Universität zu Köln

Dozent: Dr. P. Gracar

Assistenten: A. Prévost, L. Schmitz
To hand in: 16.10 during the exercise class

1. Exercise sheet Probability II

(Conditional expectation)

Exercise 1.1

Let $\Omega=\{-1,0,1\}, \mathcal{A}=\mathcal{P}(\Omega)$ and $\mathbb{P}(\{-1\})=\mathbb{P}(\{0\})=\mathbb{P}(\{1\})=1 / 3$. Consider

$$
\mathcal{F}=\{\emptyset,\{1\},\{-1,0\},\{-1,0,1\}\} \quad \text { and } \mathcal{G}=\{\emptyset,\{-1\},\{0,1\},\{-1,0,1\}\} .
$$

and let $X: \Omega \rightarrow \mathbb{R}, X(\omega)=\omega$.
a) Calculate a version of

$$
\mathbb{E}[X \mid \mathcal{F}] \text { and } \mathbb{E}[X \mid \mathcal{G}] .
$$

b) Calculate a version of

$$
\mathbb{E}[\mathbb{E}[X \mid \mathcal{F}] \mid \mathcal{G}] \quad \text { and } \quad \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{F}]
$$

with the help of a).

Exercise 1.2

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\mathcal{G} \subset \mathcal{F}$ a sub- σ-algebra of \mathcal{F}.
a) Let $\left(X_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{L}^{1}$ be a sequence of non-negative random variables. Use the conditional Monotone Convergence theorem for conditional expectations to prove the conditional Lemma of Fatou, i.e.

$$
\mathbb{E}\left[\liminf _{n \rightarrow \infty} X_{n} \mid \mathcal{G}\right] \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left[X_{n} \mid \mathcal{G}\right] \quad \mathbb{P} \text {-a.s. }
$$

b) Let $X \in \mathcal{L}^{r}, r>0$. Show the conditional Markov inequality, i.e. for all $\varepsilon>0$ we have

$$
\mathbb{P}[|X| \geq \varepsilon \mid \mathcal{G}] \leq \frac{\mathbb{E}\left[|X|^{r} \mid \mathcal{G}\right]}{\varepsilon^{r}} \quad \mathbb{P} \text {-a.s. }
$$

For $X \in \mathcal{L}^{2}$ we define

$$
\operatorname{Var}[X \mid \mathcal{G}]:=\mathbb{E}\left[(X-\mathbb{E}[X \mid \mathcal{G}])^{2} \mid \mathcal{G}\right] .
$$

Show the following statements:
c)

$$
\operatorname{Var}[X \mid \mathcal{G}]=\mathbb{E}\left[X^{2} \mid \mathcal{G}\right]-(\mathbb{E}[X \mid \mathcal{G}])^{2} \quad \mathbb{P} \text {-a.s. }
$$

d)

$$
\operatorname{Var}[X]=\operatorname{Var}[\mathbb{E}[X \mid \mathcal{G}]]+\mathbb{E}[\operatorname{Var}[X \mid \mathcal{G}]] \quad \mathbb{P} \text {-a.s. }
$$

Exercise 1.3

(4 editing points)
Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. For a) - b) we assume $X, Y \in \mathcal{L}^{1}$ to be integrable random variables such that

$$
\mathbb{E}[X \mid Y]=Y \mathbb{P} \text {-a.s. } \quad \text { and } \quad \mathbb{E}[Y \mid X]=X \mathbb{P} \text {-a.s. }
$$

a) Show that for all $c \in \mathbb{R}$ we have

$$
\mathbb{E}\left[(X-Y) \mathbb{1}_{\{Y \leq c<X\}}\right]=0=\mathbb{E}\left[(X-Y) \mathbb{1}_{\{X \leq c<Y\}}\right]
$$

b) Show that $X=Y \mathbb{P}$-a.s.

From now on we assume X, Y to be positive random variables, such that $\mathbb{P}\left(\frac{Y}{X} \in\left\{\frac{1}{2}, 2\right\}\right)=1$ and $\mathbb{P}\left(X \in\left\{2^{n}: n \in \mathbb{N}_{0}\right\}\right)=1$. We denote for all $n \in \mathbb{N}_{0}$

$$
p_{n}:=\mathbb{P}\left(X=2^{n}, Y=2^{n-1}\right), \quad q_{n}:=\mathbb{P}\left(X=2^{n}, Y=2^{n+1}\right),
$$

and we assume that $p_{n}+q_{n}>0$ and $p_{n+1}+q_{n-1}>0$ for all $n \in \mathbb{N}_{0}$.
c) Show that

$$
\mathbb{E}\left[\left.\frac{Y}{X} \right\rvert\, X=2^{n}\right]>1 \text { if and only if } q_{n}>\frac{1}{2} p_{n}
$$

and

$$
\mathbb{E}\left[\left.\frac{X}{Y} \right\rvert\, Y=2^{n}\right]>1 \text { if and only if } p_{n+1}>\frac{1}{2} q_{n-1} .
$$

d) Choose $q_{n}, p_{n}, n \in \mathbb{N}$, such that for these random variables X, Y we have

$$
\mathbb{E}[X \mid Y]>Y \mathbb{P} \text {-a.s. } \quad \text { and } \quad \mathbb{E}[Y \mid X]>X \mathbb{P} \text {-a.s. }
$$

e) Show that c) implies $\mathbb{E}[X]=\infty$.

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!

