B € F with A < B and pu(B) € (—00,0), then also
w(A) € (—o0,00).

Although in probability theory we will mostly be interested in probability measures, it will turn
out useful to be able to cover the case of ‘nicely’ behaved infinite contents (and measures) also.

Lemma 1.2.13. Let S be a semiring and let p be a content on S. Then:
(a) w is monotone;

(b) if S is a ring, then for all A, B € S we have

1(A v B) + p(An B) = u(A) + p(B); (1.2.4)

(¢) p is subadditive, and if p is o-additive, then u is also o-subadditive;
(d) if S is a ring and Ay, ..., A, € S with p(|J;—, A;i) < ©, then

,u< U Ak) = Z (—1)kt Z p(Ai n...nA;,)  (inclusion-exclusion formula).
k=1 k=1

1< <...<ip<n

(1.2.5)

Proof. (a) Let A,B e S with A c B. Since S is a semiring we can write B\A = U?lej some
pairwise disjoint C; € S, 1 < j < n, some n € N. Thus, A4, Cj, 1 < j < n is a family of
pairwise disjoint elements of S such that

n
Nen

Jj=

B =AU

Hence, the additivity of the content u gives

which implies the monotonicity, since p = 0.

(b) We have

esS S
and hence the additivity of u supplies us with

u(A) + u(B) = p(An B) + p(A\B) + u(B) = p(An B) + p(A v B),
where we also took advantage of AABUB = AU B.

(c) Let A, Ay,..., Ay € S with A < |J; A;. Similar to the proof of Theorem 1.1.32 we write
Bi := A; and for k > 2,

k—1 k—1
B o= A\ [ 4i = (] 4\ © A,

i=1 i=1

so in particular
n n
U Ay = U By. (1.2.6)

By definition of a semiring, Ag\A; is the finite disjoint union of elements of S. Since S is
a m-system, it is not hard to show that the same applies to By,
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i.e.,

-
By, = UZ ck some pairwise disjoint Cf, e ,ijk €S.

=1 ¥’

Using this representation for By, in a similar fashion we get that
g
Ap\By, = LJZ‘:IDfC some pairwise disjoint le, .. ,Dl;% €S.

In combination with (1.2.6) we therefore get

) = n(UL, B a) = w(UL U 0t ) 2 3255 ek 0 )

k=1i=1
< S (D neh) + Y u(Dh) IS p(ay),
k=1 =1 =1 k=1

which shows the subadditivity, and where we also took advantage of the monotonicity of
w in order to obtain the inequality.

If p is o-additive, then the o-subadditivity follows in essentially the same way, replacing
n in the above by co.

(d) Using Lemma 1.1.12, the proof proceeds in the same way as that of | , Lemma 1.3.10]
(that proof was for p a probability measure on a o-algebra, but it proceeds in the same
way for p a content on a ring).

O

The following definition will allow us to introduce the notion of continuity for functions defined
on sets also.

Definition 1.2.14. We write
(An) T A asn — o0,

if (An)nen s a sequence of sets such that A,, < Apqy for allne N, and A = |,y An-
Similarly, we write
(An) | A asn — oo,

if (An)nen is a sequence of sets such that Ap1 < A, for allneN, and A =),y An.
Definition 1.2.15. Let S be a semiring and let pu be a content defined on S.

(a) We say that p is continuous from below (‘stetig von unten’) if for any sequence of sets

(Ay) with A, T A as well as Ap, A€ S for all n € N, one has

lim ,U'(An) = :U'(A)

n—00

b) We say that p s continuous from above (‘stetig von oben’) if for any sequence of sets
1

(Ay) with A, | A as well as Ap, A€ S and pu(A,) < o for all n € N, one has

lim ,U'(An) = :U'(A)

n—00

(¢) We say that p is continuous in J (‘stetig in &) if for any sequence of sets (Ay) with
A, | & as well as A, € S and u(Ay) < o for all n € N, one has

lim u(A,) =0.

n—0
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As the name of this section suggests, we will mostly be interested in measures, i.e., in particular
the property of a set function being o-additive will play a crucial role. Thus, it turns out useful
to have other characterizations (and related properties) of o-additivity available.

Proposition 1.2.16. Let u be a content on a ring R.
Consider the following properties:

(a) w is o-additive (i.e., it is a pre-measure);
(b) w is continuous from below;
(¢) w is continuous from above;

(d) p is continuous in J;
We have the following implications:
(a) = (b)) = (¢) <= (d).
If in addition u is finite, then in the previous display = can be replaced by <.

Proof. '(a) = (b)":
Let (A,,) and A be as in the assumptions of (b). As done several times before already, we define
B := A; as well as

n—1
By, = A\ U A;
i=1

~—
ER
—_——
ER

for n > 2. Then the (B,,) form a sequence of pairwise disjoint sets with B,, € R, and such that
Uiy Bi = Ui, A; for all n € N. As a consequence, and since p is o-additive by assumption,
we get

0 . 0 n
w(A) = ,u( U B¢> pro-additive Z w(B;) = nlgfolo Z u(B;) = lim p(Ap),
i=1 i=1

. n—00
=1

which shows that p is continuous from below.

'(b) = (a)’:

Let (Ajy,) be a sequence of pairwise disjoint sets with A, € R for alln € N as well as | J,,cy An € R.
Defining B,, := U?:lAi’ we have a sequence (B,) with B, € R and such that B, 1 B :=
Uien Bi € R as n — 0. Henceforth, the continuity from below supplies us with

e} n e}
continuous from below .. additivit; .
p(Ja) =uB)" 2 lim_ pu(B,) " dim Y (4 = Y (A,
i=1 =1

n—0o0 n—00 4 .
=1

which proves the o-additivity of u.

"(b) = (c)":

Let (A,,) and A be as in the assumptions of (c). Since p(A4,) < oo and A, D A, 41 for all n e N,
the additivity of p implies that

HANAL) = p(AD) — a(Ay). (1.2.7)

Now because 4, | A as n — o, we get that A;\A4,, T 41\A as n — o0, and therefore the
validity of (b) implies the existence of the left-hand side of

. 1.2.7 . .
p(ANA) = Tim pu(A\Ay) “27 T (A1) — pu(An) = (A1) — T p(Ay),
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exists. Hence, using pu(A;) < oo,
Tim 1(4,) = p(A1) — p(AD\A) = u(A),
where in the last equality we took advantage of the additivity of u.
'(¢) = (d)’: This is obvious.
"(d) = (c)":
Let (A,) and A be as in (¢). Then B,, := A,\A | & as n — o0. Furthermore, the monotonicity

of p in combination with u(A,) < oo implies that u(B,,) < o for all n € N. As a consequence,
we deduce from the continuity of p in ¢ that

H(AL) = u(By) + u(A) - p(4)  asn— o,

which implies the continuity of p from above.

It remains to prove '(b) <= (¢)’ in the case of u being finite. For this purpose, let (4,) and A
be as in (b). Then A\A,, | & as n — o0 and p(A4,) < o for all n € N. Hence, the continuity of
1 in ¢ in combination with the finiteness of u supply us with

u(A) = p(Ap) = p(A\A,) >0 asn — o,

and hence lim, o u(Ay) = p(A), which shows the continuity from below.
O

We now give a first application of Dynkin’s m-A-Theorem (Theorem 1.1.33) that will prove useful
later on.

Theorem 1.2.17. Let € be a m-system over ). Assume there exists a sequence of sets (Ey)

with E, € € for alln € N and | J,,cy En = Q. Furthermore, let p1, po denote two measures on
(Q,0(&)) such that

(a)
1 (E) = ua(E) VE €&, (1.2.8)

(b)
w1 (En) = po(Ep) <o VnelN. (1.2.9)
Then the measures p1 and ps coincide and are o-finite.

Proof. The o-finiteness is a direct consequence of (1.2.9). Hence, it remains to show that p;
and po coincide. For E € £ with p1(E) < o0, define

Dg:={Deod(&) : mi(DnE) = pa(Dn E)}.
Claim 1.2.18. Dg is a Dynkin system.

Proof. We have €2 € Dg, since the middle equality of p1(Q2 N E) = p1(E) = p2(E) = p2(Qn E)
follows from E € &.
Also, for D € D we have

(D N E) = pn(E) — p1(D 0 E) = pa(E) — pa(D 0 E) = pa(D° 0 E),
where the second equality follows from D € Dg and the fact that £ € £. Hence, we deduce
D¢ e Dg.

It remains to show that Dg is stable unter countable unions of pairwise disjoint sets. Thus, for
a sequence (D,,) of pairwise disjoint sets with D,, € Dg for all n € N, we deduce

,u1<UDnmE> = Z,ul(DnmE): Z,ug(DnmE)zlug(UDnmE),
neN neN neN neN

where the first and last equality exploit that the D,, n E are pairwise disjoint, and the middle
equality takes advantage of the fact that D, € Dg for all n € N. O
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Due to the above claim, Dg is a Dynkin system with &  Dg. Since £ is a m-system, Theorem
1.1.33 implies that o(€) = Dg. In particular, this implies that for each E € o(€) and n € N,

11(E A Ey) = pa(E n Ey). (1.2.10)

Setting F,, := E),\ U?:_ll E; we have the disjoint union

UneNFn =Q.

Thus, using that for F € o(€) we have F,, n E € 0(€), we obtain in combination with (1.2.10)
that
w(Fpn nE) = pu1(Enn (B0 E)) = p(Ey, n (F,nE)) =pe(F, nE).

Summing these identities over n € N we obtain p;(E) = us(FE), which finishes the proof, since
E € 0(€) had been chosen arbitrarily.
O

Corollary 1.2.19. If puy and pg are measures on (Q,0(E)) with pui(Q) = p2(Q) < 00 and such
that (1.2.8) holds, then py = po.

Proof. We define € := £ U {Q}. Then the assumptions of Theorem 1.2.17 are fulfilled with &
replaced by € and E, := Q for all n € N. Since (&) = (&), the result follows. O

1.3 Carathéodory’s extension theorem (‘Maflerweiterungssatz’)

In this section we will see how to extend contents to measures. As it turns out, in pursuing
this endeavor it will be useful to make a detour via so-called ‘outer measures’ introduced below:
Contents will give rise to ‘nice’ outer measures (see Theorem 1.3.9 below), which themselves
(by restriction to ‘well-behaved’ sets) give rise to measures (see Theorem 1.3.5 below).

We start with investigating how to go from outer measures to measures, and start with the
definition of the former.

Definition 1.3.1. For Q a non-empty set, a set function p* : 2 — [0,00] is called an outer
measure (‘aufleres Maf’), if

(a) p*(J) = 0;
(b) w* is monotone;
(c) u* is o-subadditive.

Remark 1.3.2. Since an outer measure pu* is o-subadditive by definition, we deduce that for
Ai, ..., Ay €22, we have, setting Ay, := & € 22 for m > n, that

" n " © o- subaddzthty Deﬁmtwn 1.8.1 (a)
N(UAi):M(UAi) ZM Z
i=1 i=1 i=1
Thus, an outer measure is also subadditive.

We will now introduce the concept of sets which are measurable with respect to an outer measure.
Such sets will be the ‘well-behaved’ sets alluded to above; they form a o-algebra on which (the
restriction of) the outer measure induces a measure (see Theorem 1.3.5 below).

Definition 1.3.3. Let Q be a non-empty set and assume an outer measure p* : 2% — [0, 0] to
be given. Then A€ 2% is called p*-measurable (‘u*-messbar’), if for all B € 2%,

p*(B) = u*(BnA)+ p*(Bn A°). (1.3.1)
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Remark 1.3.4. Since an outer measure is subadditive due to Remark 1.5.2, we infer that
p*(B) < p*(BnA)+ p*(B n A9

holds true for all A, B € 2. Therefore, (1.3.1) is equivalent to
w*(B) = p* (B nA) + u*(Bn A°).

The next results is fundamental in our construction of measures and provides us with a recipe
for how to obtain a measure from an outer measure.

Theorem 1.3.5 (Carathéodory). For an outer measure p* : 2 — [0, 0], the set
M, = {A cQ: Ais ,u*—measumble}
1s a o-algebra over ), and the restriction

1 (1.3.2)
of p* to Myx 1is a measure.
Proof. We start with proving the following claim.
Claim 1.3.6. M, is an algebra over §.

Proof. By Definition 1.3.1 (a) we have p*(J) = 0, and hence (1.3.1) trivially holds true for
A=Q.
Furthermore, since (1.3.1) is symmetric in A and A° we immediately deduce that M« is stable
under complements.
It remains to show Property (c) of Definition 1.1.14. For this purpose, let Ay, Ay € M, and
let B < 2 be arbitrary. Then
Ar1eM
iH(B) =N (B o Ay) (B o AS)

AzeM
2 (B nAp) + p* (B n AT n Ag) + (B n AT n AS)

w* subadditive " . . " .
> 1*((B A1) U(B n AS n Ag)) + p*(B n (A1 L A3)°)

= p*(B (A1 U Ag)) + p*(Bn (A1 v A)°).
This shows that A U B € M,x, and therefore M« is an algebra. O

In order to show that M« is a o-algebra, due to Theorem 1.1.32 it is sufficient to show that it
is a A-system;

Since M x is an algebra due to Claim 1.3.6, we immediately get 2 € M and we also know
that M= is stable under complements. Thus, it remains to show the union of a countable
family of pairwise disjoint elements of M, is contained in M again. For this purpose, let
(A;,) be a sequence of pairwise disjoint sets with A, € M for all n € N.

We start with inductively proving that for all n € N,

w* <B N LnJ Ai> = i p*(BnA;) VBcQ. (1.3.3)
=1 i=1

Indeed, for n = 1 this boils down to a tautology, so assume (1.3.3) holds for arbitrary n € N.
Then, using that the A; are pairwise disjoint and that | J;" ; A; € M,

M*<<BmgAi) mi_LnJlAi) +M*((Bm:CJIIA¢> N <Z_CJ1AZ)C>

= Y uF(B A A) + it (B A Anga),
=1

n+1

w* (B N ZUI Ai)
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where we used the induction assumption in the last step. This finishes the induction step and
therefore establishes (1.3.3).
We infer that

n n

w3z (5o a) e (50 (Ua)) > e o a+u (50 (U

”C8

A))

where we used the fact that M, is an algebra to get the inequality, and the inequality is a
consequence of display (1.3.3) in combination with the monotonicity of p*. Taking n — oo in
the previous display and using that pu* is o-subadditive, we arrive at

it (B) = (B e A+t (B (J4))
i=1 i=1
> u*(Bm GAZ) +,u*(B N (GAZ)C),
1=1 i=1

which shows that Ugozl A; € M. Therefore, M= is a A-system, which in combination with
Claim 1.3.6 and Theorem 1.1.32 implies that M« is a o-algebra also.

Last but not least, we have to show (1.3.2). Since p* is an outer measure, we have p*(J) = 0 by
definition. Also, for a sequence (A;) of pairwise disjoint sets with A, € M+ we have, choosing
B :=Jr_, Ay, that the first inequality in (1.3.4) supplies us with

i (1 4n) = X

n=1

(1.3.4)

In combination with the o-subadditivity of p* this concludes the proof that p*| M is a measure.

O

Definition 1.3.7. A measure p on a measurable space (2, F) (or the measure space (2, F, 1)
for that matter) is called complete, if for all M € F with u(M) = 0, and all N < M, one has
that N € F as well.

Exercise 1.3.8. Show that the measure p}, . on (2, Mx) from Theorem 1.3.5 is complete
w
in the sense of Definition 1.3.7.

In what follows, we will assume the standard convention that

inf =0 and supd=-—

Theorem 1.3.9. Let A < 2% with @& € A, and let pn : A — [0,00] be a set function with
w(@) = 0. For A = Q define the set function p* : 2 — [0, 0] via

IM{Z Ah@,”eA,mdAcCl%} AcQ. (1.3.5)
i=1 =1

Then,
(a) p* defines an outer measure;
(b) if A is a semiring and 1 is a content, then A < Mx;

(c) if A is a semiring and if u is not only a content but also o-subadditive, then

1 la = p
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Proof. (a) Setting A,, := & € A, the definition in (1.3.5) of p* immediately yields p*(&f) = 0.
The monotonicity of p* also is a direct consequence of (1.3.5).

It remains to show the o-subadditivity. For this purpose, let (A,) be a sequence with
A, < Q for all n € N, and assume without loss of generality that u*(A,) < oo for all
n € N. Then for € > 0 arbitrary, choose for each n € N a covering (A, ;)ien of A, with
Ay € Afor all i € N and such that

Z w(Ani) < p*(An) + 27" (1.3.6)

Then

U An - U An,ia

neN i,neN

and by the definition of x* in combination with (1.3.6), we deduce

(Ua) <Y Duan) < ptAn) +e.

neN neN ieN neN
R
(1.3.6)
< p*(Ap)+27 e
Since € > 0 had been chosen arbitrarily, we deduce
i (U 4n) < 35 0 (4n)
neN neN

which shows the o-subadditivity of p*.
(b) For A € A arbitrary we want to show that for all E — Q we have
WH(E 0 A) + 15(E n A9) = 1 (B),

and without loss of generality we can assume p*(E) < oo. Then for £ > 0 arbitrary but
fixed, we find a sequence (A,,) such that

e A,e Aforall neN;
o Ec|Jr | An;

D (An) < p*(B) +e. (1.3.7)
n=1

Now since A is a semiring, for any n € N, we find m,, € N and 4,,;, 1 <@ < m, such that

-
Apm A* = A\A = A
As a consequence, we get

C Mn

w (Uz:1A””')

8
18

W(EnA) +u*(EnA°)< > uA,nA)+

1

n

3
I
—

n

<M(An nA)+

p(An) = 3 nan) < () 4
n=1

IUE

Il
—_

)
s

3
I
—

7

Since € > 0 was chosen arbitrarily and using Remark 1.3.4, this finishes the proof.
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(c) Let A € A. On the one hand, by definition of ©* we have p*(A) < p(A). On the other
hand, for any covering Ay, As,... € A with A < [ JZ, A; we have

WA = (GAmA) i (A; A A), (1.3.8)
i=1 n=1

where we used that p is o-subadditive in combination with the fact that A; n A € A for all
i € N. Since display (1.3.8) holds for any suitable covering, this shows that p(A) < p*(A),
which finishes the proof.

]

We can summarize Theorems 1.3.9 and 1.3.5 to obtain the following corollary.

Corollary 1.3.10. Let S be a semiring and let [i be a content on S which is o-subadditive. By
u* we denote the corresponding outer measure as defined in (1.3.5).

Then there exists a measure p: My« — [0, 0] such that [i and p coincide on S.

Furthermore, if [i is o-finite, then so is p, and in this case the restriction of p to o(S) < M
is the unique extension of [t to a measure on o(S).

Proof. The existence of a measure p on Mpx extending i follows from Theorems 1.3.9 and
1.3.5

If o is o-finite, then there exists a sequence (S,,) such that S,, € S, | J
for all n € N. In particular, this implies that u is o-finite.

neny On = 2, and p(Sy,) < 00
Furthermore, using Theorem 1.2.17 we deduce that there exists at most one measure on o(S)
which extends i, so the extension is unique. ]

1.3.1 Lebesgue measure

Our principal goal in this section is to extend the elementary content A% that we had defined
on hyperrectangles in (1.2.2) to a measure on the o-algebra generated by the hyperrectangles;
due to Lemma 1.1.31, this o-algebra coincides with B(R?).

Theorem 1.3.11 (d-dimensional Lebesgue measure). There exists a uniquely determined o-
finite measure X% on (R™, B(R?)) such that

d
A ((a,0]) = [(bi — ;) Va,beR? with a <b. (1.3.9)
i=1

A is called the d-dimensional (Borel-) Lebesgue measure.

Proof. In order to distinguish Lebesgue content and Lebesgue measure, let us write X for the
Lebesgue content.
We will apply Corollary 1.3.10 to the case S = 7% and i = M. In combination with the fact
that o(Z%) = B(R?) (cf. Lemma 1.1.31), the measure whose existence is implied by Corollary
1.3.10 will be the unique one defined on B(R?) and satisfying (1.3.9).
We have to show that

2 is g-subadditive on Z% (1.3.10)

For this purpose let a,b € R? with a < b be given, and let (a(n),b(n)], where a(n),b(n) € R?
with a(n) < b(n) for all n € N, be a sequence of hypercubes (i.e., elements of Z¢) such that

= | (a(n).b(m)]

n=1
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Tt is sufficient to show that for the content A¢ on Z¢ we have
w ~
1) < ) XM((a(n),bn))). (1.3.11)
n=1

We will show this inequality by exploiting a continuity property of the content M in order to
apply a compactness argument which then reduces the above to a finite setting. To be precise,
for £ > 0 arbitrary choose for each n € N an element b°(n) € R? such that b°(n) > b(n) and
such that

M((a(n), *()]) < A((a(n), b(n)]) + 27"
In addition, choose a® € R? such that a® > a and such that
2((af,b]) = X¥((a,b]) —e. (1.3.12)
Now
o0
[a®,b] U
Since the left-hand side is a compact set, there exists Ny € N such that
No
[a*,] < ] (a(n), " (n)).
n=1
Hence, using the fact that the content A is (finitely) subadditive (cf. Lemma 1.2.13), we deduce

(1.3.12) ~

M((a,0]) < M((a,0]) +
No
ZAd ),b°(n Z n)]) + 2.

In particular, this implies

i n)]) + 2e.

Since € > 0 was chosen arbitrarily, this establishes (1.3.10) and hence (1.3.9).
The o-finiteness follows immediately from the o-finiteness of the Lebesgue content and the fact
that Lebesgue content and Lebesgue measure coincide on Z¢. O

Remark 1.3.12. For simplicity write A\* for the outer measure induced by the d-dimensional
Lebesgue content as defined in (1.3.5). Theorem 1.3.5 actually shows that the measure A% can be
defined on the o-algebra L(R?) := My« of the so-called Lebesgue-measurable sets (in a unique
way, and L'(Rd) is the completion of B(Rd), .e., the smallest complete o-algebra containing
B(RY); see [ , Corollary I1.6.5]), where by \* we denote the outer measure induced by the
content X and (1.3.5). From Theorem 1.3.9 we infer that

B(RY) ¢ £(RY) < 2%,

and one can show that both of these inclusions are strict (see [ , Example 11.4.6]).
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1.3.2 Lebesgue-Stieltjes measure

Theorem 1.3.13 (Lebesgue-Stieltjes measures). Let a non-decreasing function and right-
continuous function F' : R — R be given. Recall the semiring L of left-open right-closed intervals
in R which had been introduced in Fxample 1.1.6. Then

pr: L — [O’OO)’
(a,0] = F(b) — F(a),

defines a content, and there exists a unique o-finite measure up on (R, B(R)) such that
pr(I) =prp(I) for all T € T.

wr is called the Lebesgue-Stieltjes measure of F.

Proof. We have [ip(J) = 0, and for pairwise disjoint intervals (a(1),b(1)],..., (a(n),b(n)] with
(a,b] = Ui (a(i),b(7)] some a,be R with a < b we have

1<isn 1<isn

2 A ((a(i), b(0)]) = F(max b(i)) — F(min a(i)) = fir((a,b]),

since a = minj<;<p a(i) and b = maxj<;<p b(7). This means that fip is additive also, and hence
a content on 7.

Since 7 is a semiring, according to Corollary 1.3.10, the only thing that is left to show is that
1 is o-subadditive and o-finite. For the first, we proceed similarly to the proof of Theorem
1.3.11. Indeed, let (a,b] as well as ((a(n),b(n)])nen with a,b,a(n),b(n) € R be given such that
a < b and a(n) < b(n) for all n € N, and such that

(a.5] < | (a(n). b(n)].

For € > 0 given we take advantage of the right continuity of F' in order to deduce the existence
of az. > a such that

fir((ac,b]) = fr((a,b]) —e.
In addition, using the right continuity of F' again, for each n € N we find b.(n) € R with
b-(n) > b(n) and
fir((a(n),b(n)]) = fir((a(n),be(n)]) —e27".
As in the proof of Theorem 1.3.11 we can then deduce that

fir((a,b]) < Y fir((a(n), b(n)]) + 2.

neN
Since € > 0 had been choosen arbitrarily, we infer
fir((a.b]) < ) fir((a(n), b(n))),
neN

which implies the desired o-subadditivity.
Regarding the o-finiteness, we observe that jip is o-finite since fip((—n,n]) < oo for all n € N,
and hence so is upg. O

Example 1.3.14. (a) Show that for F': R — R with F(x) = x the Lebesque-Stieltjes measure
urp from Theorem 1.5.13 coincides the one-dimensional Lebesgue measure A'.
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(b) Let f: R — [0,00) be continuous and set

F(x) := f:f(r) dr, xeR,

with the right-hand side interpreted as Riemann integral. Then F is non-decreasing and
continuous (e.g. due to the Fundamental Theorem of Calculus), and hence we can use
Theorem 1.5.13 to deduce the existence of a measure pp on o(Z) = B(R).

Remark 1.3.15. If we have a closer look at the proof of Theorem 1.5.13 again, we discover that
it did not hinge on the special nature of the Lebesgue content, but rather we only needed some
continuity properties of the content. In particular, if F1,...,F, are non-decreasing and right-
continuous functions from R to R just as in Theorem 1.3.13, then these give rise to measures
Uiy pin on (R, B(R)) just in the same vein as in Theorem 1.3.15. We can then perform the
proof of Theorem 1.3.11 in essentially the same way as before and obtain that there exists a
unique o-finite measure p on (R™, B(R™)) (recall that o(Z"™) = B(R™) due to Lemma 1.1.31)
such that

p((a,0]) = [ [ mil(as, bi]),  Va,beR™ with a < b.
i=1

We also write @ p; := p and call v the product measure of p1,. .., fiy.

In Section 2.4 below we will see how to construct product measures not only as products of
measures on (R, B(R)) but on arbitrary measurable spaces, and also how to construct infinite
products of measures.

In what follows, most results and definitions concerning probability spaces can be generalized
to finite measure spaces (£, F, u), where p is a finite measure. There is, however, oftentimes
a more significant difference between the case of y being finite or infinite, so we have to be a
bit more careful when trying to transfer results we have for finite measure spaces to infinite
measure spaces.

1.4 Measurable functions, random variables

The Riemann integral had been introduced by partitioning the domain of definition of the
integrand (oftentimes intervals in R or hypercubes in R?) into finer and finer pieces, and then
consider the upper and lower Riemann sums. If they converged to the same limit as the
partitions got finer and finer, this limit had been defined as the corresponding Riemann integral.
The notion of integral we will be introducing later on,'” on the other hand, will be defined for
real or complex functions defined on a measure space (2, F, ut). It can essentially be defined by
partitioning the range of the integrand into finer and finer pieces. In particular, for an integrand
f this will require that preimages of intervals, i.e., sets of the form f~!([a,b]), can be measured
by the measure underlying the domain of definition of the function. This means we want
expressions of the type u(f~!([a,b])) to be well-defined, which is equivalent to f~!([a,b]) € F.
As a consequence, such functions will play a special role. (In the case of (Q,F,u) being a
probability space, the definition of random variables in | , Def.1.7.1] had been general
enough to serve our purposes.)

Definition 1.4.1. Let (2, F) and (E, &) be measurable spaces. A function f:Q — E is called
a measurable function (‘messbare Funktion’) if for all A € £ its preimage under f is contained
i F, i.e., if

FUA) = {weQ: flw)e A} e F, VAef.

107¢ is called the Lebesgue integral, although it not only refers to integrals with respect to the standard Lebesgue
measure on (R, B(R?)), but with respect to arbitrary measures.
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In this case, f is also said to be F — E-measurable (‘F — E-messbar’).

If not only a measurable space (2, F) but a probability space (2, F, p) is given, then f as above is
called a random variable (‘Zufallsvariable’) If furthermore (E,&) = (R, B(R)), then f is referred
to as a real random variable (‘reelle Zufallsvariable’, ‘Zufallsgrofie’), and if (E,€) = (R, B(R)),
we say that f is an extended real random variable (‘erweiterte reelle Zufallsvariable’).

Even if we have given only a measurable space (Q,F), we denote the space of extended real
functions by M, and the subset of non-negative extended real-valued functions by M™. For a
random variable X the values X (w), w € Q, are also called realizations of the random variable
X.

For the sake of simplicity, functions f : RY — R* which are B(R?) — B(R¥)-measurable are just
called Borel-measurable.

Example 1.4.2. (a) Any constant function from (Q,F) to (E,E) is F — E-measurable.

(b) For A c Q the indicator function of A is defined as

T4:Q— {0,1}
= 1, ifweA,
w 0, ifwé A

Show that if (0, F) is a measurable space, then for A < 2% the indicator function 1 4 is
F — B(R)-measurable if and only if A€ F.

(c) Let 2 be a non-empty set and let F, G be two o-algebras on Q with F < G. The identity
function idq from Q to Q, where idg(w) = w, is G — F-measurable. However, it is not
F — G-measurable.

(d) If either F = 2% or & = {E, &}, then any function from (Q,F) to (E,E) is F — &-
measurable.

Remark 1.4.3. Let (2, F) and (E,&) be measurable spaces. Let furthermore f: Q — E be an
F — E-measurable function. Recall the definition of the trace-o-algebra Eg from Exercise 1.1.19
for G c E, and assume that f(Q) = G. Then, if G € £, the function f can also be interpreted
as a F — Eg-measurable function from Q to G. This is not necessarily true if G ¢ £.

To us, random variables will be important to describe the outcomes of experiments that we
consider to be random (prime examples being dice rolls or coin tosses). For more intuition on
random variables we refer to | ], in particular Section 1.7. Note, however, that in [ ]
essentially all functions which occurred were measurable by definition anyway since we only
investigated nice and simple settings. In general, the measurability has to be established when
investigating arbitrary functions between measurable spaces. We will provide a useful tool for
this in Theorem 1.4.7 below, but before we will establish some further general properties for
measurable functions.

Theorem 1.4.4 (Compositions of measurable functions). Let (;, F;), i € {1,2,3}, be measur-
able spaces, and let f; : Q; — Qi1 be F; — Fiy1-measurable maps, for i€ {1,2}.
Then the composition

f2 ©) f1 : Ql — Qg
w1 = fa(fi(wr))

is a F1 — F3-measurable map from 1 to Q3.
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Proof. For arbitrary F3 € F3 we have
(fao f1) ' (F3) = fi ' (f 1 (Fy)) € Fu,
where the latter takes advantage of the fact that
[y (Fs) € Fy
since fo is Fo — F3-measurable. This concludes the proof. |

Since o-algebras are often large, it is practically not feasible to check the measurability condition
of Definition 1.4.1. As a remedy, Theorem 1.4.7 below states that it is sufficient to check it on a
generator, which is often easier to achieve. We are now going to prepare its proof via a couple
of auxiliary results.

Claim 1.4.5 (‘Operationstreue’). Given an arbitrary map f from a non-empty space X to a
non-empty space Y, consider the preimage map

f711 2Y 4}2X

A f7HA).
Then the following properties hold:

(a) For an arbitrary family (By), A € A, with By € 2¥ for all X € A,

I (UB) =Ur s,

AeA AeA
and
(N B) =N By
AEA AeA

(b) for each B e 2V,

Proof. Exercise. O
The previous claim helps in deriving the following lemma.

Lemma 1.4.6. Let f : Q — E be an arbitrary mapping, and let H be an arbitrary subset of
2F . Then

o(f7HH)) = FHo(H)).

In particular, if H is a o-algebra over E, then f~'(H) is a o-algebra over €.

Proof. We have
7Y H) < o (R),

and using Claim 1.4.5, we infer that the right-hand side of the previous display is a o-algebra,
whence

o(f7HH)) = fTHo(H)).

We now prove the converse inclusion using the good sets principle. Denote by G those subsets
of E the preimages of which under f which are contained in o(f~1(H)) :

G:={GcE: f'(G)ea(f(H))} (1.4.1)
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Then we have E € G, and furthermore, using Claim 1.4.5 we deduce that G is stable under
countable unions and complements. Hence, G is a o-algebra. In addition, as a consequence of
(1.4.1) we get H < G. Thus, in particular we deduce that

fHo(M) = F7HG) < o(FH(H)),

which finishes the proof.
O

We are now ready to prove the tool announced above, which shows that in order to prove
measurability of a map, it is sufficient to consider the generator of the corresponding o-algebra
in the image space.

Theorem 1.4.7. Let f be a mapping from the measurable space (2, F) to the measurable space
(E,E). Furthermore, let G = 2F be any generator of £.
Then f is F — E-measurable if and only if f~1(G) < F.

Proof. If f is F—&-measurable, then since G = £ we deduce from the definition that f~1(G) < F.
To prove the converse inclusion, assume that f~1(G) < F. Then

o(f7HG)) = F,

and the left-hand side of this display coincides with f~1(c(G)) = f~1(€) due to Lemma 1.4.6,
which finishes the proof. O

We will now derive a corollary of the previous result for which we introduce the following
notation.

Definition 1.4.8. Let A be a non-empty set, and let Xy, A € A be mappings from § to sets
E\. Furthermore, let £\ be o-algebras on Ex, A € A. We denote by o(X) : X\ € A) the smallest
o-algebra on Q such that each Xy is o(Xy : A € A) — Ex-measurable. o(Xy : X\ € A) is also
called the o-algebra generated by the Xy, A € A.

Corollary 1.4.9. Let A # & and measurable spaces (0, F), (Q, F), as well as (Q, F), A€ A,
be given. Furthermore, assume maps Y) : Q- Qx, A€ A, to be given such that F= o(Yy :
A€eA).

Then a map X : Q2 — O is F — F-measurable if and only if the compositions Yy o X :  —
are F — Fx-measurable for all A € A.

Proof. If X is measurable, then all the compositions are measurable due to Theorem 1.4.4.
If, on the other hand, all the Y) o X are F — F)-measurable, then we start with observing that
by definition of F,

G:={V U (F): \eA, FeF}

is a generator of F. But since all Y) are measurable by assumption, we have X —1(g~) c F, and
hence Theorem 1.4.7 implies that X has the desired measurability properties. U

The following result is interesting in its own right, but it will also play an important role
in proving the central Proposition 1.4.13 below. We recall the facts we had learned about
topologies in Definition 1.1.28 and below. Furthermore, we remind ourselves that a function
from a topological space (O1,0;) to a topological space (O2,O2) was defined to be continuous
if and only if f=1(0) € Oy for all O € Oy (this definition coincided with the definition for
continuity in the case of metric spaces or R%).

Theorem 1.4.10. Let (O1,01) and (O2,03) be topological spaces. Then any continuous map
from (O1,01) to (O2,04) is B(O1) — B(O3)-measurable.
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Proof. Since f is continuous, by definition f~1(03) < p, so Theorem 1.4.7 implies
f~1(B(0O3)) = B(0Oy), which finishes the proof. O

Proposition 1.4.11. Let f: (Q,F) — (RY, B(RY)). Forie{l,...,d} denote by

WiIRdHR,

('Il,"' ’xd) = Ty,

the projection on the i-th coordinate.
Then the function the function f is F — B(RY)-measurable if and only if ; o f is F — B(R)-
measurable for all admissible choices of 1.

Proof. Once we show B(RY) = o(m;, 1 <i < d), the result follows from Corollary 1.4.9.

Since the m; : R? — R are continuous, Theorem 1.4.10 implies their B(R?) — B(R)-measurability,
and we infer that o(m;, 1 <i <d) < B(R?).

On the other hand, due to [a,b] = né_ ;7 ([a;,b;]), @ < b e R? and the fact that such hyper-
rectangles generate B(RY) due to Lemma 1.1.31, we infer B(R?) < o(m;, 1 < i < d), which
finishes the proof.

O

Example 1.4.12. (a) Let f : (Q,F) — (R4, BRY)) be a F — B(RY)-measurable function.
Then the function

[£ll2: (©,F) — (R, B(R)),
w = [[f(w) ]2,

is F — B(R)-measurable, where for x € R" we write ||x|2 := Z?:l z? for the so-called

2-norm on R%. In fact, as a composition of continuous functions, the function R% 3 z —
|z|2 € [0,00) is continuous again, and hence F — B(R)-measurable due to Theorem and
1.4.10. Thus, due to Theorem 1.4.J the function f is F — B(R?)-measurable.

(b) Let f,g: (2,F) = (R,B(R)) be F — B(R)-measurable functions. Then the functions
fvg, frg [T, andlf]
are F — B(R)-measurable. Here, we use the standard notation that for z,y € R
rvy:=max(r,y), zAy:=min(z,y), as well as xt :=xv0 andz” = —(zA0) = 0.

In the following result we will summarize a couple of important compositions of functions which
supply us with measurable functions again.

Proposition 1.4.13. Let f be a F — B(R)-measurable function from Q2 to R, and let g,h : Q —
R be F — B(R?)-measurable functions.

Then g+ h, g—h, f-g, g/f are also measurable functions.

Remark 1.4.14. Here we must pay attention to how define g/f in the case that f (or f and g)
are 0. For the setting of this result and the following proof, we set x/0 := 0 (which might seem
awkward in the case x # 0, but more natural for x = 0; either way, scrutinizing the proof below
we will see that any convention /0 := ¢, some ¢ € R, would work and still leave us with g/f
measurable).
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Proof. For the case g + h, we observe that the function Q 3 w — (g(w), h(w)) € (R? x R?)
is a F — B(R??)-measurable function due to Proposition 1.4.11. Furthermore, the function
R? x R? 5 (z,y) — = + y € R? is continuous, so in combination with Theorem 1.4.4 we infer
that the composition g + h : Q 3w+ g(w) + h(w) € R? is F — B(R?)-measurable.

The remaining cases follows in a similar fashion, and the only point where we do have to pay
some extra attention is g/f in the case that the denominator vanishes. Since we can write
glf =g- %, and we know that f, g are measurable and that the product of two measurable
functions is measurable again, due to Theorem 1.4.4 the only thing that remains to show is that
i:R3x+— 1/xeRis B(R) — B(R)-measurable. For this purpose, observe that for U < R open
we have

iN(U) = i1 U\{0} ) u(U n {0}) € B(R).
——

cR\{0} open
N S —

cR\{0} open, since ¢ continuous on R\{0}

Hence, the result follows in combination with Theorem 1.4.7.

Proposition 1.4.15. Let (f,) be a sequence of functions in M. Then the functions

sup fn, inf f,, limsupf, and liminf f,,
neN neN n—o n—0

are all in M again.

Proof. For any a € R we have

{sup fo € (a, 01} = | £ ((a,0])

neN neN

Thus, using Lemma 1.1.31 and Theorem 1.4.7 yields that sup,,cy fn has the desired measurability
property. The case of inf,cyn f, can be shown similarly or otherwise by using the identity
inf,en fr = — sup,en(—fn) and invoking Proposition 1.4.13 twice.

With regard to limsup,,_,, fn, we observe that

limsup f,, = inf sup f,
n—0o0 neENm>n
and use the first part of this Proposition to first conclude that sup,,-, f» has the desired
measurability properties, and then to conclude that the same holds true for inf,en sup,,>, fm,
which finishes this part.

Again, for the case liminf,,_,, f,, we can follow one of the two alternative routes outlined in the
proof of the first part. O

Corollary 1.4.16. Let (f,) be a sequence of functions in M such that

fw):= lim f,(w)

n—00
exists for all w € ().
Then f e M.

Another result that comes in handy is the following.

Lemma 1.4.17 (factorization lemma (‘Maftheoretischer Dreisatz’)). Let (Q,F) and (', F')
be two measurable spaces and let T : Q — Q' and f : Q — R be two mappings. Then f is
T~YF') — B-measurable if and only if there exists a F' — B-measurable mapping ¢ : ' — R
such that f = poT.

Proof. Exercise. O
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1.5 Image measures, distributions

As introduced in | , Definition 1.8.12], for real-valued random variables the concept of its
(cumulative) distribution function plays a prominent role.

Definition 1.5.1. Let X be a random wvariable defined on a probability space (0, F,P) and
mapping to (R, B(RY)). Then the function

Fx :R?*—[0,1],
d
t>P(X <t) = IP’(X e X (—oo,ti]>,
i=1

is called the (cumulative) distribution function (or cdf) of X (‘Verteilungsfunktion von X’).
Similarly, if v is a probability measure on (R, B(RY)), then the function

F,:RY—0,1],

t ;<<—oo,ti]),

i=1

is called the distribution function of u (‘Verteilungsfunktion von u’).

Of particular importance to us will be the case d = 1, and in [ , Thm. 1.8.16] we had found
the following properties of distribution functions.

Theorem 1.5.2. If F' is the distribution function of a real random variable or of a probability
measure on (R, B(R)), then

(a) F is non-decreasing;

(b)
lim F(t) =0, lim F(t)=1;
t——0o0 t—o0

(¢) F is right-continuous (i.e., for all to € R one has F(to) = limy ¢, F(t));

We had also introduced the following definition and theorem as | , Def. 1.8.17, Thm.1.8.18].

Definition 1.5.3. Any function F : R — [0,1] that satisfies the three properties given in
Theorem 1.5.2 is called a distribution function (‘Verteilungsfunktion’).

The following result complements Theorem 1.5.2, and combined they establish that there is a
correspondence between random variables and distribution functions.

Theorem 1.5.4. If F' is any distribution function, then there exists a unique probability measure
pr on (R,B(R)) such that F,, = F.

However, at that point we were not able to prove this result. Since we are now in the position
to do so, we give the proof.

Proof of Thm.1.5./. See homework problems.
O

Observing that the distribution function Fx of a real random variable X depends only on the
probability measure P(X € -), and combining Theorems 1.5.2 and 1.5.4, we deduce that there
exists a one-to-one correspondence between probability measures on (R, B(R)) and distribution
functions F': R — [0, 1].
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Corollary 1.5.5. The mapping induced by Definition 1.5.1, which maps a probability measure
poon (R,B(R)) to its distribution function F,, defines a bijection from the space of probability
measures on (R, B(R)) to the space of distributions functions on R.

Theorem 1.5.6. Let (Q, F,v) be a measure space and let (E,E) be a measurable space. Fur-
thermore, assume a F — E-measurable mapping f to be given. Then the set function

vof~l: &[0,
F — v(fH(F)),

defines a measure on (E,E). We will also sometimes denote it by vy for simplicity of notation.
If v is a probability measure (so f is a random variable), vy is also called the distribution of f.

Proof. The proof proceeds in the same way as the one of | , Theorem 1.7.6], which is for
probability measures.

O

Definition 1.5.7. The measure vo f~1 introduced in Theorem 1.5.6 is called the image measure
(or pushforward) of v under f. In the case of f being a random variable (i.e., v is a probability
measure), the image measure v o f~' is called the distribution (or law) of f.

As we will see, in probability theory, oftentimes a random variable X itself will not be of too
much importance to us; rather, what we will be interested in usually is its law.

Example 1.5.8. Arguably the most prominent example of a distribution is the so-called Normal
distribution or Gaussian distribution (‘Normalverteilung’, ‘Gaufiverteilung’). We say that for
peR, o€ (0,0), a random variable X defined on a probability space (2, F,P) is N(u,0?)
distributed if

1 5 (z=w?
P(X <s) = Wﬁoe 202 dx, VseR.

This really defines a probability measure, i.e.,

0 2
! 4 dr =1 (1.5.1)
[ 20 T = 1. «J.
\V2ro? Jo

Indeed, we have

© 2 2 © ®© 2 2 @ 2 2/2|%0
(f e~ /2 dm) = f <f e T 2emY7/2 dm) dy = f onre" 2 dr = —2me" /2] _o = 2,
—0 —0 ”

—» 0

where we took advantage of Polar coordinates in standard Riemann integration in the second
equality. In particular, (1.5.1) follows.

In higher dimensions d = 2 we can still define the normal distribution and say that X :
(Q, F,P) — (R% B(RY)) is N (i, ¥)-distributed, where € R and ¥ is a symmetric positive
definite matriz in R4*?, if

P(X <s)= g2 @ m" @7 @) 4y, dzy, VseRY,

<2w>%¢1m Lol o Lod

i.e., its density with respect to A\ is given by
1
|det(X)]

o3-S @)

d
2

(2m)
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Chapter 2

The Lebesgue integral

We recall here that the Riemann integral had been constructed by directly partitioning the
domain of the integrand into finer and finer partitions (see Section 2.0.3 below for a short
reminder). As already outlined at the beginning of Section 1.4, the Lebesgue integral will
essentially be constructed by first partitioning the image of the integrand (into finer and finer
partitions), and then use these partitions of the image in order to obtain a partition of the
domain and hence define the integral.

This procedure is most easily performed for simple functions as follows.

2.0.1 Integrals of simple functions

Definition 2.0.1. Let (2, F,p) be a measure space, and let f : (0, F,pn) — (R,B(R)) be a
F — B(R)-measurable function such that f(2) is a finite set. Then f is called a simple function
(‘einfache Funktion’, ‘Treppenfunktion’). The set (in fact a vector space, see Lemma 2.0.4
below) of all simple functions will be denoted by T, and by T+ we denote the set of all non-
negative simple functions.

Lemma 2.0.2. A function f: (2,F) — (R, B(R)) is simple if and only if there exist pairwise
disjoint sets F, ..., F, € F and numbers ay,...,a, € R such that

f= Zn: ;1. (2.0.1)
=1

Remark 2.0.3. As in the literature, we will call a representation of f as in Lemma 2.0.2
a normal representation ‘Normaldarstellung’ of f; note that some authors also demand that
Ui Fi = Q for (2.0.1) to be called a normal representation. In fact, if |J;_ F; & Q, then
Z?:ll a;lp, with ap1 = 0 and F,p = Q\ Ui, Fi is a normal representation with U:‘L=+11 F, =Q.

Proof. 1f f is of the form (2.0.1), then obviously f € 7. On the other hand, if f € T, then
f(Q) ={aq,...,a,} < R, and we have

f=2 il i1y,
=1

so f is of the form (2.0.1) with pairwise disjoint Fj, since f~!({a;}) € F due to the F — B(R)-
measurability of f. O

Lemma 2.0.4. The product of two simple functions is simple again, and so is the linear com-
bination of finitely many simple functions. In particular, T is a vector space.

Proof. Exercise. O

41
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From now on onwards we will use the convention that 0- oo = 0.

Lemma 2.0.5. For a measure space (2, F,pn), let f € T be a simple function with normal

representations
n m
f=>ailp =) Bilg,,
i=1 j=1

form,neN, a;,5; € R, and F;,G; € F. Then

Z a;p(F; Z /BJM

Proof. For F;,G; with F; n G; # & we get that f(w) = a; = §; for w € F; n G}, and as a
consequence

Zazu ZZ aiu(F; n Gj) =ZZ Bin(Fi 0 Gy) = Y. BiplGy)
i=1j=1 j=1i=1 J=1

where in the first and third equality we took advantage of the facts that if a; # 0, then
F, c U?:l G;, and if B; # 0, then G; < | J_, F;. O

Definition 2.0.6. Let f € T with normal representation f = " | o;lp, with a; = 0 and
F; e F for allie{l,...,n}. Then the (u-)integral of f is defined as

| 7= | ) uta) = St € 0.},

Remark 2.0.7. Note that due to Lemma 2.0.5, the previous Definition 2.0.6 is well-defined.
We collect some important properties of integrals of non-negative simple functions

Lemma 2.0.8. (a) Let F e F. Then
| tedn = uip.
Q

(b) For f,ge T" and ¢ = 0,

f (cf +g)du = cf fdu+ f gdp  (linearity). (2.0.2)
Q Q Q
(c) For f,ge T+ with f <g
we have
J fdu < J gdu.
Q Q
Proof.  (a) A normal representation of f is given by 1 -1, the integral of which is u(F') by
definition.

(b) We start with noting that due to Lemma 2.0.4, ¢f + ¢ is a simple function again, and
since it is non-negative, we have cf + g € T+ and can therefore consider its integral.

Furthermore, if > | ;1 F, and Z _1 Bjlg, are normal representations of f and g, respec-
tively, then > ;" 1, is a normal representation for cf + g, where

Tk = cai + B
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and
HkIEﬁGj

with k= (i —1)m+je{l,...,mn},ie{l,...,n}, j€{l,...,m}. (2.0.2) then follows
immediately from the definition of the integral.

(¢) This follows from the linearity and non-negativity of the integral in combination with the
fact that g,g — feT™.
O

Exercise 2.0.9. Show that if f =Y ilp, € T with F; € F and o; = 0 for all1 <i < n is
not necessarily a normal representation, one still has

f fdp = cin(F).
Q i=1

2.0.2 Lebesgue integral for measurable functions

As is often done in mathematics, we are now to introduce the integral of suitable measurable
functions by reducing it to something simpler, i.e., to the integral of simple functions. In order
to pull through this procedure, the following approximation result is fundamental.

Lemma 2.0.10. Let (2, F) be a measurable space. Then f : (2, F) — ([0,], B([0,]) is
F — B([0, 0])-measurable if and only if there exists a non-decreasing sequence (f,) of functions
fn€TT such that

fm—f asn— 0.

Proof. Proposition 1.4.15 immediately supplies us with the fact that if (f,,) is a sequence of
functions as in the assumptions, lim,, .o f, = Sup,cy fn € M.
On the other hand, assume f € M™ to be given. For n € Nand i € {0,1,...,n2" — 1} we define

the function
n2™

fui= D 27,
=0
where for n € Nand i € {0,1,...,n2" — 1} we set A, ; := f~1([i27", (i +1)27")) € F, as well as
Apnon = f7([n,0]). It is apparent from the definition that f, € 7T, that f, is non-decreasing,
and that f, — f pointwise, which finishes the proof. O

The obvious procedure would now be to define the integral of a non-negative measurable (ex-
tended) real-valued function f as the monotone limit of a sequence of integrals of simple func-
tions (f,) approximating it monotonically. Le.,

| raws= p | foan,
Q n—=w Jq

where one can invoke Lemma 2.0.8 to ensure that the integrals on the right-hand side are non-
decreasing in n, and hence the limit exists. However, we have to make sure that that the limit
of those integrals does not depend on the very choice of the approximating sequence of simple
functions. For this purpose, we prove the following lemma.

Lemma 2.0.11. Let (f,), (gn) be two non-decreasing sequences of functions in T such that
limy, o0 fr = limy, o0 gn. Then

Jim 0 fndp = Tim L gn dp. (2.0.3)
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For the proof of Lemma 2.0.11 we take advantage of the following claim.

Claim 2.0.12. Let f € T and let (f,) be an increasing sequence with f, € T+ for all n € N
such that

/< lim f,. (2.0.4)
n—o0
Then
f fdp < lim f fndpu.
Q n—=% Jo

Proof. Write f = > a;1p, for a normal representation of f. Then for € € (0,1) we consider
the set

wi={fn=0—-¢)f}eF.
From (2.0.4) we deduce that M, 1 2, hence the continuity of the measure p from below implies

n—ao0

ffd,u:Zam(F = hm ZaluFmM = hmff Ty, dpe
Q i=1

1
< lim —fn dp = lim —6 fndp.

n—o Jo 1— n—oo 1

Since € € (0,1) was chosen arbitrarily, taking ¢ | 0 it follows that {, fdu < lim, o {o fr dp,
which finishes the proof.

O
Proof of Lemma 2.0.11. From Claim 2.0.12 we deduce that for all m € N,
fgm dp < lim ffn dpu.
n—00
Hence, taking m — oo we infer
Jm, Jamae< i, [ g
Exchanging the roles of f,, and g,, we therefore obtain (2.0.3). O

We can now introduce the integral for measurable extended real-valued functions, which by
Lemma 2.0.11 is well-defined.

Definition 2.0.13. Let f € M™ and let (f,) be any sequence as in Lemma 2.0.10. Then

| £i= | i) = tim | g

is called the (u-)integral of f.

As in the case of integrals of non-negative simple functions we derive the following basic prop-
erties.

Lemma 2.0.14. (a) For f,g€ M™ and c € [0, 0],

j(cf—i—g)d,u:cj fdu—i—f gdu  (linearity).
Q Q Q

(b) For f,ge M™ with f <g

we have

J fd,uéf gdpu.
Q Q
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The lemma can be proven taking advantage of its validity in the case of integrands in 7 (see
Lemma 2.0.8) and then decomposing into positive and negative parts as well as taking limits.
We omit the details.

Corollary 2.0.15. An alternative way (which sometimes comes handy) to reduce the integral
of f as in Definition 2.0.13 to integrals of non-negative simple functions is via

fdp = sup J gdp.
geT+tJQ
g<f

Proof. Exercise. O

Having introduced the integral for non-negative measurable functions, we would like to extend
it to a suitable class of measurable functions that can take positive and negative values at once.
It will turn out, however, that we do not only need the notion of Lebesgue integral for extended
real-valued functions, but also for complex valued functions. Therefore, for a complex number
z =z +yi € C with z,y € R, we denote its real part by Re(z) and its imaginary part y by
Im(z), so z = Re(z) + Im(z) - i.

Exercise 2.0.16. Show that a function f : (Q,F,u) — (C,B(C)) is F — B(C)-measurable if
and only if the functions Re f and Im f are F — B(R)-measurable.

Proof. We note that the functions C 3 z — Re(z) € R and C 5 z — Re(z) € R are continuous.
Therefore, if f is measurable, so are the functions Re f and Im f due to Theorems 1.4.10 and
1.4.4.

If, on the other hand, the functions Re f and Im f are F — B(R)-measurable, the so is the
function i-Im f, and hence f = Re f +i-Im f is measurable as well due to Proposition 1.4.13
(where we identify C with R?). O

Definition 2.0.17. Let f: (2, F,u) — (C,B(C)) be an F — B(C)-measurable function. Then
f is called Lebesgue-integrable or (u-)integrable if the integrals

| mepan | s an

are all finite. If this is the case, the quantity

| si= | Repyran— | Rep)=dui | (mpap—i | ()

is called the Lebesgue integral of f (or also p-integral of f).
Furthermore, for A € F we introduce the notation

Lfdu = L La- fdu, (2.0.5)

if the function 1 4 - f is Lebesgue-integrable.

Above all, in the case of real-valued integrands it will turn out useful to be slightly less demand-
ing in the above definition.

Definition 2.0.18. Let f € M. We define

[ oo
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as long as one of the two terms on the right-hand side is finite." In this case, we call f quasi-
integrable. We write L' or L1(Q, F, p) for the set {f € M : {, f du e R}, the (vector) space of
integrable functions.

Similarly, for a random variable X : (Q, F,P) — (R, B(R)) we define its expectation

fXdIP’

whenever X is quasi-integrable with respect to P.

The Reader may convince herself that the notion of integral introduced in Definition 2.0.18
coincides with that of Definition 2.0.17 for measurable f that takes values in R only.

Also, the property of linearity as given for non-negative functions in Lemma 2.0.14 directly
transfers to complex-valued or R-valued functions if the resulting sum is well-defined in R (i.e.,
we don’t have expressions like c0 — 00 appearing).

2.0.3 Lebesgue vs. Riemann integral

Recall that the Riemann integral has been defined for real-valued functions which are defined
on (subsets of) R? instead of on more general sets (as is the case for the Lebesgue integral,
which essentially can be applied to real-valued functions defined on arbitrary measure spaces).
Generalizing Definition 2.0.18 to the case of functions that are defined only on a part of the
underlying space, for f : A — R which is £(A) — B(R)-measurable, where A € B(RY) and
L(A) := L(R?) 4 the trace o-algebra, we say that f is Lebesque integrable if

f fdx = | faxe
A R4

(where f: R? — R is defined to coincide with f on A, and as 0 on A°) is well-defined and finite.
We will have a closer look at the case of A being an interval in R and recall that the Riemann
integral had been defined as follows. f : [a,b] — R was called Riemann integrable if for any
sequence (Z,,) with

Toia=t0" <t <. <t =
such that

max t(n) — t(f)l —0 asn— o,
1<i<my !

and for any sequence of points
fi(n) e[t™ ], neN1<i<m,,

we have that the limit
n) o (n)
Jim Z (& tic1)

(n))

exists, is finite, and is independent of the very choice of (Z,) and (&; ). In this case we write

SZ f(x)dz for the corresponding limit.
Exercise 2.0.19. (a) Show that f as above is Lebesgue integrable if and only if § | f]| d\4 < 0.

(b) Show that the function

f:10,1] = {0, 1}

1, ifreq,
TTl0, ifzéq,

is Lebesgue integrable but not Riemann integrable.

You might sometimes also encounter the notation u(f) for the Lebesgue integral SQ fdu.
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(c) Show that the function
g:[l,o0) >R

sin(x)

€T —>

x
is (improperly (‘uneigentlich’)) Riemann integrable (i.e., the limit lim, .o ) g(z)dz ez-
ists) but not Lebesgue integrable.

Theorem 2.0.20. If f : [a,b] — R is Riemann integrable, then f is bounded and
(L([a,b]), B(R))-measurable. In particular, f is Lebesque integrable and the Riemann integral
of f coincides with the Lebesgue integral of f.

Since this result is not central to our further exposition, we refer to the exercise classes for a
proof.

As a consequence of the previous result, we will henceforth also write dx instead of A(dx) if
there is not danger of confusion.

2.1 Convergence theorems

In contrast to the Riemann integral, the Lebesgue integral is pretty robust when it comes to
exchanging limits and integration. The following subsection collects the convergence theorems
that are most relevant to us in what is to come.

2.1.1 Dominated and monotone convergence

Theorem 2.1.1 (Monotone convergence theorem (MCT) (B. Levi (1875 — 1961, Italian poly-
math)). Let (f,) be a non-decreasing sequence of measurable functions f, € M*. Then

Jo gt = i | s

Proof. We first of all notice that lim, .. f, € M™ due to Proposition 1.4.15, and hence its
integral is well-defined (recall Def. 2.0.13).
The monotonicity of the integral (Lemma 2.0.14) immediately implies that

f lim fndu>f fmdp
Qn—o® 0

for each m € N, and that the right-hand side is monotone in m, whence we conclude that

f lim f,dp > lim f fmdp.
Q m=90 Jg

n—0oo
To show the reverse inequality, we will take advantage of Corollary 2.0.15. For this purpose,
consider arbitrary g € T+ with g < lim,,_,o f,. Then for € > 0 arbitrary we have that
]l{fnz(lfe)g} 919,

and as a consequence

Jim . frdp = (1 —¢) Tim 0 Lif>(1-c)gy -9 dup = (1 —¢) L gdu,
eT ™+

where the limits exist due to monotonicity and Lemma 2.0.14, and the second inequality follows

from Claim 2.0.12. Taking € > 0 to 0 we obtain

lim | fpdp = f gdu,

for any g € T+ with g < f. Thus, the desired inequality is a consequence of Corollary 2.0.15. [
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Having this result at our disposal, we can immediately prove the following result which is of
importance on its own.

Lemma 2.1.2 (Lemma of Fatou (1878 — 1929, French mathematician)). Let (f,) be a sequence
with f, € M™Y. Then

ll,?l,lorolfff" dp > fhrl;rilolgf fndp.
Proof. Since for each n € N we have that for m > n,
fm > inf fk,
k=n

the monotonicity of the integral supplies us with

inf Jfk dp > Jégi fr dp.

k=n

Taking limits on both sides we get
e . . Thm. 2.1.1 o
llyggloglfffn dp > Jg%oféga fedp = fllglggf frndp.
U

Exercise 2.1.3. Show that the conclusion of Lemma 2.1.2 does not hold in general if we dispose
of the assumption f, = 0.

Definition 2.1.4. Let (2, F,P) be a probability space and assume given a sequence (Ay) of
subsets A, < Q. Then the ‘limes superior’ of the sequence (A;) is defined as

)8
s

limsup 4,, := Ap.
n—w n=1k=n
The ‘limes inferior’ of the sequence (Ay,) is defined as
e} e}
llTILIi»lOIOlf A, = U Ay
n=1k=n

Note that if A, € F for all n € N in the previous definition, then also limsup,,_,,, A, € F and
liminf,,_, o A4, € F.

Exercise 2.1.5. Show the following identities:
[ ]

limsup 4,, = {w € Q : we A, for infinitely many n};

n—ao0

limiorolfAn = {w € : we A, such that Ing € N with w e A, Vn > no};

Corollary 2.1.6. Let a measure space (2, F, ) and a sequence (A,) with A, € F be given.
Then

’u(hﬂlorolf Ay) < hﬁrilélf”(A")’ (2.1.1)
and if u is finite, then also
,u(limsup An) > limsup p(A4,), (2.1.2)

n—00 n—0
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Proof. (2.1.1) is a direct consequence of Fatou’s lemma with f, := 14, since

p(liminf A,,) = flim inf 14, dp < liminf f 14, dp = liminf u(A,).
n—00 n—00

n—00
To obtain (2.1.2), observe that (2.1.1) with A,, replaced by A¢ reads
p(liminf A) < h,?iio%f“(Afz)'

Using this in combination with the identity (lim SUD,— o0 An)c = liminf,,_,o, A¢, the finiteness
of p, and the fact that p(Q2) — liminf,, o p(AS) = limsup,,_,,, 1(A4,), we therefore deduce

p(limsup A,) > limsup p(4y,).

n—0o0 n—0o0

O

Another benefit of Fatou’s lemma is that it serves in proving the dominated convergence theorem
below, which (besides the monotone convergence theorem) is one of the principal results allowing
the interchange of integration and limits.

Theorem 2.1.7 (Lebesgue’s dominated convergence theorem (DCT)). Let (f,) be a sequence
in M(Q,F, ), and assume there exists g € M (Q, F,u) with |fu| < g for all n € N, as well
as §gdp < oo. Furthermore, assume that f, converges p-almost surely to some f € M (see
Definition 2.2.1 below for almost sure convergence).

Then (|f|du < oo, and

i [ udu= [ £

Proof. Using Fatou’s lemma we obtain

JgderlirEriioréf(J_rffndu) :hgiogff(gifn)d#>f(gif)du:fgdﬂiffdu. (2.1.3)

Subtracting {gdu € [0,00) on both sides supplies us with

ffd,u < limiolgfffnd/z < limsupffnd,u = limiorolfffndp < jfd,u,

n—ao0

and hence finishes the proof. O

Example 2.1.8. Let f € M™. Then
[ran=]  utr> 0.
[0,c0)
Indeed, let (f,) be any sequence as in Lemma 2.0.10. Then, using MCT,

f Fdp=tim [ fadu=lim | w(fa> DA :J V(f > DAL).
Q Q

=% J[0,00) [0,00)

where the first equality is the definition of the integral for measurable non-negative functions
(or else by MCT), the second equality is easy to check for simple functions in normal form, and
the third equality takes advantage of the MCT as well as the convergence {f, >t} 1 {f >t} in
combination with the continuity from below of the measure .
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2.2 Measures with densities, absolute continuity

2.2.1 Almost sure / almost everywhere properties

Definition 2.2.1. Let (Q, F, 1) be a measure space and let P be a property such that for each
w € Q it can be decided whether the property P holds true or not. We then say that the property
P holds (p-)almost everywhere / (u-)a.e. (‘(u-)fast iiberall’/ ‘(u-)f.1i.")) if there exists a (u-)null
set N € F such that P holds for all w e N°.

If p is a probability measure, we also say that the property P holds for (u-)almost all / (u-)a.a.
(‘u-fast alle’/ ‘p-f.a.’) w instead.

Example 2.2.2. Consider the Cantor function F : [0,1] — [0,1]. Then F is differentiable
Al[0,1]-almost everywhere with F'(x) = 0 for all such x (see problem 2 e) on homework sheet 7).
Indeed, in the homework we have seen that F'(x) = 0 for all z € [0,1]\C, with C' denoting the
Cantor set. You have furthermore shown that A(C') = 0, so in particular this means that F is
differentiable A 1}-a.e.

Lemma 2.2.3. Let f € MT(Q,F,un). Then

ffd,uzO if and only if f =0 u—a.e.

Proof. The statement is obvious for simple functions. For general f € M*, choose a monotone
approximating sequence of non-negative simple functions f,, with f, 1 f. Then f = 0 p-a.e. if
and only if for all n € N, we have f,, = 0 p-a.e. By the observed validity of the statement for
simple functions, the latter is equivalent to { f,, dp = 0 for all n € N, which due to the definition

of the integral via
| ran= [ adu
n—0oo

is equivalent to { f du = 0. This proves the result. U

Lemma 2.2.3 it interesting in its own right, but it also proves useful in deriving the following
result.

Proposition 2.2.4. Let
(b) f,ge M(Q,F,u) and let f or g be p-integrable.
Then, if f < g p-a.e., we have
f fdu < f gdu.
Q Q
Proof. Exercise. O

The MCT Theorem 2.1.1 gives rise to a class of measures that is of particular importance in
probability theory, as is explained in the following corollary to it.

Corollary 2.2.5. Let f € M™ be defined on a measure space (2, F, ). Then the set function

(2.2.1)

defines a measure on (Q, F).
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Proof. Since f > 0 we have v > 0, and furthermore v(J) = 0. To show the o-additivity, let
(Ay) be a sequence of pairwise disjoint sets with A,, € F for all n € N. Then

(Ute) = [ san= [ (S ra) ™5 [ govsan= 3 vt

neN

O

Remark 2.2.6. In fact, if instead of f € M™T we only assume that f € M is u-quasi-integrable,
we still get that (2.2.1) defines a signed measure.

For those who have attended ‘Introduction to stochastics’, we add here the remark that the
result of Corollary 2.2.5 is very good news for us. Indeed, recall from [ , Section 1.8.3]
that we did run into severe troubles trying to define measures as in (2.2.1) using the Riemann
integral. It turns out that by use of the Lebesgue integral everything we're after works out
smoothly.

Definition 2.2.7. In the context of Corollary 2.2.5, we say that f is a density of v with respect
to u. We write v = f - p, or
dv
r-4
1
Example 2.2.8. Recall the Normal distribution on (R B(R?)) introduced in Ezample 1.5.8.
We observe that a N'(p,X) distributed random variable (1 € R, ¥ a symmetric positive definite
matriz) has a distribution (recall Def. 1.5.7) which has density

1 o DGR C DU : T
(27m)d|det (%)

with respect to A%
The following result explains us how to integrate with respect to measures that have a density.

Proposition 2.2.9. Let g € M such that g = 0 p-a.s. or §|g|dp < 00. Furthermore, assume
v=f-p with f € M. Then

f lg|dv < o if and only if f lg| - fdp < o0,
Q Q

and if the integrals are finite, then
J gdu:f g-fdueR.
Q Q

Proof. Assume g € M™T. Then, due to Lemma 2.0.10, there exists a non-decreasing sequence
(gn) of functions in 7 such that lim, g, = g. Writing g, = 33" af'lan, for a normal
representation of g, with A} € F and o' > 0 we have

fgndu—Za v(A}) ff Landp = fgn'fd/%
Q

=1

where in the second equality we took advantage of the fact that v(A?) = § A f du by definition
of the measure v. Using the MCT, the result follows.

If, on the other hand, g € M, then we decompose g = g* — g~, and proceed similarly to the
above for both, ¢g* and ¢g~. O
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Proposition 2.2.10. Let v and p be measures on (2, F), and assume that v is o-finite. Fur-
thermore, assume that f and g are densities of v with respect to p. Then we have
f=9 p—ae.

Proof. Since v is o-finite we find S,, € F such that v(S,) < 00 and Q = [ J, .y Sn- Define the set
ni=1{f > g} n S, of those points in S,, where f takes values larger than g. We deduce

0= (L) =) = [ fdu= | gdi= [ (7= 0)Lismppns,

Ln Ln Q
Since (f — g)1{s>gy > 0, this implies y(Ly,) = 0. Therefore,

w(f > g) = (UL) N u(Ly) = 0.
neN neN
In a similar manner we obtain
u(f <g) =0,

so u(f # g) = 0 and therefore f = g u-a.e. O

More generally, we introduce the following concepts relating two measures on the same measur-
able space.

Definition 2.2.11. Let u,v be two measures on a measurable space (2, F). We say that

(a) v is absolutely continuous (‘absolutstetig’) with respect to p (and write v < p), if for
each F € F with u(F) = 0 we also have v(F') = 0;

(b) pu and v are equivalent if u < v and v < y;

(c) v is singular (‘singulér’) with respect to p (and write v L p), if there exists F € F such
that u(F) =0 and v(F*) = 0.

In the case of finite measures, there is an obvious justification for Part (a) of this terminology
given in the following lemma.

Lemma 2.2.12. Let p and v be measures on a measurable space (2, F) such that v is finite.
Then v is absolutely continuous with respect to w if and only if for each € > 0 there exists § > 0
such that for any F € F,

w(F) <6 implies v(F) <e.

Proof. 1f the e-0-condition holds, then for any set F' € F with u(F) = 0 we have v(F) = 0, so
v is absolutely continuous with respect to p.

On the other hand, assume that the condition does not hold true. Then we find € > 0 and a
sequence (F),) with F), € F such that u(F,) < 27" and v(F),,) > . Setting

F =1 F, = F,,
msw F= (] U

we deduce for each n € N that
< M( U Fm) < D) p(Fn) <27,
mz=n m=n

s0 p(F') = 0. On the other hand, using Corollary 2.1.6 and the fact that p is finite,

v(F) = limsupv(F,) = ¢ > 0.

n—o0

Thus, v is not absolutely continuous with respect to p. U
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2.2.2 Hahn-Jordan decomposition

The following result on the Radon-Nikodym derivative (Theorem 2.2.16) is not only of impor-
tance in the context of probability theory, but is also of significance to functional analysis.
Before, however, we introduce a key result for proving it, which is interesting in its own right.
We begin with giving an intuitive definition.

Definition 2.2.13. Let p be a signed measure on (2, F). A set A€ F is called positive (nega-
tive), if for every F' € F we have that u(An F) >0 (u(An F)<0).

Theorem 2.2.14 (Hahn-Jordan decomposition (Hans Hahn (1879-1934), Camille Jordan
(1838-1922))). Let p be a signed measure on (Q,F). Then there exist QT,Q~ € F such that
Q=Q"0Q" and the following hold:

(a) Setting u™ = u(- Q1) as well as p= := —p(-nQ7), both ut and p~ define non-negative
measures (note that in particular we have p~ (Q1) = 0 as well as ™ () = 0). In this
case, we say that Q and Q= form a so-called Hahn decomposition of Q with respect to

-
(b)

pw=pu"—pu"  (Jordan decomposition).

In addition, the Hahn decomposition of £ is unique up to null sets with respect to the measure
+ —
TV ol VA

Proof. According to Exercise 1.2.12 we can assume w.l.o.g. (without loss of generality, ‘0.B.d.A.’,
‘ohne Beschriankung der Allgemeinheit’) that u(F') € (—o0,00] for all F e F.
We define

c:= inf u(F). (2.2.2)

FeF .
F' negative

We can find a sequence (F),) of negative subsets of F such that lim,, . u(F),) = ¢, the countable
union of negative sets is negative again, we infer that

is negative and that u(Q2~) = ¢. Indeed, since —po- is a ‘common’ non-negative measure, the
latter equality follows from

c= lim p(Fn) >pw(Q7) > if ) >c
F' negative

where the second limit exists since the sequence is monotone.

We claim that Q1 := Q\Q~ is a positive set. Indeed, assume it was not. Then there would
exist Gp € F with Gy < Q7T such that u(Gg n Q%) < 0. Now Gy cannot be a negative set since
in that case GoUQ~ would be a negative set with u(Gp U Q7) < ¢, a contradiction to (2.2.2).
Thus, there exists a minimal k1 € N such that G contains a set G € F with u(Gq) = k% Then

1

(Go\G1) = p(Go) — u(Gr) < 5

since the RHS is negative, the same reasoning applied to Gg before can now be applied to
Go\G1 in order to infer that Gp\G; contains a set Gy € F with u(Gq) = k—12, and such that ks is
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minimized among all such admissible subsets. Due to u(Go) € (—o0, ), Exercise 1.2.12 would
in particular yield that

and as a consequence, for every G € F subset of
0
G* = Go\ | Gn
n=1
we would have p(G) < 0. In particular, G* € F would be negative. But then
0
u(G*) = u(Go) = . 1(Gn) < u(Go) <0,
n=1

which as before contradicts the assumption that p(27) is minimal among all negative sets.
Therefore, we must have that Q7 is a positive set and we have proved the claim and can now
conclude the proof:

(a) It immediately follows that
p (Y =pt Q) =0. (2.2.3)

Similarly, ™ = 0 since Q% is a positive set and =~ = 0 since Q™ is a negative set.

(b) This is a consequence of the additivity of signed measures.

Uniqueness: Exercise.

O

Lemma 2.2.15. For a signed measure p on (2, F), we have with the notation of Theorem
2.2.14:

(a)
pt(A) = sup u(F), VAeF,

FeF
FcA

and pt is also called the positive variation of p.
(b)
uw (A) = — inf u(F), VAeF,

FeF
FcA

and p~ s also called the negative variation of u.

Furthermore, we call the measure
ul =t +p

the total variation of p.

Proof. (a) It follows from Theorem 2.2.14 that u(- n Q) is non-positive and u(- n Q1) is
non-negative, so

sup p(F) = sup p(F) = p*(A).
FeF FeF
FcA FcANQT

The remaining part follows in a similar manner.
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2.2.3 Lebesgue’s decomposition theorem, Radon-Nikodym derivative

Theorem 2.2.16 (Lebesgue’s decomposition theorem, Radon-Nikodym theorem). Let p and v
be o-finite measures on a measurable space (§2, F).
Then there exist unique measures Vy. and vs on (2, F) such that the following hold:

V="Us+Vs, and Vupe<pu, Vsl p.
Furthermore, there exists f € M™ with
Vac = f - pu
and f is p-a.s. uniquely determined.

Corollary 2.2.17. Under the same assumptions as in Theorem 2.2.16,
v<u if and only if v has a density with respect to p.

You are asked to prove most of Theorem 2.2.16 in homework problem 2 on sheet 8. Here, we
will only address the uniqueness part. For this purpose take another decomposition of p with v/
and v, denoting the corresponding singular and absolutely continuous parts. Let A € F such
that p(A) = 0 and v5(A°) = 0. Then v/ .(A) = 0 since pu(A) = 0, and hence

v(F)=v(FnA) =VJ(FnA)<V(F) VFeF.

In particular, we infer vy < v/ and thus v/ . < v,.. But then v/ — 1y = v, — V. is a measure
9 S S ac ac S S ac ac

which at the same times is singular and absolutely continuous w.r.t. 4 so it must vanish. Hence,
Vs = v} and V). = Vac, which proves the uniqueness of the Lebesgue decomposition.

Now that we know that v,. is unique, the p-a.e. uniqueness of f follows from the fact that (see
homework sheet) v, := f - p for some f € M™ and Proposition 2.2.10.

Remark 2.2.18. (a) Using Theorem 2.2.1}, Theorem 2.2.16 can be extended to signed mea-
sures (which we won’t do here).

(b) Above we had introduced all the machinery we needed in order to give a self-contained
proof of Theorem 2.2.16. If you do have a basic knowledge of functional analysis, you
might also want to have a look at another proof of the cited results that takes advantage
of Riesz’ representation theorem (see the Proof of [ , Theorem 7.33], for example).

2.2.4 Integration with respect to image measures

The following is a generalization of [ , Proposition 1.9.10].

Theorem 2.2.19 (Change of variable formula (‘Transformationssatz’)). Assume a measure
space (Q, F, p) as well as a measurable space (2, F) and a F — f—rrieaiumble map @ : Q — Q
be given. Denote the image measure po = by fi. Then for f € M(Q, F) the integral

Lfosadu

exists if and only if the integral
| ran
Q

exists in R (i.e., in the sense of quasi-integrability). In this case both integrals coincide.

The proof is contained in Homework 8.1.
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2.3 Product spaces

As outlined in | , Section 1.14.3] of | | already, it will be crucial for us to be able to
construct infinite sequences of random variables defined on the same probability space. One
way to ensure that the underlying probability space is ‘rich enough’ to accommodate for this
wealth and structure of random variables will be to consider infinite product spaces, which are
products of measure spaces and play a crucial role in probability theory.?

Definition 2.3.1. Let A be an arbitrary non-empty index set, and let Qy, A € A, be a family
of non-empty sets. Then we define the product space (‘Produktraum’) (or also the product of
the Qy, A€ A)

X

AeA
to be the set of all maps f: A — | cp O such that f(X) € Qy for all X € A.
In the case that the Q0 are equal to some set Q for all X € A, we also write QN for the corre-
sponding product space.

Example 2.3.2. Without going into detail, it might be suggesting itself that if we want to model
an infinite sequence of coin tosses, the space {0, 1} might be a candidate for outcomes of such
an experiment to lie in, where O can be identified with tails and 1 with heads. Then w € {0, 1}N
is nothing else than an infinite sequence (w(n))nen of elements in w(n) € {0,1} for all n € N.

Definition 2.3.3. For I c J c A we introduce the projections

o X Oy — X
AeJ el
w— wlr.

In particular, if J = A we will write 7y, and if I = {\}, we will use the notation 77{. For 7'('{])\}
we will also just write my;.

We are now going to introduce the notion of a product-o-algebra. In case you have seen this
before, it will be very much in the spirit of the definition of the product topology, where instead
of measurability one asks for continuity of the projection maps. We recall the definition here
fore completeness.

Definition 2.3.4. Let a family (2, 7)), A € A, of topological spaces be given. The corresponding
product topology 7 is defined as the smallest topology on X, Qx such that for each X' € A,
the coordinate maps my @ X cp 0 — Qv are continuous with respect to the topologies T and
.

With this in mind, we can now proceed to the definition of the product-c-algebra.

Definition 2.3.5. Let a family (2, F)), A € A, of measurable spaces be given. The correspond-
ing product-o-algebra ), Fa is defined as the smallest o-algebra on X ., Q) such that for
each X' € A, the coordinate maps my : X ycp Qx — Qv are &)y p Fr — Fa-measurable.

As before, if Fo = Fy for all X € A, then we also abbreviate ), Fx by (Fo)®A.

Lemma 2.3.6. In the setting of Definition 2.5.5, for any I < J < A, the mapping =i is
Ries Fr — Qyer Fa-measurable.

Proof. This is a direct consequence of Corollary 1.4.9. O

2In spirit, this will be very much related to the concept of products of topological spaces in case you have seen
this before
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Definition 2.3.7. Let a family (Qx, Fy), A € A, of measurable spaces be given. Then any set
of the form
() HF) e R Fr, Fe®@Fn, JcA finite, (2.3.1)
AeA AeJ

1s called a cylinder set.

Lemma 2.3.6 implies that cylinder sets are F = (X),., Fi-measurable.

The principal reason that cylinder sets will play an important role in what follows is that it
is generally easier to assign probabilities to them than to arbitrary measurable subsets of an
infinite space. Indeed, imagine the setting of infinitely many coin tosses again. As long as you
only want to understand events involving the outcome of finitely many of these coin tosses, you
are easily able to assign them a probability under the assumption that the coin tosses are fair
and independent. This becomes much more intricate in case you consider events that depend
on the outcome of infinitely many coin tosses.

Crucially, as will turn out below, specifying a probability measure on cylinder sets already
uniquely characterizes the measure (see Theorem 4.2.1 below), so there is no need to specify
probabilities for an even bigger subclass of measurable sets.

Exercise 2.3.8. Assume the setting of Definition 2.3.7. Show that cylinder sets form an algebra,
but not a o-algebra.

We have seen before that the Borel-o-algebra plays a prominent role in our studies; the following
result sheds some light on its behaviour under taking products.

Theorem 2.3.9. Let A be an at most countable set and assume that for a family (2, Ty),
A€ A, each (Qy,7y) is a Polish space® (complete separable metric spaces, if you prefer). Then,
setting 0 := X ycp Q0 and denoting by T the product topology of 2, we get that (2, 7) is a Polish
space (or a complete separable metric spaces for that matter) again, and

o(r) = Q) B(7). (2.3.2)

AEA

Proof. For simplicity of notation we assume w.l.o.g. that A = N (or a finite subset of N with
the respective modifications in the notation below) for the first part of the proof. Denote by
d,, a metric on 2, that induces the topology 7,, and with respect to which €2,, is complete. We
define on 2 a new metric

AN —n dn(w(n),w'(n))
d(w,w’) := Z 279 + dp(w(n),w’(n))’

neN

and it is left as an exercise to check that d induces the product topology on €2, and that 2 is
complete with respect to d. Furthermore, €2 is separable, as will follow from an argument below.
We now prove (2.3.2). By definition, for each A € A, the projections my : Q@ — Qy, A € A,
are continuous maps from the topological space (€2,7) to the topological space (Q2y,7)). As
a consequence of Theorem 1.4.7, the o-algebra ®yeaB(7)) is generated by all sets of the form
71';1(0), O € Ty, A € A, and in combination with the aforementioned continuity of the projections
we get that 7,1 (0) € 7, whence ®),., B(T)) < o(7).

To prove the converse inclusion, we first of all observe that the (at most) countable product
of separable metric spaces is separable again. Indeed, for A € A we denote by D) a countable
dense subset of 2. For each A € A choose and fix @) € D) arbitrarily and set

D= {w € X Dy : wy # @y for finitely many \ € A}.
AeA

3Recall that a Polish space was defined as a separable topological space, for which there exists a complete
metric that induces its topology.
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Then D is countable and dense in €2, so €2 is separable.
Now let

O,y = {B (w) : wEDA,nEN},

3=

with B1(w) = {@ € Q) : dy(w,@) < 1}, then O, is a countable basis of the topology of

(i.e., any open set in ) can be written as a (a priori possibly uncountable) union of elements
of Oy). Thus,

n

g {ﬂw;j(BM) . By, € Ox,, {M, ... A} © A}. (2.3.3)

n=1 =1

is a basis for the topology 7.
Now since (2 is separable, for an arbitrary basis B of the topology 7, any open set in 7 can be
written as the countable union of elements in B. Thus, since the elements of (2.3.3) are contained
in ®)epaB(Ty), this finishes the proof of 7 € ® xeaB(7)) and thus also o(7) € ®aeaB(T)-

O

We immediately obtain the following important corollary.

Corollary 2.3.10. For each d € N, we have

B(RY) = B(R)®?.

2.4 Product measures

Oftentimes, such as e.g. in the case of R? we do know how to integrate with respect to the
‘one-dimensional measures’ (such as with respect to the Lebesgue measure, where the funda-
mental theorem of calculus provides us with a powerful tool to actually compute integrals), but
integration with respect to the product measure seems to be harder when it comes to actual
computations (recall Theorem 1.3.11 as well as Remark 1.3.15). The Theorems 2.5.1 and 2.5.2
below provide a useful technique to reduce the integral with respect to the product measure to
integrals with respect to the marginals.

In order to be able to rigorously formulate them, we first have to introduce the concept of a
product measure in a more general setting than that of Remark 1.3.15.

Definition 2.4.1. Assume measurable spaces (21, F1), (2, F2) and (E,E) be given and write
Q:=Qy x Qq. For arbitrary A < § as well as 0; € Q;j, 1 < j <2, we call

Ag,l = {WQ € QQ : (&1,0.)2) € A}
the Wi-section of A (‘W1-Schnitt von A’), and similarly we call
A(DQ = {wl € Ql : (wl,(bg) € A}

the Wo-section of A (‘We-Schnitt von A’).
If f: Q— E, then we call
for : Q2= B, wo e f(@1,w2)

the wi-section of f (‘@1-Schnitt von f’), and similarly
wa : Ql - E, w1 — f(wl,&g)
the Wa-section of f (‘@2-Schnitt von f7).

Lemma 2.4.2. Assume the setting of Definition 2./.1.
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(a) If A e Fi1 ® Fa, then .
Agl S .7:2, A2 € .7:1.

(b) If f is F1 ® Fo — E-measurable, then fy, is Fo — E-measurable, and similarly f** is
F1 — E-measurable.

Proof. (a) Fix @y € ©Q; and consider the system of sets
A= {A € .7:1 ®.7:2 : A@l € .7:2}

We claim that A is a o-algebra. Indeed, 2 € A since Qy, = 2y € F. Furthermore, since
(A%m, = Q2\(Ap,), we get that A € A implies A € A. Lastly, for (4,) with A, € A for

all n e N, we deduce
< U A”)al = Uz,
neN

ne

and hence we deduce | J,, .y An € A, too, and A is a o-algebra. Furthermore, for Fy € F,
Fy € F5 we have I} x Iy € F1 ® Fa, since

FQ, if uNJl € Fl,
o, otherwise.

(F1 x Fy)g, = {

Since Fp # Fo (recall the notation of Lemma 1.1.7) generates the o-algebra Fi; ® Fa, we
deduce that A = F; ® F», which finishes the proof.

Analogously, one can show A2 € Fj.

(b) Fix @y € Q. For F € £ we have

(fo)HE) = (FHEF))an s

and the claim follows from the fact that f~(F) € F; ® F in combination with (a).

Similarly for &y € Q9 and f&2.

]
Proposition 2.4.3. For j € {1,2}, let uuj be a measure on a measurable space (§2;, Fj).
(a) If us is o-finite, then for any F € F; ® Fa, the function
Ql D Wy — ,U,Q(le) (241)
is F1 — B(R)-measurable, and the function
Y .7:1 ® .7:2 —> ,U,Q(le) M1 (dwl) (2.4.2)
951

defines a measure such that for any A€ F1, B € Fa,

i(A x B) = pi1(A) - pa(B). (24.3)

(b) If both, uy and pg are o-finite, then there is exactly one measure 1 @ pa on F1 ® Fo such
that (2.4.3) holds with p replaced by py ® psa. In this case,

i @pa(F) = | e(Pu) (o) = | (P oden) YFER@F. (244

11 ® ueo is called the product measure of uy and ue, and it is o-finite.
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Proof. (a) As before, by the usual exhaustion procedure we can assume that ps is finite. Then
desired measurability of the function in (2.4.1) follows again by a good sets principle and
we will omit the details here.

We can rewrite the function in (2.4.2) as

W(F) = L L (w1 w2) pia(deoa) i (d).

from which one can observe by applying the MCT that this expression defines a measure
on Fi ® Fy. By setting F' := A x B we immediately obtain (2.4.3).

(b) By (a) and symmetry, the middle and right-hand side expressions of (2.4.4) both define
measures satisfying (2.4.3). Since both, p; and pg are o-finite, we can use Theorem 1.2.17
to deduce the desired uniqueness, so the two measures coincide and g1 ® o is well-defined

and uniquely determined by (2.4.4).
]

Remark 2.4.4. o-finiteness of ug is needed Part (a) of Proposition 2.4.3, since otherwise the
function wy — pa(F,,) is not necessarily measurable anymore, see [ , p.90].

The above can immediately be generalized to the product of finitely many measures, which in
particular is a generalization of the observation of Remark 1.3.15.

Theorem 2.4.5. Let (4, F;, i), 1 < i < n, be o-finite measure spaces. Then there exists a
unique o-finite measure on the product-c-algebra F := R1<;<nF; such that

w(Fy x ... x F,) = HMZ(Fz),

forall F;e F;, 1 <i<n.
@i = 1 @ ... @y := s called the product measure of the p;, 1 <i < n, and in the case
that all (8, Fi, pi) are equal, we write pu3™ for the product measure.

Proof. We will not give the proof here since we will prove a more general result in Theorem
4.2.1 below. See | , Satz V.1.12] for a proof. O

2.5 The theorems of Fubini and Tonelli

Theorem 2.5.1 (Tonelli’s theorem (Italian mathematician (1885-1946))). Let (4, F1, 1) and
(Qg, Fao, p2) be o-finite measure spaces, and let f € MT(Qq x Qo, F1 ® F2). Then the function

Wy —> flwr,wo) dua(wse)  is in MT(Qq, F1), (2.5.1)
Q2

the function

Wy > flwr,wo)dur(wy)  is in M1 (Qa, Fo), (2.5.2)
1951

and the equality

o ramen= | (| e (o)) = |

(| fenws) m(den) ) paldwn)
Qo Q1

(2.5.3)

holds true.
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Proof. We see that (2.5.1) to (2.5.3) hold true for f = 1, F' € F1®F2, due to Proposition 2.4.3.
Using the linearity of the integral for non-negative functions as in Lemma 2.0.14, we obtain that
the validity extends to simple non-negative functions which are F; ® F» — B(R)-measurable.

Choosing a non-decreasing sequence (f,) of non-negative simple functions as in Lemma 2.0.13
with lim, .« fn, = f, we use Proposition 1.4.15 and the MCT to deduce the measurability stated

in (2.5.1) and (2.5.2) for f € M™ from their validity for simple functions:

fwi,we) dpg(ws) = j lim f, (w1, ws2) dpa(we) = lim frlwr,ws) dps(w2).
QQ QQ n—00 n—0o0 QQ

Similarly for the roles of w; and ws exchanged. The equalities in (2.5.3) then follow by the
MCT and their validity for simple functions:

J Jdpr @ pg = f lim f,dp ® po = lim fndpr @ po
leﬂg n—

leﬂg n—0m o Ql XQQ

n—00

= lim o ( o fn(w17w2)/~62(dW2))M1(dw1) = Ll ( QQf(w1aw2)uz(dw2)>m(dw1)a

and similarly for the second equality in (2.5.3). O

It turns out that we are still allowed to integrate coordinatewise even if f is not necessarily
non-negative. However, we have to demand integrability with respect to the product measure
to replace non-negativity. This is the content of Fubini’s theorem.

Theorem 2.5.2 (Fubini’s theorem (Italian mathematician (1879-1943))). Assume the setting
of Theorem 2.5.1, except that instead of f € MT(Qq x Qo, F1 ® F2) we only require f = g+ ih,
with g,h € M(Q1 x Qo, F1 ® F2). Then, if f is u1 ® pe-integrable,

(a)

Af = {wl € f(wi,-) is not ,ug—z'ntegmble} e Fy (2.5.4)
s a p1-null set;
(b)
AS = {w2 € Qo : f(,wa) is not ,ul—z'ntegmble} € Fo (2.5.5)
s a po-null set;
(c)
Wy 0 f(wi,wa)dpa(we)  is in M(A1, Fija,), (2.5.6)
2
and
Wy > flwr,w2)dpa(wr) s in M(Az, Faja,), (2.5.7)
1951
and

LQ fdin @ iz = Ll (], oo ot m () .

= [ (| st wonmiaon us(don)

Proof. From the u ®puo-integrability of f we deduce that |f| is integrable with respect to p1 ®pa
as well. Thus, Tonelli’s theorem implies

J;h <f92 | f (w1, wa)| Mz(du&)) pi(dwr) = f |f] dpg ® pg < 0. (2.5.9)

leﬂg
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The inner integral on the left-hand side is a measurable function due to (2.5.1) and so the

finiteness of the outer integral on the left-hand side implies

| 1 elmen) <o for - a0 e 0,
2

i.e.,

Af = {wl e : fﬂ |f (w1, w2)| pa(dws) = oo}

2

is in F; due to (2.5.1) and a pg-null set, which establishes (2.5.4). In particular,
for all wy € Ay, the function |f(w1,-)| is uo-integrable. (2.5.10)

Thus we deduce from the linearity of the integral that for w; € A1 we have

f(wi,wa) pa(dws) = f (Ref) ™ (w1, w2) po(dws)

Qg Q2

| ey (w0 o)
2 (2.5.11)

+ if (Imf)* (w1, w2) pa(dws)
Q2

—if (I f)™ (w1, w2) pr(dew),
Q2
where all integrals on the right-hand side exist in [0,00) due to (2.5.10) and

(Ref)™, (Ref)™, (Imf)", (Imf)~ € [0, |f]]. (2.5.12)

Thus, (2.5.6) follows since restricted to Aj, all integrals on the right-hand side of (2.5.11)
are finite and in M* (A1, F1|4,). The bounds (2.5.12) in combination with (2.5.9) imply that
linearity of the integral supplies us with

|, (], stor ot mi@n) = [ (] @er)* (o) pafdn)) ()
=], (] Be) o o) )
e (), )" ) naldn) (o)
i (] amp e ma(den) o),

where the last equality follows from the fact that all integrands of the outer integrals are non-
negative.

We may now apply Tonelli’s theorem to each summand on the right-hand side of the last display
to deduce that it equals

f (Ref)™ dur ® po
leﬂg
- j (Ref)™ du1 ® 2
Ql XQQ
+ j (Tm f)* dpr ® po
Ql XQQ
- f (Imf)™ dpg & 2
Ql XQQ

=f Jdur ® p,
leﬂg
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where the last equality follows from the finiteness of the integrals on the left-hand side and the

linearity of the integral. This implies the first equality in (2.5.8).

The remaining statements are obtained by exchanging the roles of (21, F1, p1) and (Qs, Fa, pi2).
O

2.6 Fourier transform / characteristic functions

Recall the notation for image measures introduced in Theorem 1.5.6 and Definition 1.5.7.

Definition 2.6.1. Let y1 be a finite measure on (R, B(R?)). Its characteristic function is defined
via the Fourier transform

d

onlt) = fRd e i (dz) — fRd cos(t - z) p(dz) + i fR sin(t - 2) p(d).

The characteristic function of a random variable X taking values in (R, B(R?)) is defined as
the characteristic function of its distribution:

it- hm. 2.2.19 it
ex(t)i= prox () = | e Bc(de) 2 BLN)

For the next example we need the following result which is interesting and useful in its own
right.

Proposition 2.6.2 (Interchange of integration and differentiation). Let I be an interval con-
taining more than one point, to € I, let (2, F,p) be a measure space, and let f: [ x X — C
with the following properties:

(a) for all t € I, the function f(t,-) is integrable;
(b) g—{(to,w) exists for all w € Q;

(c) there exists a neighborhood U of ty as well as g € M1 (Q, F) integrable such that for all
te U n I with t # ty, one has for p-a.a. w € Q that

f(tvwi : {O(t()aw)’ < g<w)

Then the function F : I 3t — §, f(t,w) p(dw) is (at least one-sidedly) differentiable in to, the
function %(to, -) 1is integrable, and

0
F(to) = | G tto,) ula).
Q
Proof. See exercise 3 on homework sheet 10. O

Remark 2.6.3. Under the appropriate assumptions, important computational tools that we got
to know for real-valued functions remain valid for complex-valued functions also. This applies
to the Fundamental Theorem of Calculus, integration by parts, etc., where we can essentially
prove the respective results by decomposing a complez-valued function into its real and imaginary
parts, and then perform the proof for each of these parts.

Ezxemplifying we go through the example of the Fundamental Theorem of Calculus here: Let
f i la,b] = C a continuous complez-valued function with f = g + ih and g,h real-valued
functions, and F' = G + iH an antiderivative to F with G and H antiderivatives to g and h.
Then S[a,b] fdx= S[a,b] gdA+ iS[a,b] hdX = G(b) —G(a) +i(H(b) — H(a)) = F(b) — F(a), where
the penultimate equality follows from the Fundamental Theorem of Calculus.
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Example 2.6.4. Let p € R, 0 € (0,00), and let X ~ N(u,0?). In order to compute px we
first of all note that using the previous result on integration by measures with densities (see
Proposition 2.2.9) and using substitution,

2 e‘m dz = Mozt gz = ey (ot) (2.6.1)

ox)= o [ = e

where 'Y~ N(0,1). Using Proposition 2.06.2 we can then differentiate @y (t) =
\/%7 SO,OOO e~ 126l dg to get that

(1) J 712/2 —z) (—1)e™ dz.
=/(z) =w(x)

We can continue using integration by parts to obtain

1 2 . o0 9 )
L) = —— (e /2(—i)elt]” —f e T2l qp ) = —¢ t 2.6.2
o) = oz (- | )=ter()  (262)
=0
and note that
oy (0) = E[¢"] = 1. (2.6.3)

From the theory of ODEs (i.e., Analysis II in your case, cf. Ezxistence and Uniqueness Theorem
of Picard-Lindeldf, [ , Theorem II.6.1]) we know that the initial value problem given by
(2.6.2) and (2.6.3) has a unique solution which is given by

py(t) = e 2.

Plugging this into (2.6.1), we obtain

QOX(t) _ eiut—(at)2/2.

The above considerations generalize to X a d-dimensional (p,X)-distributed random variable
(e R, ¥ e R positive definite) to obtain

©x (t) _ eiwt—t-(Z-t)/Q’ te Rd.

Theorem 2.6.5. Any finite measure on (R, B(R?)) is uniquely characterized by its character-
istic function.

The proof of this result will be given later on (see page 96), when we have a better probabilistic
understanding of its tools.



Chapter 3

Classical and basic results in
probability theory

A large chunk of this chapter will be based on the lecture notes | | accompanying the course
‘Introduction to Stochastics’ which can be found here. As a consequence, we will not repeat
proofs of results that are proven in the same way as in [ | but rather refer to that source
instead. In particular, you might want to have a look at | , Section 1.2] for motivating the
concept of a probability.

As regards to other sources, | I, 1 ] and [ | make particularly good reads for

foundations of probability theory. All three sources cover significantly more than what we can
hope for in this course.

3.1 Specific distributions

When putting our previous setting of measure theory and integration into a probabilistic con-
text, we will usually consider some probability space (€2, F,P) to be given. Random experiments
will then be described via random variables X : (2, F,P) — (E, ) as defined in Definition 1.4.1.
Furthermore, elements of the form {X € A} :={we Q : X(w)e A}(e F), A€ &, will be called
events, and they will constitute those outcomes of (random) experiments that we will be able
to assign a probability to. See also | , Example 1.2.1]. In fact, this example (as well as
Remark 3.1.1 below) also exemplifies that we will oftentimes and without loss of generality
choose (2, F) := (E,&); the latter is usually naturally given by the model of the experiment,
whereas the former may as well be some abstract space lurking in the background. What is
important to us, however, is the image measures P o X1,

The following observation will prove useful in the next sections when we introduce various
different distributions. This is largely taken from the corresponding section [ , Section
1.8]. We refer to that source for further examples and motivation.

Remark 3.1.1. Given any distribution p (i.e., a probability measure on (E,£)) one can con-
struct a random variable X with law p as follows. Take (E,E,p) as the underlying probability
space and choose X : E 3 w — w € FE to be the identity on E. Then X defines a random
variable from (E,E, ) to (E, &) with law p.

In particular, as a consequence of this remark, if we want to describe an random experiment
whose outcome is a value in E, then we can choose (F, &, 1) as the underlying probability space
for suitable £ and pu.

3.1.1 Discrete distributions

We recall the notion of a distribution introduced in Definition 1.5.7, and we also repeat the
definition [ , Definition 1.3.8] of the d- or Dirac-measure.

65
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Definition 3.1.2. Let (E,&) be a measurable space. For x € E, the Dirac measure / Dirac
distribution / delta measure in x is defined via

0z : € —[0,1].
F— 1p(z).

We will call any distribution on a measurable space (F, ) which is of the form

> ande,,

neN

where z, € E and o, = 0 with ), a, = 1 a discrete distribution. Similarly, we call any
random variable which has a discrete distribution a discrete random variable.

In the remaining part of this section, if not mentioned otherwise explicitly, we will always assume
the underlying probability space to be (2, F,P), and random variables map to (R, B(R)).

Example 3.1.3. A random variable X is called Bernoulli distributed with parameter p € [0, 1]
(named after the Swiss mathematician Jacob Bernoulli (1655-1705)) if

P(X=1)=p, and P(X=0)=1-p.

In this case one writes X ~ Ber, and the law / distribution P o X~ is referred to as the
Bernoulli distribution Ber,, which, using Definition 5.1.2, can be written as

Ber, = pd; + (1 — p)do.

A random wvariable that is Bernoulli distributed describes a coin flip (biased if p # 1/2), for
example. Assume w.l.0.g. that the coin shows heads with probability p and tails with probability

1—p.

Example 3.1.4. A random variable X is called Binomially distributed with parameters n € N
and p € (0,1), if

for each ke {0,1,...,n} one has P(X = k) = <Z>pk(1 —p)" (3.1.1)

In this case, one writes X ~ Biny, , and its distribution is referred to as the Binomial distribution
Bin,, ,, which can be written as

. 5 (n n—
Blnn’p = Z (k)pk<1 — p) k‘(Sk
k=0

Example 3.1.5. A random variable X is called geometrically distributed with success param-
eter p € (0,1), if
for all k € N one has P(X = k) = p(1 —p)* L. (3.1.2)

In this case we write X ~ Geop, and its distribution is referred to as the Geometric distribution
Geop, which can be written as

o0
Geo, = Z p(1 = p)F1og.
k=1

Remark 3.1.6. Some authors call X geometrically distributed if instead of (3.1.2),

for all k € Ng one has P(X = k) = p(1 — p)*.
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Example 3.1.7. A random variable X is called Poisson distributed with parameter v > 0 if

X: Q- Ny and i

INX:k):d”%—VkeN@

In this case we write X ~ Poi,, and its distribution is referred to as the Poisson distribution
Poi, (named after the French mathematician Siméon Denis Poisson (1781 — 1840)), which can
be written as

Poisson distributed random variables are e.g. used to describe the number of customers that have
called a customer service center in a certain time interval. The reason for such a description
being feasible is given by Theorem 3.1.8 below.

Theorem 3.1.8 (Poisson limit theorem). Let (py) be a sequence of numbers from [0,1] such
that the limit v := lim, o npy, exists in (0,00). Then for each k € Ny,

lim Bin, p, (k) = Poi, (k).

n—00
Proof. For k € Ny fixed we have
. LAY n—k __ n! (pnn)k Pnn n—k . o0 Vk —v .
Blnn,Pn(k) - (kﬁ) n(1 _pn) = k:'(n — kj)' ’I’Lk (1 - T) — Ee = POIV(k).

O

This result explains the fact that the Poisson distribution is used for modeling e.g. the number of
customers that contact a call center during a certain time interval: We partition the time interval
into n subintervals of equal width, and as we take n to infinity, it is reasonable to assume that in
any of the subintervals either zero or one customers are calling. Due to symmetry, it furthermore
seems reasonable to assume that the probability of a customer calling in a subinterval has a
probability decaying like p/n some p € (0,00), and that the fact that a customer has called
during one subinterval does not influence the probabilities that a customer is calling during
another time interval.! Thus, the probability of k customers calling during the original time
interval should be approximated by Bin,, (k) if n is large. The above Theorem 3.1.8 now
shows that the Binomial distribution is the right candidate for this.

Example 3.1.9. Let N € N, and K,n € {0,1,...,N}. A random variable X is called hyper-
geometrically distributed with parameters K, N,n if X : {0,1,...,N} — {0,1,...,N} with

() Car)
()
and P(X = k) = 0 otherwise.

In this case we write X ~ Hyp(N, K,n), and its distribution is referred to as the Hypergeometric
distribution Hypy f ,, with parameters NV, K, and n.

P(X =k) = forke{Ovn+K—N,...,nA K}, (3.1.3)

Example 3.1.10. Let X ~ Geo,. Then the distribution function of X is given by

Fy(t) 0, ift <1,
x(t) = i —(1—p)lt! _
S pa—py Tt =p U 1 -p), itz
Exercise 3.1.11. If X is a discrete real random wvariable, then Fx has jumps exactly at the
points in {x € X(Q) : P(X~1{x}) > 0} and is constant otherwise.

!These are slightly delicate issues; in fact, if the customer center in question is e.g. that of an energy retailer
and there is a power outage during some part of the time interval we consider, then these assumptions will
generally not be met. However, they seem reasonable to assume during normal operation.
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3.1.2 Distributions with densities
Definition 3.1.12. A function f € M*(Q, F,u) with the property that

f fdu=1
R
is called a probability density (‘Wahrscheinlichkeitsdichte’).

For the time being we will mostly be interested in the case (Q,F, u) = (R%, B(R?), A?).

We will call any distribution on (£2, F) which is absolutely continuous with respect to A? a con-
tinuous distribution. Similarly, we call any random variable which has a continuous distribution
a continuous random variable.

Also, we remark in passing that the distinction between discrete and continuous distributions
is not as essential anymore as it used to be in the introductory lecture. This is because we now
have one comprising framework for discrete and continuous distributions, since both of them
can be considered as probability measures on (2, F) now.

Example 3.1.13. (a) For a,b € R with a < b the uniform distribution (‘Gleichverteilung’)
on the interval [a,b]| has the density

1
R — —1 .

We write Uni([a, b]) for the uniform distribution on the interval [a,b], and the correspond-
ing distribution function is given by

0, ift <a,
F(t) =14 &2, if t € (a,b),
1, ift=b.

(b) Let k € (0,00). The exponential distribution (‘Exponentialverteilung’) with parameter x
has density

ke [T, if x>0,

R —
2 { 0, otherwise.

We write X ~ Exp(k) if X is a random wvariable that is exponentially distributed with
parameter K > 0.

(¢) The normal or Gaussian distribution (‘Normalverteilung’ or ‘Gaufiverteilung’, named after
the German mathematician Carl Friedrich Gauss (1777-1855)) with parameters p € R and
02 € (0,00) (seen in Ezample 1.5.8 already) has the density

1 _(a—p)?
[ 202

Razw—

b
2mo?

and we had agreed to write X ~ N(u,0?) if X is a random variable that is normally
distributed with parameters p and o>.

It should also be noted here that the cumulative distribution function of the standard Nor-
mal distribution N(0,1) is usually denoted by

B(t) = % LD e da, (3.1.4)

and that there is no closed expression for general values of t for the right-hand side. There
are, however, tables to look up those values for a variety of different values for t.

We will get back to those distributions after having introduced the concept of expectation.
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3.2 Independence

A key concept in probability theory is the notion of ‘independence’, which in the setting of
events has been introduced as follows in [ , Def. 1.6.1], see here. In fact, there are even
people saying that the concept of independence is the principal distinction of probability from
measure theory.

The motivation for the definition of independence has been the following definition of the con-
ditional probability.

Definition 3.2.1. Let F,G € F be such that P(G) > 0. Then we define the conditional proba-
bility of F' given G as

P(FnG)
P(F|G) = ——. 3.2.1
(F16) = s (321)
In terms of the interpretation of relative frequencies given in | , Section 1.2], this means

that if P(F'|G) = P(F) (ie., if P(F n G) = P(F)P(G)), then the (limiting) relative frequency
of F' is not changed if we restrict to those experiments for which G occurs.
This gave rise to the following definition.

Definition 3.2.2. Given a probability space (Q, F,P), events A, B € F are called independent
if
P(An B) =P(A) - P(B).

As it turns out, we will need a more general concept of independence as introduced in the
following definition.

Definition 3.2.3. A family (€)), A € A, with £\ < F is called independent if for any J < A
finite and any choice of F; € &; for j € J, one has

P((F) =] [PE). (3.2.2)

jed jed

An important special case is when €y = {F\} for all A € A, and with F\ € F. In this case we
say that the family of events (Fy), X\ € A, is independent.

Remark 3.2.4. The family (€)), X\ € A, is independent if and only if for any J < A finite, the
family (€)), A € J, is independent.

Proposition 3.2.5. Let (€)), A € A be an independent family with Ex < F. Then the family
(0(EX)), A€ A, of Dynkin systems is also independent.

Proof. From Remark 3.2.4 we deduce that we can assume A to be finite.

For X € A arbitrary but fixed define Dy, to be the set of all F' € F such that if we replace £,/ by
{F'}, then the resulting family (£)), A € A, is still independent. Then Dy is a Dynkin system
(exercise).

Now we have £y < D)/, and hence also §(Ey) < Dy. Thus, by definition of the independence
property, we deduce that the family we obtain when replacing £y by §(Ey) is still independent.
Repeating this step for each remaining A € A\{\'}, the result follows. O

Corollary 3.2.6. If (£)), A € A is an independent family such that each &y is a mw-system, then
(0(Ex)), A€ A also is an independent family.

Proof. This follows from Proposition 3.2.5 in combination with the m-A-Theorem 1.1.32. O
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Proposition 3.2.7. Let (£)), A € A, be an independent family such that each &y is a w-system.
Consider a partition of A into subsets J;, i € I, and denote

-7:1' = O'< U (%) .
Jj€Ji
Then (F;), i € I, is an independent family.

Proof. For i € I denote

~

EZ' = {Ejlﬁ...ﬁEjn : nEN,{jl,...,jn}CJi, andEjkEEjka:e{l,...,n}}.

Since each &) is a m-system, so is each & and hence J(ENi) = 5(5@) Since the (g'l), 1 € I, still
form an independent family, the result follows with Corollary 3.2.6. U

Definition 3.2.8. A family of random variables (X)), A € A, is called independent if the family
of o-algebras o(X)), A € A, is independent.

We refer to | ] on more background for the concept of independence, in particular see
[ , Remark 1.7.15].
In | , Claim 1.8.4] the following claim had been derived, which you might want to try your

hands at (without looking it up) if you haven’t seen it before.

Claim 3.2.9. The sum

n
Sn = Z Xj
j=1
of independent random variables X1, ..., X,, each distributed according to Ber,, is distributed

according to Biny, ;.

The concept of a family of random variables that are independent and all have the same distri-
bution is so important that it has its own name.

Definition 3.2.10. A family of random variables (Xy), A € A, is called independent identically
distributed (i.i.d.) (‘unabhéngig identisch verteilt’ (u.i.v.)), if

(a) the family (X)), X\ € A, is an independent family of random variables, and

(b) if the Xx, A€ A, all have the same distribution.

The Borel-Cantelli lemmas

In order to prove this theorem we need some further results, which are important and of interest
on their own.

Lemma 3.2.11 (Borel-Cantelli lemma (Italian mathematician Francesco Paolo Cantelli
(1875-1966)). Let (Q, F,P) be a probability space and assume given a sequence (A,) of events
A, eF.

(a) If
D IP(An) <, (3.2.3)

neN

we have
]P’(limsup An) =0.

n—o0
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(b) If
Y IP(Ay) = o,
neN
and if in addition the (A,) are independent, then
P(limsupAn) =1.

n—o0

The proof is that of | , Lemma 1.12.6].

Remark 3.2.12. [t is important to note here that the independence assumption in part (b)
of Lemma 3.2.11 cannot be dropped. To see this, consider for example a single fair coin toss
modeled on a probability space (Q, F,P), and denote for alln € N by A,, the event that the coin
shows tails. Then P(A,) = 3 for alln € N, so 2inen, P(An) = o0, but P(limsup,,_,,, An) =
P(A,) = 3 # 1.

Example 3.2.13. (a) A popular application is the so-called ‘infinite monkey theorem’. It
states that a monkey which is randomly hitting keys (in an i.i.d. fashion, and such that
any key, lower and upper case, has a positive probability of being hit) of a computer
keyboard will almost surely type any given text, such as e.g. Tolstoy’s ‘War and Peace’. It
is left to the reader to make this statement more precise. k

(b) Consider a sequence (X,) of independent random variables such that

1 1

P(X,=n)=PX,,=—n)=-—
(Xn =n) (Xn ") 2nln(n + 1)
and 1 )
PX,=0=1—~-——+———.
( ) 2nln(n + 1)

| X
n

Then, setting A, = { > 1}, we obtain

0 o0 1
P(A,) = —— =,
nZ:]l nZ::l nln(n + 1)

where the latter equality can be shown by Cauchy’s condensation test (‘Cauchy’sches
Verdichtungskriterium’). Therefore, the sequence (Ay,) fulfills the condition of the sec-
ond part of the Borel-Cantelli lemma. We will come back to this example in the context
of the law of large numbers.

Kolmogorov’s 0 — 1-law

Definition 3.2.14. Let (F,,) be a sequence of o-algebras with F,, < F. We define the corre-
sponding tail-o-algebra (‘terminale o-Algebra’) as

Q0
T := T((fn)) = ﬂ 0( U fm).
n=1 mz=n
The intuition is the following: An event A € F is contained in the tail-o-algebra if in order to
decide whether or not it occurs (i.e., whether or not w € A) we can discard the ‘information’
from finitely many of the F,. It becomes more clear in the context of an example.

Example 3.2.15. Let (X,,) be a sequence of random variables and consider the corresponding
tail-o-algebra
T = T((O‘(Xn))).
Define Sy, := > X;.
Then we do for example have that (check!)
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{ lim S, em’sts} €T and
n—o0
{ lim S _ 0}eT.

n—o n,

Theorem 3.2.16 (Kolmogorov’s 0 — 1-law). Let (F,) be a sequence which is an independent
family of o-algebras with F,, = F. Then the tail-c-algebra T is P-trivial, i.e.,

P(A)e {0,1} VAEeT.
Proof. We are going to show that for all Ae T,
P(A) = P(A)?, (3.2.4)

which will imply the result.
For this purpose, for arbitrary fixed A € 7 define

D:={DeF : P(An D) =P(A)P(D)}.
Our strategy is to show that D is a Dynkin system with
TcD, (3.2.5)

which in particular will imply (3.2.4).

The fact that D is a Dynkin system is shown along the by now standard lines and we will not
go into further detail. In order to establish (3.2.5), we observe that due to Proposition 3.2.7
and the fact that A € T we have

k=1
so we also obtain
O = o, D,
neN
and consequently
d(ow) < D. (3.2.6)

But since the o, are non-decreasing in n, we deduce that oo, is a m-system, so by the 7-A-
Theorem we infer

0(0s) = 0(0p). (3.2.7)

On the other hand, UpenFy, € 0(04), and therefore in particular also 7 < o(04). Combining
this with (3.2.7) and (3.2.6), we infer (3.2.5) which finishes the proof. O

3.3 Covariance, variance
Definition 3.3.1. For X € L, the expression on the right-hand side of
Var(X) := E[(X — E[X])?] € [0, o]

1s called the variance of X.
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From the expression on the right-hand side it is clear that the variance is always non-negative,
since the random variable in the expectation on the right-hand side is non-negative. Further-
more, this expression shows that the variance gauges the expected quadratic deviation of X
from its expectation E[X]. It is a simple measure for how strongly the random variable X
fluctuates around its mean.

Using the linearity of expectation, we can rewrite the variance as

Var(X) = E[(X — E[X])?] = E[X?] - 2E[X]E[X] + E[X]* = E[X?] — E[X]?,

which holds true in the case E[X?] = o as well. Thus, we immediately obtain the following
corollary.

Corollary 3.3.2. For X € L, we have Var(X) < oo if and only if E[X?] < 0.

Definition 3.3.3. The covariance of two random variables X and Y is defined as

Cov(X,Y) = E[(X-E[X])(Y-E[Y])] = E[XY]-2E[X]E[Y]+E[X]E[Y] = E[XY]-E[X]E[Y]
(3.3.1)

if the right-hand side is well-defined in [—o0, 0].

The two random variables are called uncorrelated if Cov(X,Y) = 0.

Again we note that variance and covariance only depend on the random variables involved
through their corresponding distributions.

In some sense the covariance Cov(X,Y’) tells us how strongly X and Y are correlated, i.e.,
how strongly they tend to ‘change together’. If both X and Y tend to take values above their
expectation on the same subset of €, and also tend to take values below their expectations
on similar sets, then according to (3.3.1) this should imply that their covariance is positive;
on the other hand, if X tends to take values above its expectation on subsets of {2 where Y
tends to take values below its expectation, and vice versa, then this would suggest that their
covariance is negative. Therefore, if X and Y are independent one might possibly guess that
Cov(X,Y) vanishes. This is indeed the case as Theorem 3.3.6 below shows. Note, however,
that the converse is not generally true as will be asked to show in Exercise 3.3.8.

We now collect some properties of covariances and variances in the following result.

Proposition 3.3.4. Let X andY be random variables with E[X?],E[Y?] < 0, and let a,b,c,d €
R. Then

(a)
Cov(aX + b,cY +d) = acCov(X,Y);

i particular,
Var(a(X + b)) = a® Var(X); (3.3.2)

(b)
| Cov(X,Y)| < +/Var(X) Var(Y);

Proof. e Using the linearity of expectation we get

Cov(aX +b,cY +d) =E[(aX +b—E[aX + b])(cY +d—E[cY +d])]
= acE[(X — E[X])(Y —E[Y])] = acCov(X,Y).

SIS
SIS

| Cov(X,Y)| <E[|X —E[X]|- Y — E[Y]]] < E[(X —E[X])?]
= 4/ Var(X) Var(Y),

E[(Y —E[Y])’]
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where the inequality is a consequence of the Cauchy-Schwarz inequality.”

O

Before continuing, we bring a small result which is easy to prove but nevertheless oftentimes
important and helpful.

Claim 3.3.5. Let X : (Q,F,P) - (E1,&1) and Y : (2, F,P) — (E2,&2) be two independent
random variables. Then
Pixy)=Px ®Py. (3.3.3)

Proof. Due to the independence assumption on X and Y, on the n-stable generator of rectangles
of & ® & the two probability measures P(x y) and Px ® Py coincide. Thus, Corollary 1.2.19
yields (3.3.3). O

Theorem 3.3.6. Let X,Y € L be independent random variables. Then XY € L' and
E[XY] =E[X]E[Y]. (3.3.4)
In particular, independent random variables are uncorrelated.

Proof. We recall the statement of Claim 3.3.5. Therefore, the change of variable formula The-
orem 2.2.19 in combination with Tonelli’s theorem implies that

BIXY 1) = [ Pl = [ lonlPocry @) = | lovl Py @By (dw.n)
= | levlPr(@Py (@) = | JolPr(da) | luIPy (ay) = BXE]Y)

Now if X,Y € £!, then the right-hand side (and therefore all expressions appearing) are finite.
In particular, in this case we can remove the absolute value signs and obtain (reading the
previous display from right to left, and replacing Tonelli by Fubini) that XY € £! as well as
(3.34).

O

Remark 3.3.7. Ilterating the above we obtain the following generalization of Theorem 3.3.6:
Let X1,...,X, be a family of independent random variables which are either all in L' or all

non-negative. Then
n n
B[ []x] - [T
j=1 j=1

Exercise 3.3.8. Find an example of real random variables X,Y which are uncorrelated but not
independent.

We now compute some variances of distributions we got to know earlier in this course.

Example 3.3.9. (a) Let X ~ N(p,0?) with € R and 0% € (0,00). It is not hard to compute
E[X] = p (see e.g. [ , Example 1.9.6]). Then we get using Proposition 2.2.9 that

Var(X) = E[(X ~ E[X])*] = fi(éﬂ - M)2\/21T76(x2_0%)2 dz

— 1 © z? 0'2 x? |0 © x?
g J (cx)’e 2dx = —<*CC€77 +f e 2 dx) = o2,
V 2 —0 \ 21 r=—00 —0
—_—

=v/2m

*Here, the Cauchy-Schwarz inequality is applied to the symmetric bilinear form defined via £2 x £2 3 (f, g) —
{f-gdp € R — which is not necessarily an inner product since since we can have (f, f) = 0 even if f # 0 (and
only p(f # 0) = 0) — however, the (standard) proof of the Cauchy-Schwarz for inner products does not depend
on the missing implication (f, f) =0 = f =0.
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where we used integration by parts for the penultimate equality. Hence, we observe that the
second parameter in N'(u,0?) denotes the variance of the random variable. In particular,
this means that the normal distribution is completely distributed by its expectation and its
variance.

Furthermore, we deduce that the standard normal distribution from Ezample 3.1.13 (c¢)
has mean 0 and variance 1.

Let X ~ Geo(p) for p € (0,1). We first compute E[X] and for this purpose we take
advantage of the following useful trick. For q € (—1,1), the formula for the geometric

series supplies us with
e}
=

Since the left-hand side defines a power series that is absolutely convergent on (—1,1), we
know from Analysis I that its derivative can be computed term by term. Thus, differenti-
ating both sides of the equation gives

g (=g —g(=1) 1
D A (= 339

Using this identity for ¢ = 1 — p we can compute
E[X] =Y jP(X =j) =Y jp(l —p) " = il (3.3.6)
j=1 j=1

We now have to compute E[X?]. For this purpose we differentiate (3.3.5) once again (and
again, the left-hand side can be differentiated term by term on (—1,1) due to its absolute
convergence) to obtain

jGG—1g 2= ————. 3.3.7
X006 = o (33.)
Thus, we get using the change of variable formula that
0 0 )
E[X?] = ) j*P(X = j) = >, j°p(1 —p)'"
j=1 J=1
N - & o 2(1-p) 1 2—p
=pl=p) D G —DA—pY 2 +p) i1 —-py " = (72) +o =
st et p P P

where we took advantage of (3.3.6) and (3.3.7) to get the third equality. Thus, we can
compute
2—p 1 1-p

p?  p? p?

Var(X) = E[X?] - E[X]? =

If we want to compute the variance of the sum of random variables, the following result turns
out to be useful by decomposing it into a sum of variances and corresponding covariances.

Proposition 3.3.10. Let X1,...,X, be random variables in L>. Then

Var(;lxj):j;var(xjw S Cov(Xi, X;).

1<t,5<n,i#]
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Proof. Due to Proposition 3.3.4 (a), without loss of generality, we can assume E[X;]| = 0 for all
1 < i < n. Using the linearity of expectation we get

ver (5 0) =E[(£)] - ([ L 0)" = i

7j=1
—_—

=0 by assumption

= i Var(Xi) + Z COV(XivXj)'
i=1

1<i j<n,i#j

Note that

1

E[X:X;]] < (E[XZ])? (E[X2])? < o

7

due to Cauchy-Schwarz’ inequality, hence all expectations in the above equations are well-
defined, and so are all the sums. ]

If the random variables in the above result turn out to be uncorrelated, all covariances in the
above result vanish and the computation of the variance becomes significantly simpler. The
corresponding result is used so often that it deserves its own name.

Corollary 3.3.11 (Bienaymé formula (Irénée-Jules Bienaymé (1796-1878), French probabilist
and statistician)). Let X1,..., X, be (pairwise) uncorrelated random variables in L. Then

n n
Var < Z Xj) = Z Var(Xj).
j=1 =1
Example 3.3.12. (a) Let X ~ N(u1,0?) and Y ~ N(ua,03) be independent random vari-
ables. Then X +Y ~ N(u1 + pa, 03 + 03).
Now you may have a look at [ , Example 3.5.12] to convince yourself that it took a
little bit of not so nice calculus do prove this.

Using Theorem 2.6.5 and Example 2.6.4 we are in the position to derive this result in a

significantly neater way. Indeed, using the independence of X and Y in combination with
Ezxample 2.6./ we compute

OX+Y (t) _ E[eit(X+Y)] Thm,:‘?u?ﬁ E[eitX]E[eitY] _ eiult—(alt)2/2eiugt—(agt)Q/Z

— eilmtp)t—((o +03)t?/2.

In combination with Theorem 2.6.5 and Example 2.6.4 it therefore follows that X +Y ~
N1+ p2,0f + 03).

(b) Let X ~ Bin,,, for some n € N and p € [0,1]. In Claim 3.2.9 we had seen that X has the
same distribution as Z;-lzl Y;, where the Y; are independent random variables distributed
according to Ber,. Now Var(Y}) is easy to compute since E[Y;] = p and E[Yf] = p. Thus,
Var(Y;) = p(1 —p). Now since Var(X) depends on X only through its distribution, we get
the first equality of

n

Var(X) = Var ( Z YJ) = Z Var(Y;) = np(1 — p),
j=1 j=1

where in the second equality we used Corollary 3.3.11.

The following lemma is interesting in its own right, but a generalization of it will play an
important role when we introduce the concept of conditional expectations (which heurstically
will amount to averaging over partial information of F only) in Section ?? below. It can be
interpreted in the sense that the best approximation to a random variable X by a constant c is
its expectation ¢ = E[X] (if distance is measured in terms of the second moment of X — ¢).
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Lemma 3.3.13. Let X € £? be a random variable. Then the function
R3s— E[(X —5)?
is minimized at s = E[X]. In particular, we have E[(X — s)?] = Var(X) for all s € R.
Proof. We compute using the linearity of expectation that
E[(X — 5)?] = E[X?] — 2sE[X] + s* = (E[X?] — E[X]?) + (E[X] — s)%.

From this it is obvious that the function attains its minimum for s = E[X], in which case it
equals Var(X). This finishes the proof. O

3.4 LP? spaces and some fundamental inequalities

Definition 3.4.1. Let f € M. We define its essential supremum as
esssup f :=inf{M e R : u(f > M) = 0},

with the standard convention inf ¢ = o0.
Similarly, its essential infimum s defined as

essinf f :=sup{m e R : u(f <m) = 0},
with the standard convention sup J = —0.

Exercise 3.4.2. Show that the essential supremum could be equivalently defined as
esssup f :=inf{M e R : u(f > M) = 0},

and similarly that
essinf f = sup{m e R : u(f <m) =0},

Definition 3.4.3. Let p € (0,00). For f € M we define

1
i ([ 177 du) € [0,20).
Q
In addition, set
[flloo := esssup|f] € [0, 0].
For p € (0,00] we then set
LP = P, Fop) = {feM: |f], <o},

which is consistent with the notation from Definition 2.0.18. Motivated by this definition one
also uses the notation

[ fler .7 = [ f]lp-

By || |lp : £ 3 f — ||f|l, we denote the mapping that maps functions to their respective norms.

Proposition 3.4.4. For p € [1,00] the mapping | - ||, introduced in Definition 3.4.3 is a semi-
norm on LP.

For the proof of the triangle inequality we need another result which is important on its own.

Theorem 3.4.5 (Minkowski’s inequality). Let f,g € M such that f + g is well-defined (in the
sense that ‘o0 — o0’ does not occur). Then for any p € [1,00],

If + gl <[ £l + lglp- (3.4.1)
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The proof of Theorem 3.4.5 will take advantage of yet another inequality that we have not
studied so far.

Proof of Proposition 3.4.4. || - |, maps from L to [0,00), so we only have to show that it is
absolutely homogeneous and fulfills the triangle inequality. Absolute homogeneity (|cf], =
lc||lf|p for all ¢ € R and f € LP) follows from the linearity of the integral. The validity of the
triangle inequality is a consequence of Minkowski’s inequality. U

While for p € [1,00] the above result in combination with the fact that £P is a vector space
provides us with the fact that £P is actually a semi-normed vector space, it is not hard to
observe that |- ||, does not in general define a norm on £P. Indeed, for any f € L£P we can choose
some g € LP such that f # g and p(f # g) = 0 and get | f — g[, = 0.

An elegant way out of this quandary is to consider an appropriate quotient space. To be precise,

let A denote the set of all f € LP such that u(f # 0) = 0. (3.4.2)
Applying Lemma 2.2.3 we can deduce that
N ={feLl:|fl,=0} (3.4.3)
It is not hard to show that A/ forms a subspace of £P, and thus we can define the quotient space
LP:=LPIN = {f:=f+N : feLlP}

Hence, elements of LP are equivalence classes of functions in £?, and f, g € LP are in the same
equivalence class (usually written f ~ g¢) if and only if f — g € N, i.e., according to (3.4.3),

flfglpdu = 0.
Thus, in combination with Proposition 3.4.4

[flle < 1 = glp +llglp = gl

and similarly we get
lglp < [1£1lp,

so | fllp = llglp- As a consequence, we obtain the following result.
Corollary 3.4.6. For p € [1,0], the space LP is a normed vector space with norm | - .

Proof. Using Proposition 3.4.4 in combination with the fact that A/ as introduced in (3.4.2) is
a subspace of LP, we obtain that LP is a semi-normed vector space. Since for f € L£P we have
Ifl, = 0 if and only if f € N, we deduce that | - |, is definite on LP, and hence the latter
endowed with || - ||, is a normed vector space. O

In a slight abuse of nomenclature, one usually also refers to elements of LP as functions, although,
strictly speaking, they are equivalence classes of functions. Omne reason for this is that in
probability theory (and also functional analysis, where LP spaces play an important role) people
are most often mainly interested in the almost sure behaviour (recall Section 2.2.1), i.e., in
properties that do not change if the random variable is modified on a set of measure zero; in
particular, this implies that for f € LP, any representative f € LP of the equivalence class of
f would have the same (almost everywhere) properties. An example that you have gotten to
know already is the distribution of a random variable (recall Definition 1.5.1), which did not
change if we modified a random variable on a set of measure zero.

In fact, one even has that LP endowed with | - |, is complete.
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Theorem 3.4.7. For p € [0, 0], the vector space LP endowed with | - ||, is a Banach space.

Since this result is not central to this class, we refer to the proof of | , Korollar 2.6] for a
proof.
We now give some further properties of the above spaces, most of which have been derived
in | | already. Since for 0 < p < ¢ we have |z|P < 1 + |z|? for all x € R we immediately
obtain the inclusion

L(p) = LP(p), (3.4.4)

if pu is a finite measure.

Example 3.4.8. Consider the measurable function

f(z) = 11[1,00)(56)% z € R.

Then Theorem 2.1.1 (MCT) implies that
f|f |p)\d:c—hmf x)|P A(dx).

Then we can use Theorem 2.0.20 to deduce

1
f ‘f ‘p)\ dx = 11%];(—”_174_14‘1)

Thus, we see that if p > 1, then
| r@p ) = = <o,
R p—1

whereas for p € (0,1),
| @A) =
(and the same applies forp =1).

In particular, the right-hand side is infinite for p € (0,1] and finite for p € (1,00). Thus, f € LP
forpe (1,00) but f ¢ LP for pe (0,1].

In order to prove the fundamental Holder inequality below we will need the following auxiliary
result.

Lemma 3.4.9 (Young’s inequality
(1863-1942))). Let a,be [0,00) and p,q €

—~

English mathematician William Henry Young
1,00) such that

—

1 1
-+ -=1 (3.4.5)
p q
Then I
ab< T+ (3.4.6)
p q
Proof. See the proof of | , Lemma 1.9.14]. O

Theorem 3.4.10 (Holder inequality (German mathematician Otto Ludwig Hoélder
(1859-1937))). Let p,q > 1 such that % + % = 1. Then, for f,g € M(Q,F,pn) one has

15 alan< ([ 19 an)”( [ 917 dn)". (3.4.7)
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Proof. This is the proof of | , Thm. 1.9.16], so we omit it here. O
Remark 3.4.11. (a) In particular, if f € LP and g € L9, then fge L.

(b) The special case of p = q = 1/2 gives a special case of the Cauchy-Schwarz (Augustin-
Louis Cauchy (1789-1857), Hermann Schwarz (1843-1921) inequality you might know
from linear algebra (or might get to know in functional analysis) for inner products.

(c) Hélder’s inequality not only holds for expectations (which will be interpreted as integration
against probability measures in ‘Probability Theory I’) but also for more general integrals
mn.

We now have all the tools to prove Theorem 3.4.5, which will be part of the last homework
sheet.

3.5 Convergence of random variables

Since this section introduces some core notions of probability theory, and in less generality this
has been treated in the corresponding part [ , Section 1.11], which can be found here.

As in analysis, asymptotic investigation play a fundamental role in probability theory, in par-
ticular when it comes to the fundamental limit theorems that we will be investigating below.
As a first step to build a theoretical base for this we will introduce the fundamental types of
convergence that we will encounter in probability theory and give their dependencies.

In what follows, if not mentioned otherwise (S, d) is a separable metric space.

3.5.1 Almost sure convergence

This is one of the strongest types of convergence that we will consider, and we will introduce it
for random variables taking values in separable metric spaces.
We will need an auxiliary result before giving the precise definition.

Lemma 3.5.1. Let (S,d) be a metric space. If X,Y : (Q,F,P) — (S,d) are two random
variables, then the mapping Q 3 w — d(X(w),Y (w)) defines an F — B(R)-measurable real
valued random variable.

Proof. We first of all note that the mapping ¢1 : Q3w — (X (w),Y(w)) € S x Sis F— (B(S)®
B(S))-measurable by definition of the product-o-algebra (and the assumption that the X and
Y are random variables). Furthermore, since d is a metric, the function

w2 : S x 83 (x,y) —d(z,y) €[0,0) (3.5.1)

is continuous. Therefore, as a consequence of Theorem 1.4.10, ¢ is B(S x S) —B(R)-measurable.
Since (5,d) is separable, Theorem 2.3.9 implies that B(S x S) = B(S) ® B(S) and hence ¢ is
B(S x S)— B(R)-measurable also. Therefore, due Theorem 1.4.4, it follows that the composition
2 0 1, which equals d(X,Y), is measurable and hence a random variable. ]

Definition 3.5.2. Let (X,,) be a sequence of random variables defined on (Q, F,P) and mapping
into a metric space (S,d), and let X be another such random variable. We say that X,, converges
(P-)almost surely (or a.s.) (‘fast sicher’ (or else ‘f.s.”) to X, and we write

a.s.
X,— X asn— o,

or
lim X, =X P-a.s.,
n—0o0

P( lim d(X,, X) = 0) = P({w e lim X,(w) = X(w)}) ~1. (3.5.2)

n—00 n—00
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Remark 3.5.3. (a) Note that from Lemma 3.5.1 in combination with Proposition 1.4.15 we
infer that the probabilities in (3.5.2) are well-defined.

(b) In particular, note that if X, converges to X pointwise, then we have almost sure con-
vergence as well. The reason that pointwise convergence is not so important to us is
that modifications that only effect null sets cannot be noticed from a point of view of the
probability measure.

(c) Property (3.5.2) can be rephrased as

IP’(limsupd(Xn,X) > O) = 0.

n—00

In the setting of a general measure space (2, F, i), where p does not necessarily have mass
1, if for functions (f,) and f one has u(limsupn_,OO d(fn, f) > 0) = 0, or equivalently
p({limp o0 d(fn, f) = 0}¢) = 0, then (fn) is said to ‘converge p-almost everywhere (or

p-a.e.) to f.

3.5.2 Convergence in L?

This is yet another fairly strong type of convergence which in a slightly more general form plays
an important role in (functional) analysis, too. Here, we will focus on the case of real-valued
random variables.

Definition 3.5.4. Letp > 0, let (X,,) be a sequence of (equivalence classes of ) random variables
in Lp(Q, F,P), and let X € Lp(Q, F,P) as well. Then we say that X, converges to X in
Lp(Q, F,P), and write
X, 25 x
if
| Xn—X[|p—0 asn— 0.

As long as we do not impose any further assumptions (which we don’t do for the time being),
none of the above two types of convergence is actually stronger than the other.

Example 3.5.5. Let P denote the uniform distribution on [0, 1)
(a) Consider for n>1 and k € {0,1,...,2" — 1} the random variables

Kk = Ljga—n (py1)2-m)

and define Y1 1= X1, Yo := X131, Y3 := Xog, Ya := Xo1, ... (this is the ‘lexicographic
ordering’). Thenlimsup,,_,, Y, = 1 and liminf, Y, =0, and in particularY, does not
converge almost surely. On the other hand, for p >0, any n € N, and k € {0,...,2" — 1}
we have

E[| X — 0F7] = B([0,277)) = 27,
and the right-hand side converges to 0 as n — oo. Therefore, Yy, Lo, 0 asn — oo.

This example shows that convergence in Lp does not imply almost sure convergence.

(b) Fiz p > 0 and consider the random variables X,, := ”%]l[o,l/n]- Then for any w € (0,1)
fized we have

1
X (w) = nrlg1/m)(w),

and the right-hand side converges to 0 as n — oo. Therefore,

{ lim X, =0} = (0,1),
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and since P((0,1)) = 1 this implies that lim,_, X, = 0 almost surely.

On the other hand, a moment’s thought reveals that since X,, — X holds P-a.s. asn — o0,
the only possible limit in Lp would be an almost surely constant random variable X = 0.
Now for all n € N one has

E[|Xn — 0[] = 1,

and therefore X,, does not converge to 0 in LP.

This example shows that almost sure convergence does not imply convergence in Lp.

3.5.3 Convergence in probability

Definition 3.5.6. Let (X,,) be a sequence of random variables defined on (Q, F,IP) mapping
into a separable metric space (S,d), and let X be another such random variable. We say that
X, converges in probability (‘konvergiert in Wahrscheinlichkeit’ oder ‘konvergiert stochastisch’)
to X if for all e > 0,

P(d(X,,X)=>¢e) >0 asn— . (3.5.3)

In this case we write
P
X,— X asn— 0.

=

Again, as a consequence of Lemma 3.5.1, the probability appearing in (3.5.3) is well-defined.

3.5.4 Convergence in distribution

In a slight abuse of notation, we will say that u is a measure on a metric space (.5, d) if, in fact,
it is a measure on the measurable space (S5, B(S)), where as before the Borel-o-algebra on S is
defined as the o-algebra generated by the open sets of S (which again are induced by the metric
d).

Definition 3.5.7. Let (u,) be a sequence of finite measures on a separable metric space (S, d)
and let u be yet another finite measure on (S,d). We say that (u,) converges in weakly (‘kon-
vergiert schwach’) to p if for all continuous bounded functions f € Cy(S) from S to R we
have

ffd,unaffd,u as n — 0.
S S

In this case we write
w
HUp —> . asn — 0O,

where w stands for ‘weakly’.

In addition, given (S, d)-valued random variables X, and X defined on possibly different proba-
bility space (Qp, Fpn,Pp) and (Q, F,P), we say that X,, converges to X in distribution as n — oo,
if

PooX; ' L PoX1  asn— oo

In this case we write
L
X,— X asn— o,

or also
D
X,— X asn— .

Here, L and D stand for ‘law’ and ‘distribution’, respectively. Yet another very common notation
18

X,=—X asn— .
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Theorem 3.5.8. If (S,d) is a metric space and p, v are two finite measures on (S,d) with

ffd,uszdu VfeCy(S) with f =0

then p = v.

Proof. According to Theorem 1.2.17 it is sufficient to show that p and v coincide on the m-system
of open sets (which is generating B(S5)).
For this purpose, let U < S be open and for € S define d(z,U¢) := infyepe d(z, y). Then for
any n € N, the function f,(x) := 1 A nd(z,U°) is in Cy(S) and we have f,, T 1. Therefore, by
assumption and the MCT we infer that

wU) = dim ) frdp = nh—I}c}offn dv = v(U).

O

The following result gives a powerful characterization of weak convergence. As we will see in the
proof of Corollary 3.5.10 already, it will turn out very useful to have different characterizations
of weak convergence available.

Theorem 3.5.9 (Portmanteau theorem). For a sequence (uy,) of probability measures on the
metric space (S,d) and p another probability measure, the following conditions are equivalent:

(a)
i — 11 weakly;

(b)
i [ du, = [ fan
for all f € Cy(S) which are uniformly continuous;

(c)
lim sup i (F) < p(F)

n—00

for all F < S closed;

(d)
liminf p,, (0) = p(0)

n—o0

for all O < S open;

(e)
nh—{%o ,U'n(A) = :U'(A)

for all A e B(S) with u(6A) =0 (such a set A is also called a p-continuity set).

Proof. ‘(a) = (b)’: This is immediate from the definition.
‘(b) = (¢)’: Similarly to the proof of Theorem 3.5.8, setting

fm(x) := (1 —md(z,F))",

we get, since each f,, is bounded and uniformly continuous, and since 1r < f,,, < 1f,,, that

lim sup pp, (F) < lim sup f S dpn = f fmdp < )

n—0 n—00
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where for € > 0 we define F* :={xe S : d(z, F) < e}.

If F is closed, then by the continuity of p from above we obtain taking m — oo that (c) holds.
‘(¢) = (d)’: (d) follows from (c) by taking complements.

‘(¢)&(d) = (e)’: We obtain

_ (9 _ d
pu(A) = limsup py,(A) = limsup p,(A) = lim igclf fn(A) = lim iolgf pn(A°) = p(A°).

For A a p-continuity set the left-hand side and the right-hand side of the previous display
coincide, which yields (e).
‘() = (a)’: we choose f € Cy(S) arbitrary, but by linearity of the integral, we assume without
loss of generality that f(S) < [0,1]. Then using Example 2.1.8 we obtain that
© 1
| s [ utr=na= [ ur>na

s 0 0

Now since f is continuous, we deduce that o{f > ¢t} < {f = ¢}. But we know that we can have

wu(f =t) > 0 for at most countably many ¢ € [0,1], so (e) implies that for A-almost all ¢ € [0,1],
we have that u,(f > t) — u(f > t) as n — oo, which in combination with the DCT implies

P = [ malf >yt = (7>t = [
Jram=], )
which implies (a). 0

Oftentimes we will be dealing with real random variables, and the following equivalent criterion
for convergence in distribution of real random variables will come handy (which we had proven
separately in the introductory lecture).

Corollary 3.5.10. Let (X,) be a sequence of real random wvariables and let X also be a real
random wvariable. Denote the corresponding distribution functions by F, and F, respectively.
Then the following are equivalent:

(a)
X=X

(b) For all points t of continuity of F', one has

F.(t)— F(t) asn — oo. (3.5.4)

Proof. We only prove ‘(a) == (b) here. The key point is to observe that ¢ is a point of continuity
of I if and only if (—c0,t] is a P o X ~!-continuity set. Indeed, F is right-continuous due to
Theorem 1.5.2, so we have that F' is continuous at ¢ if and only if

0=F(t)— lim F(t — h) ,
)
|

=PoX~1((—o0,t)) due to Prop. 1.2.16

and the right-hand side of the last display equals P o X ~1({t}), i.e., P o X }(d(—00,t]), which
establishes the claim.

The last equivalence of the Portmanteau theorem now immediately supplies us with (3.5.4). O
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3.5.5 Some fundamental tools
Markov’s and Chebyshev’s inequalities

We will introduce some fundamental inequalities. These play a central role in probability and
are some of the standard tools one has to feel comfortable to apply.

Proposition 3.5.11 (Markov’s inequality (Andrey Andreyevich Markov (1856-1922))). Let X
be a real random variable and let € > 0. Then, for any increasing function ¢ : [0,00) — [0, 00)
with ¢(g) > 0 one has

P(|X| > ¢) < w. (3.5.5)

The proof is contained in [ |, but since it is short we reproduce it here.
Proof. Since ¢ is monotone increasing we have the inequality
o(1X]) = 11 x)2e0(¢),
and taking expectations on both sides supplies us with
Elp(IX))] = P(1X] = e)¢(e),
which implies (3.5.5). O

Corollary 3.5.12 (Chebyshev’s inequality (Pafnuty Chebyshev (1821-1894))). Let X be in
LY(Q, F,P). Then

E[(X — E[X])?] _ Var(X)‘

P(|X —E[X]| = ¢) < >

(3.5.6)

€ g2

Proof. This follows from Proposition 3.5.11 by choosing the random variable in (3.5.5) as X —
E[X] and ¢(z) := 22 O

Remark 3.5.13. Inequalities of the type (3.5.6) which bound the probability that X deviates
from a certain quantity, such as its expectation, are also referred to as ‘concentration inequali-
ties’.

Theorem 3.5.14 (Jensen’s inequality (Danish mathematician Johan Jensen (1859 — 1925))).
Let X be a real random variable in L' and let o : R — R be a convex function (if X is a non-
negative random variable, then it is sufficient for ¢ to be a convex function defined on [0, 00)).
Then

P(E[X]) < E[p(X)] & (o0, 0], (3.5.7)

The proof is that of | , Thm. 1.12.9].

Remark 3.5.15. (a) Using Theorem 1.4./ in combination with the fact that convex functions
from R (or [0,00)) to R are (R,B(R)) — (R, B(R)) measurable (either exercise, or: for
affine functions this is clear, and otherwise it follows from the proof of Theorem 7?7 below)
we deduce that ¢ o X s a random wvariable again, and hence at least we do have the
measurability assumptions to speak of the expectation of p o X.

(b) If ¢ is a concave function on R, then —@ is a convex function, hence Theorem 5.5.14
yields

for X e L1,



86 CHAPTER 3. CLASSICAL AND BASIC RESULTS IN PROBABILITY THEORY

(¢) This immediately supplies us with another proof for the inclusion L1 < LP for q,p € (0,00)
L
with ¢ > p which we had derived in (3.4.4). Indeed, since the function @(x) := xa is
concave on [0,00) and since | X| is non-negative, we get for X € L7 that

oo > G(E[IX[]) = E[$(|X]7)] = E[|X]"].
Thus, E[| X |P] < oo which implies X € LP.
Example 3.5.16. (a) The absolute value function p(x) = |z| yields
[E[X]] < E[|X]].
(b) Choosing the convex function ¢(z) := x2, Jensen’s inequality supplies us with

E[|X[]* < E[X?].

3.5.6 Interdependence of types of convergence of random variables

Having introduced all the above types of convergence, it is natural to try to order them in
terms of strength. As we have seen in Example 3.5.5, there is no general implications between
convergence in L£P(Q, F,P) and P-almost sure convergence. However, for the remaining ones we
do have the following hierarchy.

Theorem 3.5.17. Let X,,, X be real random variables on (Q, F,P) and let p > 0.
(a) If either lim, .o, X, = X almost surely, or if X, X,, € LP and X, £, X, then

X, 5 X.
(b) If X,, — X, then
Xp—X. (3.5.8)
(¢) If 0 < p < q < 0 and if (X,,) and X are in L9 such that X, £ X, then X, £ X as
well.
(d) If
e}
for all e > 0 one has Z P(|X, — X| =¢) < o, (3.5.9)
n=1

then lim, o X, = X P-a.5.%
In particular, if X, LN X, then there exists a subsequence (X, ) of (X;) such that
Xy, — X P—a.s.

The proof is exactly that of [ , Thm. 1.13.1], so we omit it here.

Remark 3.5.18. (a) Show that the converses of the convergence implications given in The-
orem 3.5.17 (a) to (¢) do not hold true in general.

(b) Also note that a substantial part of the above implications might break down if instead of
P we consider an infinite measure on (§2, F).

Theorem 3.5.19 (Egorov’s theorem). Let X,, X € M(Q, F,P) be real random variables such
that P-a.s., X,, — X.

Then for every € > 0 there exists A € F such that P(A) < e and such that X,, converges to X
uniformly on A°.

Exercise 3.5.20. Let (2, F,P) be a discrete probability space. Show that in this setting, if
X, P x already implies that lim,,_,o X,, = X holds P-almost surely.

3Tf (3.5.9) holds true one says that X,, converges fast or almost completely to X.
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3.6 Laws of large numbers

One central topic in probability theory is the asymptotic analysis of random systems and one of
the simplest and more or less realistic situations to imagine is arguably a very long (or, possibly
slightly less realistic, an infinite) sequence of independent coin tosses or dice rolls. For the sake
of simplicity let’s have a look at the situation of independent fair coin tosses, and define for
n € N a random variable X, on (2, F,P) that takes the value 1 if the coin of the n-th toss shows
heads, whereas it takes the value —1 if the coin shows tails.* Now we know that E[X,,] = 0,
and also for the sum

S = . X; (3.6.1)
j=1

we have E[S,,] = 0 by the linearity of expectation.

Definition 3.6.1. The sequence S, as defined in (3.6.1) is also called simple random walk
(SRW) (‘einfache Irrfahrt’).

For x € Z we will sometimes write P,(Sy, € -) := P(S,, + = € -) to denote the law of simple
random walk started in x.

If you have attended the introductory class, it might be worthwhile to notice that simple random
walk is a very basic example of a Markov chain.

Oftentimes, instead of investigating the expectation, one is interested e.g. in realizationwise
statements, or statements concerning probabilities of certain events. In our current setting for
example, one might want to ask what values S, (w) ‘typically’ takes. Now, although E[S,] =0
for all n € N, it is obvious that S, (w) = 0 can only hold true if n is even. In fact, even when
n is even, 0 is not the typical value for S,, to take, in the sense that it is realised with a high
probability or at least with a probability that is bounded away from 0 for n — oo. Indeed, for
n = 2k even we get with Stirling’s formula that

(2 ln~(2k/6)2k 212k o 1
P(Sn = 0) = <k)<2> ((k/e)*r/2mk)* ? Vi’

(3.6.2)

where for sequences (a,,) and (by,) of positive real numbers we write a,, ~ by, if lim,,_,, a,, /b, = 1.

Exercise 3.6.2. Using an explicit computation as in (3.6.2), show that although P(S, = 0) — 0
due to (3.6.2), for n = 2k the function Z 3 m — P(S,, = m) is mazimised for m = 0.

Thus (3.6.2) tells us that P(S,, = 0) goes to zero at the order of n~z. One might therefore
be tempted to guess that if instead of just considering 0, we were replacing it by intervals of
the type [—cy/n, cy/n], then we would obtain a non-trivial limiting probability for S,, to take
values in such intervals. This is indeed the case (and not only if the X, describe coin tosses, but
for far more general distributions of X') as will be established in the central limit theorem (see
Theorem 3.8.1 below). For the time being, however, we start with having a look at a simpler
result at cruder scales.

3.6.1 Weak law of large numbers

We will start with investigating the so-called empirical mean.

Definition 3.6.3. Given a realization X1(w),...,X,(w) of Re-valued random variables, its
empirical mean is defined as

1 1 ¢

~Sn(w) = E;Xj(w). (3.6.3)

4The corresponding distribution P o X,, is also called Rademacher distribution, named after the German-
American mathematician Hans Rademacher.
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In order to be able to prove something meaningful about the empirical mean, we will take
advantage of Chebyshev’s inequality introduced in Corollary 3.5.12 above.

As suggested by (3.6.2) and the heuristics developed subsequently, we might guess that the
empirical mean defined in (3.6.3) will converge to 0 under suitable assumptions on the sequence
(Xn).

In order to be able to treat the d-dimensional case at once, we generalize our definition of
expectation to random variable X : (Q,F,P) — (R, B(R?%)) we define its expectation as

E[mi(X)]
: (3.6.4)
E[ma(X)]

where we recall that the measurability of the coordinate functions 7;(X) comes as a consequence
of Proposition 1.4.11. It will then be left as an easy exercise to generalize the laws of large
numbers below to R%valued random variables whose coordinate functions fulfil the assumptions
of those results.

Definition 3.6.4. A sequence (X,) of elements of L1(Q, F,P) satisfies a weak law of large
numbers if

%(inE[XjD L0 asn— o (3.6.5)
j=1

Historically, a weak law of large numbers had first been rigorously derived by Jakob Bernoulli
in | |. Nevertheless, the intuition for such a statement must have been around at that
time already since in a correspondence Jakob Bernoulli writes to Gottfried Wilhelm Leibniz in
October 1703 | , pp- 509-513]: ‘Obwohl aber seltsamerweise durch einen sonderbaren
Naturinstinkt auch jeder Diimmste ohne irgend eine vorherige Unter- weisung weiss, dass je mehr
Beobachtungen gemacht werden, umso weniger die Gefahr besteht, dass man das Ziel verfehlt,
ist es doch ganz und gar nicht Sache einer Laienuntersuchung, dieses genau und geometrisch zu
beweisen.’

Theorem 3.6.5 (Weak law of large numbers). Let (X,,) be a sequence of pairwise uncorrelated
random variables in L2(Q, F,P) and let (ay,) be a sequence of real numbers such that

", Var(X;
27*1—2(]) 0 (3.6.6)
an
Then for all € > 0,

251 (X5 —E[X;])
( |

Qn

Z;'L: , Var(X;)
a2e?

> 5) < S0 asn— . (3.6.7)

In particular, if the sequence (X,,) is even i.i.d., then it satisfies a weak law of large numbers.

The proof is a consequence of Chebychev’s inequality (Corollary 3.5.12) and Bienaymeé’s for-
mular (Corollary 3.3.11). We omit the details and refer to | , Thm. 1.14.6] for a proof.

Example 3.6.6. Let a sequence (X,,) as in Definition 3.6.1 of simple random walk be given.
Then the sequence (X,) satisfies a weak law of large numbers.

Indeed, by assumption the (X;) are independent and hence in particular pairwise uncorrelated.
In addition, we have

Var(X;) = E[X?*] -E[X]?=1-0= 1.

Thus, in particular X; € L2, and the assumption of Theorem 3.6.5 are satisfied for any sequence
(aun) of positive reals with ay,/v/n — 00 as n — 0, which supplies us with

1 & P
Q—ZXJHO
nj:1
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and in particular
1 & P
— Z X; — 0.
n 4
7j=1
In particular the sequence (X,,) satisfies a weak law of large numbers.

It occurs quite frequently in probability theory that triangular arrays (X,x), 1 < k < n, of
random variables play an important role. In this setting we get the following generalization of
Theorem 3.6.5.

Theorem 3.6.7. Let (X, %), 1 < k < n, neN be a triangular array of random variables
in L2(Q, F,P) such that for each n € N, the random variables Xn1,--, Xpn are pairwise
uncorrelated. Furthermore, let (ay,) be a sequence of real numbers such that setting

n
Sn = Z XnJ',
j=1
we have that Var(s
axlSn) g, (3.6.8)
an
Then s _ElS
Sn—EISal 2 00 o
Qp
The proof is exactly the same as that of [ , Theorem 1.14.9].

3.6.2 Strong law of large numbers

Definition 3.6.8. A sequence (X,,) of elements of L}(, F,P) satisfies the strong law of large

numbers if
n

P Tim sup Ly (x; ~B[X,])| =0) = 1,

n
n—00 j=1

which is the same as saying that

N
lim E;l (X; -E[X;]) =0 P-as.

n—ao0

Theorem 3.6.9 (Strong law of large numbers). Let (X,,) be a sequence of independent iden-
tically distributed random variables in L*(Q, F,P). Then (X,,) satisfies a strong law of large
numbers.

Proof. Possibly replacing X; by X; — E[X;] we can assume without loss of generality that
E[X;] = 0. Setting S,, := >, ; X;, according to Theorem 3.5.17 (d) it is sufficient to show that
for all € > 0 we have

P(jn~1S,| =€) < . (3.6.9)

18

0

n

For this purpose, we apply Markov’s inequality with the function ¢(x) = x#, which entails

E —4 Q4
P(jn~1S,| =€) < % (3.6.10)
Now
E[Sp]= ) E[XiX;X.X)].
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Using that the (X,,) are independent we deduce that E[X;X; X} X;] can be non-zero only if each
of the indices i, j, k, [ appears at least twice among 1, j, k,I. We can therefore continue the above
equality to get

n n
E[S3] < D E[X}]+C > E[X?X7] < nE[X}] + Cn®E[X7]?,
i=1 ij=1
i#]
with C' a finite constant. Plugging this into (3.6.10) we get
nE[X}] + Cn’E[X{]?
niet

9

P(In"'S,| =€) <

which is summable over n € N since E[X?], E[X{] < oo. Therefore, (3.6.9) follows which finishes
the proof. O

Remark 3.6.10. (a) The implications of Theorem 5.6.9 also hold if we replace the
condition X € LYQ,F,P) by X € LYQ,F,P). This has been proven
by Etemadi |[ J; the proof is elementary and you should feel encouraged
to read it (the article is available online through the wuniversity network at
http: // link. springer. com/article/10. 1007/ 2FBF01013465)

(b) As the name suggests, if (X,) satisfies a strong law of large numbers it also satisfies a
weak law of large numbers. This is a direct consequence of Theorem 3.5.17 (a) applied to
the sequence (n~1 Y1 Xi) of random variables and where the limiting random wvariable
in Theorem 3.5.17 (a) is given by the constant 0.

3.7 Convolution of measures

As outlined above, the scaling (i.e., division by n) in the law of large numbers does not look
like the most accurate information one might be able to obtain on a sequence of i.i.d. variables
under nice assumptions. In order to prepare for the Central Limit Theorem, we will therefore
introduce some tools that will prove helpful in its derivation.

Definition 3.7.1. Let u,v be two finite (possibly signed) measures on (R%, B(R?)). Then their
convolution is defined as

(1 v)(B) = fRd V(B — z)pu(dz), Be BRY), (3.7.1)

where B —x := {y e R? : y + x € B}.
Alternatively, if f,g e LY(RY, B(RY), \9), then their convolution is defined as the function

(Fe9)) = | fu=—ag@)de ™2 | aly-a)/@)dz = (g o)
Note that due to
v(B—1x)= fRd 1g(z+y)v(dy), (3.7.2)

the right-hand side of (3.7.1) is well-defined. Furthermore, plugging (3.7.2) into (3.7.1) and
applying Tonelli’s theorem we also infer that

wxv=vs*p (commutativity of convolution).

Also, using Tonelli’s theorem it can be shown that f * g is well-defined and in £! once f,g e £!
(exercise).

The following result is the main reason the convolution plays an important role in probability
theory.
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Theorem 3.7.2. Let X,Y : (9, F,P) — (R% B(R?)) be independent random variables. Then

Px,y =Px = Py.

Proof. Writing o : R? x R? 3 (z,y) — x +y € R? and noting that Px 1y = (Px @Py) oo~ ! (c.f.
(3.3.3)), we obtain for B € B(R?) that

hm. 2.2.
Pxiy(B) "= f Lp(a +y) (Px @Py)(d(x,y)) = f Py (B — ) Px(dr)
Rd x R4 Rd
= (Px «Py)(B),
where in the penultimate equality we took advantage of Tonelli’s theorem. U

Lemma 3.7.3. Let Xq,...,X, be independent real random variables whose distributions have
densities @1, . . ., n with respect to the Lebesque measure X. Then the distribution of the random
variable )i | X; is absolutely continuous with respect to X with density

P1*P2*...% Pn,
which is well-defined due to the associativity of convolution.

Proof. Exercise. O

3.8 Central limit theorem

As the name suggests, the central limit theorem is one of the main result in probability theory.
On the one hand, it gives us a somewhat more precise result of the fluctuations of the sum
of well-behaved independent identically distributed random variables than the results we know
from the laws of large numbers. On the other hand, it plays an important role in statistics since
it justifies using the normal distribution in many models.

To motivate the central limit theorem, let us get back to (3.6.2) where we had shown that for

simple random walk .S,
1

2k

In fact, in this setting it is not hard to show that not only the probability of finding simple
random walk in 0 at time 2k has a square root decay in k, but also the probabilities of finding
simple random walk at a distance of order vk at time 2k (we restrict ourselves to even times
for simplicity), see [ , Section 1.15] for further details.

As a consequence, if we look for a rescaling of S,, by some scale function ¢(n) such that S, /p(n)
converges in distribution to a non-trivial limiting distribution, then the above suggests that y/n
is the only possible order of ¢(n) — and, as it will turn out below, the desired convergence does
indeed take place.

Yet another motivation for the central limit theorem can be derived from the laws of large
numbers: From those we know that under suitable assumptions on a sequence of i.i.d. random
variables we have

P(So, = 0) ~

lim <%Sn - E[X1]> ~0.

n—00
To obtain information on a finer scale than in the central limit theorem we can now ask if
there exists an exponent 8 € (0,0) such that the sequence n®(1S, — E[X;]) might hopefully
converge to a non-trivial limiting random variable instead of 0. The first motivational thread
via the investigation of simple random walk then suggests that 8 = 1/2. Indeed, this always has
to be the case as long as the X, are assumed to have finite variance since due to Bienaymé’s
formula we have

1
Var (nﬁ(n_lSn — IE[XJ)) = n%ﬁn =n?71
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which can only converge to a non-trivial limit if g = %

While the central limit theorem will not give us any information on probabilities of finding e.g.
simple random walk at single points, it does indeed imply that the right scale for rescaling is v/n;
and not only does it do so for simple random walk, but for a very general class of distributions.

Theorem 3.8.1 (Central limit theorem). Let a sequence (X,,) of independent identically dis-
tributed random variables with X, : (Q, F,P) — (R% B(R?)) such that E[X1] = p € R? and
E[| X1 — p|?] € (0,00) be given. Then the sequence of random variables defined via

21 (Xi — p)
Voo

converges in  distribution to a N(0,X) distributed random wvariable where 3 ;

Cov(m;(X1),7(X1)), 1 <14,j <d, is the (positive semi-definite) covariance matric.

Y, = neN, (3.8.1)

Remark 3.8.2. (a) The Y, are shifted in such a way that E[Y,] = 0 and
Cov(m;(Yy), m;(Yy)) = Xi; (the latter being a consequence of Bienaymé’s formula, see
Cor. 3.3.11), so expectation and covariance structure already coincide with those of a

N(0,X)-distributed variable.

(b) It is surprising that, as long as the X,, have finite second moments the limiting distribu-
tion is the normal distribution, independent of the specific distribution of the X;s. This
phenomenon is also called universality (of the normal distribution).

The fact that the normal distribution appears in this context is due to the fact that if the
X, are i.i.d. N(0,%) distributed, then

% i X, ~ N(0,5), (3.8.2)
=1

i.e., the Y, as defined in (3.8.1) are again N(0,%) distributed for all n € N.

(c) There is a plethora of other, more general conditions which imply the validity (3.8.1). In
particular, similarly to the case of the weak law of large numbers Theorem 5.6.7, there is
a version of the central limit theorem for triangular arrays as well.

(d) The finiteness of the second moment is in fact essential in Theorem 3.8.1. If it is not
assumed, however, then one can still obtain other types of convergence results to non-trivial
distributions (so-called a-stable distributions) for different rescalings than the division by

Vi in (3.8.1).

(e) One can ask whether the sequence (Y,,) might even converge in probability to some random
variable Z. In fact, in this case we would have that Yo, — Y, would converge to 0 in
probability due to

P(|Ya, — Y| = ¢) <P([Yo, — Z| > ¢/2) + P(|Y, — Z| > ¢/2) - 0, asn— o,
and using Theorem 3.5.17 we would deduce that

Yoo —Y,=0 asn — . (3.8.3)

However, assuming d =1, up =0 and o = 1 for simplicity of notation, we rewrite

2
1t X 1 X

Y= T U BT

)
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2n ) n .
and observe that due to the CLT, both % and Zi:zx' converge in distribution to

a N(0,1)-variable, both of which are independent. Using Part (a) of Example 3.3.12 we
can therefore infer that Yo, — Y, must converge to a N (0, (\%)2 + (11— %)%—distm’buted
random variable. In particular, this contradicts (3.8.3), hence Ya, — Y, cannot converge

to 0 in probability, so there cannot exist a random variable Z as postulated above.

There are at least two essentially different strategies to prove the central limit theorem. The
first one works well in the case d = 1 and is a more or less self-contained and direct proof
along the lines of the proof of [ , Theorem 5.28]. The second one uses the technique of
characteristic functions. It has the disadvantage that it is less self-contained; it is, however,
more robust under variations of the very setting given in Theorem 3.8.1 and can be extended
without too much effort to more general situations, such as higher dimensions or dependencies
between the random variables X,,. We will follow the second approach and need a couple of
general and auxiliary result which will also prove to be beneficial later on and in the lecture
Probability II when establishing so-called ‘functional Central limit theorems’.

There are a couple of important properties of characteristic functions which are not hard to
prove.

Lemma 3.8.3. Let X and Y be random variables mapping to (R?, B(R?)), and let a € R as
well as b, t € R? be arbitrary. Then

(a)

(b)

Pax+b(t) = epx (at);

(c)
lpx ()] <1 VteR% (3.8.4)

(d) If X andY are independent, then
pxvy (t) = ox (t)ey(b);

(e) The function R? 3t — px(t) is uniformly continuous.
Proof. (a) Obvious, since ¢ = 1.

(b) We have

it-(aXer)] _ eib'tcpx(at).

Pax+b(t) = Ele

(c) If ¥ was a real random variable, the statement would follow immediately with Jensens
inequality applied to the convex function R 3 z ~ |z|. Since X is not real, however,

we can approximate it by simple (C, B(C))-valued random variables X,, (as we did with
real-valued functions) such that |X,| < 1 and X,, — €*X. For simple random variables,
(3.8.4) is a simple consequence of the fact that the unit ball around 0 in C is a convex set.

Taking the limit and using Fubini’s theorem then implies the result.

(d) If X and Y are independent random variables, then so are e and e*Y, for each t € RY,
Therefore,

pxsy (t) = B[] = E["NIE["Y] = ox (H)ey (0).

(e) Exercise.
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We recall the following result that we had mentioned before already, and we will actually prove
it here.

Theorem (Theorem 2.6.5). Any finite measure on (RY, B(R?)) is uniquely characterized by its
characteristic function.

For p a finite measure as above, denote for o > 0 by
1) = = N0, 0%1d), (3.8.5)

i.e., the convolution of u with a d-dimensional Normal distribution with mean 0 and covariance
matrix o2Id, where Id is the identity matrix in R9*¢ (recall Example 1.5.8).

The following is a common paradigm in Fourier analysis: If we put in an arbitrarily 'rough’
measure p, then convoluting it with something ’smooth’ (in our case a measure which is abso-
lutely continuous with respect to \) supplies us with something smooth as well. Here and in
the lemma below, the ’smooth’ measure N'(0,021d) plays the role of a 'mollifier’, just in case
you’ve seen this concept in functional analysis.

Lemma 3.8.4. Let pu be a finite measure on (R, B(R%)). Then the convolution p(?) has a
density @) with respect to A\* which is given by

1
(2m)?

F (@) =

fRd ou(t) exp { gt 02(; t) } dt, (3.8.6)

where we recall that ¢, denotes the characteristic function of p.

Proof. We write
1 _zw
) (z) = ———e 2.7, zeRY (3.8.7)
(2m0?)2

for the density of an R%valued N (0, 0?Id)-distributed random variable Z.
We start with observing that

1) (B) f P(B — o) pu(dz) — (27 fRd fRd Loz +y)e 5% A(dy) pu(de)

fRd fRd 1p(y —2) M(dy) p(dz) = JB (fRd R (y — z) M(dy)) A(dy),

where the penultimate equality follows from the change of variable formula Theorem 2.2.19 and
the last equality is due to Tonelli’s theorem. Thus, x(?) has density

Fa) = | 1O =) ) (359

with respect to A%
Then, generalizing Example 2.6.4 to the d-dimensional case, we obtain that

o2t

ON (0,021 () =€ 2.
and hence the identity
t-

1 . 02:0-90 -
7)[11@ e T L g iy (t) = € 2 = (210%)

R (t).
(27 /o2

Plugging this into the right-hand side of (3.8.8), we deduce that

FO(x) = fRd W) (y — ) p(dy) = fRd ﬁ fRd exp {i(y —x)-t—

o2t -t

}dt (dy).
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Using Fubini’s theorem the latter equals

# JRd (fRd et M(dy)) exp{ —iz -t — 02; t }dt

1 : ot -t
= Wj[@d goﬂ(t)exp{ —iz-t— 5 }dt,

which establishes (3.8.6) and hence finishes the proof. O
Lemma 3.8.5. For p and 1'% as above we have that
w9 2 aso | 0. (3.8.9)

(So far we’ve only been concerned with convergence of sequences, not families of measures. We
can either retreat to considering p/™ instead of p'?) and then take n — o, or otherwise the
real meaning of the convergence in (3.8.9) is that the stated convergence takes place along any
subsequence (oy,)y, with oy > 0 and lim,_,o 0y, = 0.)

Proof. ;1 and p(?) have the same mass u(R?) € (0,00), so w.l.o.g. we can assume that it equals
one. Then choose independent R%valued random variables X and Y on the same probability
space such that Po X! = g and PoY~! = A(0,Id). Then X + ¢V has law x(?), and P-a.s.

X +oY - X.

As a consequence, Theorem 3.5.17 implies that ;(?) converges weakly to p, which finishes the
proof.
O

The following result is not explicitly needed for proving Theorem 2.6.5, but we nevertheless give
it here since it is important and interesting on its own.

Corollary 3.8.6 (Fourier inversion formula). Let u = f -\ for some probability density f
defined on R®. Then, if Pu € LY R, B(RY), \Y), we have for \?-almost all € R? that

1 —ix-t
f(z) = ) fRd pu(t)e " dt.

Proof. We have that the integrand on the right-hand side of (3.8.6) converges to ¢, (t)e " as
o | 0, and furthermore, for each o > 0, its absolute value is upper bounded by |¢,|, which by
assumption is in £!. Therefore, using the DCT and taking o | 0 in (3.8.6),

1

im ) (z) = —— e i =: h(x).
lim (@) = o [ o0t = (o)

In combination with the fact that (?) = f(9). X% according to Lemma 3.8.4 and using our result
on integration with respect to measures with densities (Theorem 2.2.19), this implies (due to
the DCT and the fact that

1
(o) - —.
j;g)df (x) < @) fRd lou(t)|dt =: C € (0,0),

that for any continuous function v > 0 with compact support we have that

Csup v(z) > [of D (y)| VyeR,

zeR4
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and hence the left-hand side of the previous display is an integrable majorising function, so the
DCT gives

fvd,u(") = fvf(") d\? — fvhd)\d, as o | 0.

On the other hand, Lemma 3.8.5 implies that

fvd,u(”) — jvd,u = fvfd)\d, as o | 0,

so the right-hand sides of the last two displays coincide for all such v, i.e., we have
fvh d? = Jvf dA? (3.8.10)

for all v = 0 in Cy(R?) with compact support.
Now if only v € Cy(R?) instead of v having compact support as well, then we can choose a
sequence a monotone increasing sequence (v,,) of functions with

e v, =0, v, € Cy(R?) with compact support;
o vn(7) € [0, max,ega [v(z)[] < [0, 0);
e For all 2 € R? we have v, (z) — v(x) as n — o0.

As a consequence (3.8.10) implies

fvhdxi — lim | v hdrd @20 lim, fvn Fdxd = f vf A%,

n—o0

where the first and third equality are due to the MCT.
Therefore, Theorem 3.5.8 implies that

fAd=h-A\

so f = h holds A%almost everywhere according to Proposition 2.2.10.

Proof of Theorem 2.6.5. Assume that ¢, = ¢,. Then, by Lemma 3.8.4 we get that

1@ = @)

and due to Lemma 3.8.5 the left-hand side converges weakly to u, whereas the right-hand side
converges weakly to v. l.e.,

f vdyp = lim vd,u(a) =lim | vdv@ = f vdy
Rd ol0 Jrd ol0 Jrd Rd

for all v e Cy(R?). Therefore, by Theorem 3.5.8, u = v, which finishes the proof. O

We will give a couple of important implications of Theorem 2.6.5. We start with generalizing
Example 3.3.12 (a) and giving a small hit parade of characteristic functions.

Proposition 3.8.7. The following distributions have the given characteristic functions:

(a) 6, with x € R:

(b) Ber, with pe (0,1):
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(¢) Bin,, , with pe (0,1), ne N :
p(t) = (pe' + (1 - p)".

(d) Poi, with v e (0,00):

(e) Ujo,q with a € (0,00) :

6iat 1
t) =
e (t) iat
(f) Exp,, with k€ (0,00):
K
t) =
() K — it
(9) N(u,0?) with peR, 0% € (0,00):
p(t) = et £

Proof. For the normal distribution this has been shown in Exercise 2.6.4, the remaining parts
are left as an exercise. U

Combining Proposition 3.8.7 and Theorem 2.6.5, we directly obtain the following important
result which (see Theorem 3.7.2) tells us how some sums of two independent random variables
with the same type of distributions is distributed.

Corollary 3.8.8. (a) For ui,us € R, 03,02 € (0,00), we have
N, * N, N,

2 2 = 2 2,
H1,07 H2,05 H1tp2,07+037

(b) For vi,vs € (0,00), we have
Poi,, * Poi,, = Poiy, +1,;

(c) For pe (0,1) and m,n € N we have
Biny, ;, * Bing, , = Bing 4 p.

We now proceed with our preparations to proving the Central Limit theorem and start with the
following auxiliary result, which we use in the proof of Theorem 3.8.10, but it is also of general
interest.

Lemma 3.8.9. Let i, v be probability measures on (R%, B(R?)), and assume that p = f - \¢ for
some density f. Then p* v has density

g() = fRd flz —y)v(dy)

with respect to A%

Proof. For B € B(R?) arbitrary we get
(e )B) = | wB=)vian = [ | e+ ) tda) vidy)

[ et v ws@denn = [ [ - pvdn d,

which proves the result, and where to obtain the last equality we substituted = — x — y and
used Tonelli’s theorem. O
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The following is actually a weak version of Lévy’s continuity theorem. It is, however, significantly
easier to prove than the general version and still sufficient for our purposes for the time being.

Theorem 3.8.10. Assume probability measures [, i1, 2, ... on (Rd,B(Rd)) to be given, and
denote the corresponding characteristic functions by @, 1, P2, . ...

If
lim @ (t) = @(t) VteR?,

then
fn > 1 asn — 0. (3.8.11)

Proof. Let g € Cy(S) have compact support. In particular, this implies that ¢ is uniformly
continuous. Then using the notation from (3.8.5) for p@) for any o > 0, the triangle inequality

implies
’ fgdun - fgd/w’ < Hgdun - fgduff)

+| fgduﬁf) - fgdu(")

(3.8.12)

+Ugdu(")—fgdu‘

Recalling that p(?) was defined as the convolution j * N (0,021d), using the notation h(?) from
(3.8.7) for denoting the mollifier, and using Lemma 3.8.9, we can write that

fg dul) = f (fg(w)h(”) (x — y)un(dy)) X(dz) = fg # b Ay,

where in the last equality we used Fubini’s theorem (since the function (x,y) — g(x)h(?) (z —1y)
is 1 ® \%-integrable due to

[ 19t @~ )1 @ N2, dg) = [ ( [ 19@IH) (@ = ) () Wil
= flgl dpl?) < o,

where in the first equality we used Tonelli’s theorem, in the second we used Lemma 3.8.9, and
the inequality comes from the fact that ,uﬁf) is a finite measure and ¢ is bounded.) Therefore,

and taking advantage of Lemma 3.8.9 and Tonelli’s theorem, we can upper bound

Hgdﬂnfgduﬁi’)

and due to the uniform continuity and the boundedness of ¢ we get that g = h(?) converges
uniformly to g, i.e., for any ¢ > 0, for all o > 0 small enough we have

< j l9(2) = (g% ) ()] jrm (),

sup |g(z) — (g% h'D)(@)] <e.

zeR4

Thus, for any € > 0 we have that for all ¢ > 0 small enough and all n € N,

Ugdun—fgduff)

The exact same argument works for the last term on the RHS to yield

<e. (3.8.13)

‘jgd,u(") - Jgd,u’ <e. (3.8.14)
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Now in order to digest the second summand on the RHS of (3.8.12), note that Lemma 3.8.4

(o

implies that 1(?) and s, ) have densities

mHLJdgou(t)exp{—im-t—Uz(t.t)}dt

(2m)¢ Jr 2
and 23y
1 . o°(t-t
xHWfRdgoﬂn(t)exp{lxot 5 }dt

with respect to A%. Thus, we get

[ oaule) = [9au)] < [ [lo@llon®) = o Ol exp { - DV rae @85)

and the integrand on the right-hand side can be upper bounded by

20 .
R? x R? 5 (z,y) H2|9(~’U)|GXP{* > % t)}

which is integrable with respect to A®@A? since ¢ is continuous with compact support. Therefore,
the assumptions of the DCT are fulfilled and hence for any o > 0 the RHS of (3.8.15) converges
to 0 as n — 0.

In combination with (3.8.13), (3.8.14) and(3.8.12), this proves that

’ fgdun - fgd/w’ —0 (3.8.16)

for g as above. The Portmanteau Theorem (Theorem 3.5.9), however, demands the convergence
of bounded continuous functions with non-compact support also. In order to derive the required
convergence, let g € C,(R?) not necessarily with bounded support, and choose a sequence of
continuous functions (h,,) with h,, € [0,1] and compact support (in particular, h,, is uniformly
continuous) such that h,, 1 1. In particular, the reasoning above implies

fhm dpy, — Jhm dpy asn — oo, (3.8.17)

and
fghmduwfghmdu as 1 — o0,

since h,, and gh,, are bounded and continuous with compact support. Furthermore,

‘fghm dﬂn - fgdﬂn

‘ Jghm dp — fgd,u‘ < sup |g(z)] f(l — hp) du, (3.8.19)

From (3.8.17) and the fact that the p, and u are probability measures we infer that

< sup g()| f(l ) i (3.8.18)

and

J(l—hm)dunaf(l—hm)du as n —> .

In particular, for € > 0 we can choose m € N such that for all n large enough, the right-hand
sides of (3.8.18) and (3.8.19) are upper bounded by e. All in all, putting things together we
obtain for g € Cy(S) and h,, as above that for any e > 0 there exist m,ng € N such that

Ugdun - fgdu‘ < Ugdun - fghmdﬂn

v

o e P R P P

i h h
(3.8.18) (3.8.16) (3.8.19)
< € < € < €

for all n = ng. This shows the desired weak convergence (3.8.11) and hence finishes the proof. O
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Theorem 3.8.11. Let X be an (R?, B(RY))-valued random variable with E[|X|] < oo for
some m € N. Then for t € R? fized we obtain for h € R with h # 0 that

o ht X)
x (ht) = Z FE[(ht - X)) +o(|h™), ash— 0. (3.8.20)
k=0
Proof. For h € R set
P(h) == ex (ht).

For h € R as well as k € {0,...,m} we obtain
» P (h) = E[(it - X)FelhX]. (3.8.21)
Indeed, we use induction. The equality is clear for k = 0, and for k € {1,...,m — 1} we obtain

w(kfl)(h + Oé) _ w(kfl)(h) E[(lt . X)kflei(tha)t-X] _ E[(lt . X)kfleiht-X]

®)(p) = 1i T
vE = o o o

e (lt . X)k—leiht-X(eiat-X _ 1)]

N zyg%)E[ Q ’

where in the second equality we took advantage of the induction assumption. Due to the fact
that |e!® — 1| < || for h € R arbitrary, we obtain that

it - X k—1 _iht-X ( Jiat-X 1
‘(1 e (e )’<|t-X|"“, VaeR, a # 0.
(6

According to our assumptions, the right-hand side is in £¥(Q, F,P), and furthermore we have

) (lt X X)k—leiht-X(eiat-X _
1
alig) «

) _ (it - X)FeiltX

Therefore, the dominated convergence theorem (see Theorem 2.1.7) implies that (3.8.21) holds.
Therefore, (3.8.20) follows in combination with Taylor’s formula. O

Proof of Theorem 3.8.1. Without loss of generality we can assume that the X, are centered for
all n € N. Denote the characteristic function of X,, by ¢x and let ¢,, denote the characteristic
function of Y, = ZZ\/I—X Then for any ¢ € R? fixed, using that E[t- X,,] = Z?:l tE[m(X,)] =0
as well as that

E[(t Xn)’]= )] tity Elmi(Xo)m;(Xn)] = tI'st,

1<ig<
1,j<n e
we obtain
3.8.: n ‘ - tT'st n T
@n(t) Lemm:a 3.8.3 (@X(t/\/ﬁ)) Thm. 3.8.1:1 for m =2 (1 _ 5 + O(Tlil)) R eit 2215’ as 1 —> 0.
n

(3.8.22)

The result now follows using Theorem 3.8.10 in combination with the fact that the right-hand
side of (3.8.22) is the characteristic function of a N (0, X)-distributed random variable. O

Exercise 3.8.12. For a sequence of random variables (X,,) as in the assumption of Theorem
3.8.1, the central limit theorem implies the validity of a weak law of large numbers for (X,,).
Indeed, since the distribution function ® of the standard normal distribution (see (3.1.4)) is
continuous, Theorem 3.8.1 implies that for arbitrary M > 0 we have

o2n

P( 2mXi =) M]) S B(—M) + (1 — D(M)). (3.8.23)

—
An,M
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Now for any M € (0,00) and € > 0 there exists N € N such that for alln = N one has
" (X —
By, i {’M’ >eb e Auu
n

As a consequence, we obtain for any such M and e, in combination with (3.8.23), that

limsupP(B,, ) < ®(—M) + (1 — ®(M)).

n—o0
Since M was arbitrary and limp_,o ®(—M) + (1 — ®(M)) = 0, this implies

lim P(B,.) = 0.

n—aoo
As in addition € > 0 was arbitrary, this implies the desired weak law of large numbers for (X,,).

Example 3.8.13. (a) Using the strong law of large numbers, for a random walk with drift
(i.e., Sy = 2?:1 X; where the X; are i.i.d. with P(X; = 1) = p, P(X; = —1) = 1—p,
and p € (1/2,1)) one has that for all € > 0,

P(|Sn, —n(2p —1)| = ne) — 0.

Therefore, the first order (i.e. linear in n) term of the position of S, at time n will
asymptotically be given by 2p— 1. In order to obtain a better understanding, it is of course
tempting to ask for the lower order corrections. For this purpose we apply the central limit
theorem; using that the variance of X, is given by

Var(X,) = E[X?] - E[X, > =1—-2p— 12 =1—4p* +4p— 1 = 4p(1 — p) := 0*

we obtain s ) )
—n(2p —
%f) N N(0,1).
o’n
In particular, this implies that the ‘typical’ fluctuations of S, around its expected value
n(2p — 1) are of the order \/n.
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Chapter 4

A primer on stochastic processes

4.1 Stochastic processes

Definition 4.1.1. A stochastic process is a family (X;), t € T, of random variables mapping
from some probability space (2, F,P) into a measurable space (E,E). Here, T is an arbitrary
non-empty set.

Example 4.1.2. In the setting of the law of large numbers and the central limit theorem, the
sequences
(Xn), neN,
i (Xi — E[Xi])

n
Z?:l Xi
Vo

are all stochastic processes (with T = N or T = Ny, respectively, and (E, &) = (R%, B(R?)).).

, nelNj

and

n €N,

We will primarily consider the setting that the X; are real random variables, and in this case
we also refer to (X;) as a real stochastic process.!

Most of the times we will actually interpret ¢ as ‘time’, and hence natural choices are T' = Ny
or also T' = [0,0). The above definition, however, is more general.

We have seen in the theory of random variables that the distribution of random variables has
played a very important role. In fact, the very structure of the probability space (€, F,P)
underlying a random variable X was often irrelevant, and what was more crucial to us was the
law Px of the random variable.

In a similar way, in the theory of stochastic processes, a key role is played by the distribution
of a process. By definition, the distribution of a real process (X), t € T, would be a probability
law on RT endowed with a suitable o-algebra 7 on R” which makes the mapping

(2,F) — (RT,T)
E) w — (Xt(W))teT

itself a F — T-measurable random variable. Since by definition of a stochastic process, the
only ‘regularity’ assumption we made was that the X; were random variables (i.e., they are
F — B(R)-measurable functions from (2, F,P) to (R, B(R)), the natural o-algebra to choose
for R” is the product-c-algebra (recall Definition 2.3.5). We recall that the product o-algebra
had been generated by the coordinate projections 7y, t € T', and equivalently the product o-
algebra is generated by the cylinder sets (recall Definition 2.3.7). Thus, those subsets of R for
which finitely many coordinates are contained in certain measurable subsets of R will play an
important role; this then leads to the following concept.

n fact, if not mentioned otherwise, we will assume all the stochastic processes to be real in the following.

103
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Definition 4.1.3. Let a stochastic process (Xy), t € T, be given. The finite dimensional distri-
butions of the process are given by the probability measures

:U’S(B) = P((XS)SES € B)’ Be B(Rs)a
on (R%, B(R%)), where S = T finite.

In particular in the case of say continuous time (as opposed to discrete such as T' = Ny), i.e.
if e.g. T' = R, then the finite dimensional distributions do not contain all the mathematically
interesting information. However, this issue will only play a role and be adressed in more
advanced classes.

For the time being, it is worthwhile to notice that for any given stochastic process (X;), t € T,
the family of finite dimensional distributions satisfies the following consistency condition:

P((X;)ies € (7]) "1 (B)) = P((Xt)ter € B) VI c Jc T, J finite, B € B(RY), (4.1.1)

or, which is the same,
P((xes) © (M) =Px)eyy VI J < T, J finite, (4.1.2)

where the projection

7'("[] : RJ =} (,Ij)jeJ —> (fEi)l’GI € RI
had been introduced in Definition 2.3.3.

Remark 4.1.4. In fact, some authors index the family of finite dimensional distributions by
ordered tuples (t1,...,ty,) withn e N, t; € T for alli € {1,...,n}. This, however, turns out to be
more complicated since one has to impose a condition on how permuting acts on the elements
of the family, i.e., how py, .. 1, and ot (1)seoostn(ny OTE related to each other for an arbitrary per-
mutation m of {1,...,n} (i.e., m € S, with S,, denoting the symmetric group). Indeed, if the
family of finite dimensional distributions is to be generated by a stochastic process in the sense
that

/’[’tl,---7tn(B1 X ... X Bn) = P((th,...7th) € Bl X ... X Bn)7

then one obviously must have the condition that

Hty,..tn (Bl X ... X Bn) = Mtﬁ(l),...,tﬁ(l)(Bﬂ(l) X ... X B7r(1)) (413)

Therefore, once one has specified Pt 1ot (1) for some t1,...,t, € T and an arbitrary permu-
tation ™ € Sy, then (4.1.3) already characterizes ot 1y seetie(1) for any © € S,,. Therefore, it is
sufficient and more convenient to index the finite dimensional distributions just by finite subsets
of T (i.e., unordered tuples) instead of by ordered tuples ty,...,t, with t; € T.

Motivated the observation in (4.1.2), we introduce the notion of a consistent family of probability
measures. For this purpose, recall the definition of the projection operators given in Definition
2.3.3.

Definition 4.1.5. Let T be an arbitrary non-empty set. If Pr, I < T finite, is a family of
probability measures such that Py is a probability measure on (R, B(R)®T), then we call the

family consistent, if we have

Pro(r{)y V=P VIcJcT, J finite. (4.1.4)
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4.2 Kolmogorov’s existence and uniqueness theorem
The following result has first appeared (in slightly weaker form) in | , I § 1V]

Theorem 4.2.1 (Kolmogorov’s existence and uniqueness theorem). Let (E)), A € A, be an
arbitrary family of Polish spaces, and let (Bx), A € A, be the corresponding family of Borel
o-algebras.

Furthermore, let Py, I < A finite, be a consistent family of probability measures Pr on

(XxerEx, ®xerBy)-
Then there ezists a unique probability measure P on (X ycp Ex, @ yep Br) such that

Po(my)™' =Py VJcA finite, (4.2.1)

where

gt X Ey 3 (wa)rer — (wr)res € X En
AEA AeJ

s again the projection.
P is also called the projective limit (‘projektiver Limes’) of the family (Py), J < A finite.

For the proof, we will need the following notation and auxiliary result.

Definition 4.2.2. Let E be a Hausdorff topological space or else a metric space, and let p be a
measure defined on the Borel o-algebra B(E).

(a) w is called a Borel measure (‘Borelmaf’), if

w(K) <o VK < E compact.

(b) w is called inner regular (‘regulér von innen’) if

u(B) = sup {u(K) : K < B compact}.

(c) p is called outer regular (‘regulér von auen’) if

p(B) = inf {(O) : O > B open}.
(d) p is called regular (‘regulér’) if it is inner regular and outer regular.

It should be noted that there is a variety of different definitions of the term ‘Borel measure’.
We will stick to the one above.

Lemma 4.2.3. Let u be either a finite Borel measure on a Polish space E, or let u be a
measure on (R, BY) such that u(A) < o for any bounded A € B(E).

Then v is regqular.

Remark 4.2.4. In the Polish space setting the above result is sometimes referred to as Ulam’s
theorem.

Proof. Since our main emphasis is on £ = R? we will restrict ourselves to giving the proof in
this simpler case (as a treat, we may on the other hand discard with the finiteness of x and only
require y(A) < oo for any A € B(R?) bounded — in particular, we include the Lebesgue measure
this way). For a proof of the general version, see | , Lemma 26.2] for instance.

We start with showing the following claim.
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Claim 4.2.5. For all A € B(R?),
p(A) = inf {u(O0) : O > A open} = sup{u(F) : F < A closed}. (4.2.2)

Proof. We start with proving the first equality. Recalling the notation Z¢ for the semi-ring of
rectangles in R?, according to Theorem 1.3.9 we can extend p|z« to an outer measure p* on
2R’ Now Theorem 1.3.5 in combination with Theorem 1.3.9 imply that p*| B(rd) 1S & measure,
and due to Theorem 1.2.17, we obtain that

1 pray = p-
Using (1.3.5) we therefore get
0 o0
p(A) = inf{ D u(Ay) : ArAs, e T and Ac (A}, AeBRY). (4.2.3)
i=1 i=1

Using furthermore that p is continuous from above, for every ¢ > 0 and any sequence of (A;)
on the right-hand side of (4.2.3) we deduce the existence of a sequence (O;) of open rectangles
with

e A, c O;, and
o w(0;) < p(Ay) +27'

for all 7 € N. In combination with (4.2.3) this yields the outer regularity of u.
Passing to complements we deduce

w(A) = sup{u(F) : F < A closed}
and thus recover the second equality in (4.2.2). O

Since measures are continuous from below (see Prop. 1.2.16), for any F' < A closed we get that
w(F) = sup,en p(Fp), where F,, := F n B(0,n) is compact, with B(0,n) denoting the closed
unit ball of radius n in R%. In combination with (4.2.2) this implies the desired regularity. O

Proof of Thm. 4.2.1. We know from Exercise 2.3.8 that the cylinder sets form an algebra over
X yen Ex, which we will denote by A for simplicity.

From Definition 2.3.5 we infer that A is a generator of X),_, B, and being an algebra, we deduce
that A is a 7w-system. Hence, we may readily check that the assumptions of the newly added
Corollary 1.2.19 are fulfilled and we deduce uniqueness, i.e., there is at most one probability
measure on (X ., Ex, Qycp Ea) satisfying (4.2.1).

It remains to show the existence of such a probability measure,? and we will take advantage of
Carathéodory’s existence theorem, or rather its Corollary 1.3.10. For that purpose, we have to
show that

the right-hand side of (4.2.1) defines a o-subadditive content P on the semiring A (4.2.4)
via
P(Z):=Pi(B), alZeA, ie., Z=(m)"(B), where Be (X)By,I < A finite. ~ (4.2.5)
Ael

We start with showing that P as in (4.2.5) is actually well-defined. For this purpose assume that
there are By € (X),.; By and By € ), By, where I, J < A finite such that Z = (7;)"}(B;) =
(m7)~1(Ba). Then there exists B3 € ;s By such that

7 = (W[UJ)il(Bg).

?In fact, if any such measure exists, it must be a probability measure since X zen Ex € A, and we know that
e.g. P( X yen E\) = Py(E») =1 for arbitrary X € A, since the Py are probability measures.
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From the consistency condition (4.2.1) and the fact that By = {z € X ,_;; Ex : 71V (2) € By},
we deduce that
Proy(Bs) = Pr(Bi),

and similarly we obtain
Py (Bs) = Py(Bz),

so P(Z) as introduced in (4.2.5) does not depend on the specific representation of Z, and hence
P is well-defined.
Next, we have to show (4.2.4). It is obvious that P(¢¥) = 0 and that P > 0. To show additivity,
let Z1,Z; € A be two disjoint sets. Then there exist I A finite as well as By, Ba € X),.; B
disjoint such that

Zy =77 (B1) and Zy=m; Y (Ba). (4.2.6)

Since Z; and Zy are disjoint, we get that By and By must be disjoint as well, and thus we
deduce, using (4.2.6), the fact that

7y (Bru By) = ' (By) vyt (Ba),
as well as that Py is a measure on (X),.; By, that
P(21UZ2) = P[(BluBg) = P[(Bl) + P[(BQ) = P(Zl) + P(ZQ),

hence P is additive and a content on A.
In order to show that P is o-subadditive, due to Proposition 1.2.16 it is sufficient to check that
P is continuous in (.
We will prove this by contradiction. Indeed, assume otherwise that there is a decreasing sequence
(Zy), n € N, of sets Z,, € A with lim,, .o, Z,, = & and such that limsup,,_,,, P(Z,) > 0. By
possibly passing to a subsequence, w.l.o.g. assume that P(Z,) > § for some 6 > 0 and all n € N.
Furthermore, we can assume 7, = ﬂl_nl (An) some A, € Q. By for all n € N, where I,, = A
finite (w.l.o.g., the I,, can and will be chosen to be increasing sets in n € N). Now recall that
X ser,, Ex is Polish (due to Theorem 2.3.9). Using Lemma 4.2.3, we therefore deduce that there
exists a sequence (Ky), n € N, of compact sets K, € X),.; By, and such that K, = A, for all
n € N, and

Pr (K,) =61 —2"D)  forallneN. (4.2.7)

We set V), := (will)(Kn) and furthermore

:ﬁY;eA
i=1

Then (V) is a non-increasing sequence of elements of X) zep B with

Y, # &, VneN. (4.2.8)

Indeed, since Y,, © Z,,, we have

3

P(Z) — P(V,) = P(Z,\Y,) < (U (V) < Z P(Z\Y)

=1
0
(@ hd
; (A\K;) < 522 +1) <3

where the first inequality we took advantage of the fact that

n
Z\Yo = Z,\V;
i=1
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as well as the fact that the Z, are monotone decreasing. Therefore P(Y,) > 0 since P(Z,) = 4,
so in particular }7” # .

Our goal now is to construct from this an element z € lim,, o Z,,, which would finish our proof
by contradiction. For this purpose, due to (4.2.8), we can and do choose a sequence (y,,), n € N,
such that y, € Y,,, and the monotonicity of (?n) implies that

yneffk Vn = k.

Hence, choosing ¢ in some I,,, n € N, and projecting both sides of the previous display on the
t-th coordinate, we deduce that

T(ym) € Yy © /" (Ky)  Ym = n. (4.2.9)

Since |, e In = limy, o0 I, is a countable subset of A, we can order its elements as t1,%s,.. ..
We now apply a diagonal argument in combination with (4.2.9) to deduce that there exists a
subsequence (yn, ), k € N, such that for each j € N the sequence (7, (y,,)) converges in each
of the 7TtIJ’,” (Ky,), m € N, as k — o (mind that the 7T2{]7(Kn) are compact subsets of Ey; since
the projections 7rth” are continuous and the K, are compact in X, E).) Hence, for each
t € Upnen In, the limit

Jim 7 (yn,) =2 3i(t) € 1 (Km) © 706(Zm) (4.2.10)

(for all m € N) exists.

For some x € X ,_, F\ we now define z € ﬂneN ffn via
o y(t), if t € U, ey Ins
’ x(t),  otherwise.

Then y € (),,cny Zn due to (4.2.10), so the intersection is non-empty which was all that remained
to finish the proof.
O

Remark 4.2.6. One can also prove Kolmogorov’s extension theorem by first establishing it for
the case that T is countable (using the so-called Ionescu-Tulcea theorem) and then generalize it
to uncountable T'; See [ , Section 14.3] for this approach.

In particular, if one is only interested in the result for T = Ny, then there are easier proofs
available than the one we gave (and the consistency condition is also easier to formulate).

Example 4.2.7.  (a) We are now in the position to show that i.i.d. sequences of random
variables, such as e.g. postulated in the strong law of large numbers, actually do exist! For
this purpose, all we have to show is the existence of an i.i.d. sequence of random variables
(Xy) on some probability space (Q, F,P) such that Px, = p for alln € N, where u is some
given probability measure on (RY, B(R?)).

We now apply Kolmogorov’s extension theorem to the case A := N and E,, := R?, &, :=
BRY), for all n € A, and we define the measures P, := p on (En,&,). For I < N finite
we consider the finite product measure

Pr = QP = pOner

nel

on (X ,c; En,®ner&n), as defined in Theorem 2.4.5.

It is not hard to show that the Py, I < A finite, form a consistent family of probability
measures. Indeed, for I < J < N with J finite, we have for

B= X B,eXé&n

nel nel
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(i.e., By € &, for each n € I), that

()71 B) = (X Ba) % (RYY) & xpey B

nel

So, according to the definition of the product measure,

Po((ef) ! (B) =By (X Bu) x (@) = [T2ut) [] PulE)

neJ\I
= [ [Bn(B,) = Pr(B).

nel

Using Theorem 1.2.17 we thus deduce that
Pjo (n])~t =Py,

and as a conseqeunce, Theorem 4.2.1 implies that there exists a probability measure P on
((Rd)N, B(Rd)®N)

such that for any I < N finite, P o 71';1 = P;. In particular, defining we can define a
sequence of random variables (X,,) on the probability space (RH)N, B(R)®N P) vig

X, : RHYN 3w — w(n) e RY

with the desired properties as required above.

(b) Bernoulli percolation on Z%

Fiz p e [0,1]. For T = Z% finite define the probability measure P4 on ({0,1}7,B(RT)) =
({0,137, 2{0’1}T) by setting

PL({f}) == [ [P/ (1 —p)' 7™ (4.2.11)

zeT

(with the convention that 0° := 0). Then the family of probability measures Py, T < 72
finite, is consistent. Indeed, for S < T < Z¢ finite we have for f € 2° that

PL((x5) " ({f)) = Z [[r 1 —p)to=
ge(mL)~1({f}) =T
| IR Pt
ge(n )~ 1({f}) weS 2€T\S
= [ [P0 - =B
zeS

Since {0,1}T is a discrete space, this shows P%. o (773)*1 = P and hence the consistency.

Therefore, Theorem 4.2.1 supplies us with the existence of a probability measure PP on
({0, 132", B({0,1))®Z")) = ({0,1}%", B({0,1}%")) with the property that its projections /
pushforwards on ({0,1}7,2198") are given by the expression in (4.2.11).

In fact, the existence of this measure can also be derived ‘by foot’, showing that the corre-
sponding content is o-additive, see [ , Thm. 14.56].

Remark 4.2.8. This will not be of utmost importance to us in this class, but we should note
that in some sense from a certain point of view the o-algebra RT is not very suitable. Indeed, in
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the case [0, 00) it is natural to ask whether or not a stochastic process is a continuous functions,
or the probability of this being the case. l.e., one might be interested in probabilities of the type

P(the function [0,00) 5t — X; is continuous).
In particular, for this to make sense we would need that the set
{weQ : [0,0) 35t Xy(w) is continuous}

is contained in B(R)®T. This, however, is generally not the case. This will be investigated in
detail in more advanced probability classes.
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