Universität zu Köln

Institut für Mathematik
Dozent: Dr. P. Gracar
Assistenten: A. Prévost, L. Schmitz
To hand in: never

0. Exercise sheet Probability II

(To work on during the second week)

Exercise 0.1

a) Compute the characteristic function of a random variable X with distribution $\operatorname{Bin}(n, p)$, for $n \in \mathbb{N}$ and $p \in(0,1)$.
b) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of independent random variables, such that the law of X_{n} is $\operatorname{Uni}(1, \ldots, n)$ for all $n \in \mathbb{N}$. What is the probability that $X_{n}=1$ infinitely often?
c) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of random variables, such that the law of X_{n} is $\operatorname{Geo}\left(\frac{\lambda}{n}\right)$ for all $n \in \mathbb{N}, \lambda>0$. Show that

$$
\frac{X_{n}}{n} \quad \Longrightarrow \quad X \sim \operatorname{Exp}(\lambda)
$$

d) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of random variables, so that the density of X_{n} is $f_{n}(x)=$ $2 x n^{2} e^{-x^{2} n^{2}} \mathbb{1}_{(0, \infty)}(x)$ for all $n \in \mathbb{N}, \lambda>0$. Show that

$$
X_{n} \xrightarrow{\mathbb{P}} 0 .
$$

Exercise 0.2

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ and X be non-negative random variables in $\mathcal{L}^{p}(\Omega, \mathcal{F}, \mathbb{P})$, such that $X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X$ \mathbb{P}-a.s. In the first two questions, we assume that $p \in \mathbb{N}$.
a) Show that if $\left\|X_{n}-X\right\|_{p} \underset{n \rightarrow \infty}{\longrightarrow} 0$, then $\left\|X_{n}\right\|_{p} \underset{n \rightarrow \infty}{\longrightarrow}\|X\|_{p}$.
b) Show that

$$
\int\left(\left(X_{n}-X\right)^{p}\right)^{-} d \mathbb{P} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

c) Show that, if $p=1$,

$$
\left\|X_{n}\right\|_{1} \underset{n \rightarrow \infty}{\longrightarrow}\|X\|_{1} \quad \Longleftrightarrow \quad\left\|X_{n}-X\right\|_{1} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

d) If $p=\infty$, does the following equivalence always hold:

$$
\left\|X_{n}\right\|_{\infty}^{\longrightarrow}\|X\|_{\infty} \quad \Longleftrightarrow \quad\left\|X_{n}-X\right\|_{\infty} \underset{n \rightarrow \infty}{ } 0 ?
$$

Exercise 0.3

Let $X:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{E})$ and $Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be two random variables. The goal of this exercise is to show that:
Y is $\sigma(X)$-measurable $\Leftrightarrow \exists$ a $\mathcal{E}-\mathcal{B}(\mathbb{R})$-measurable function $f: E \rightarrow \mathbb{R}$ such that $Y=f \circ X$.
a) Show \Leftarrow.
b) Show \Rightarrow when Y is a simple non-negative function.
c) Show \Rightarrow when Y is non-negative.
d) Show \Rightarrow.

