Universität zu Köln

Dozent: Dr. P. Gracar

Assistenten: A. Prévost, L. Schmitz
To hand in: 23.10 during the exercise class

2. Exercise sheet Probability II

(Martingale, Doob decomposition, Quadratic variation)

Exercise 2.1

(2 editing points)
Let X_{1}, X_{2}, \ldots be a sequence of i.i.d random variables with

$$
p:=\mathbb{P}\left(X_{1}=1\right)=1-\mathbb{P}\left(X_{1}=-1\right), \quad p \in[0,1]
$$

and denote by $S_{0}=0, S_{n}:=\sum_{i=1}^{n} X_{i}$ the corresponding random walk and $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$, $n \in \mathbb{N}$.
a) Give an expression for a (a.s. uniquely determined) version of $\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]$ and $\mathbb{E}\left[S_{n+1}^{2} \mid \mathcal{F}_{n}\right]$, respectively.
b) For which values of p is $\left(S_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(S_{n}^{2}\right)_{n \in \mathbb{N}_{0}}$, respectively, a martingale, submartingale, or supermartingale with respect to the filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$?
c) Find the quadratic variation process $\left(<S>_{n}\right)_{n \in \mathbb{N}_{0}}$ of $\left(S_{n}\right)_{n \in \mathbb{N}_{0}}$.

Exercise 2.2

(2 editing points)
Let Y_{1}, Y_{2}, \ldots be a sequence of i.i.d random variables with $\mathbb{P}\left(Y_{1}=1\right)=\mathbb{P}\left(Y_{1}=-1\right)=\frac{1}{2}$, and let $X_{0}=0$ and for all $n \geq 1$

$$
X_{n}= \begin{cases}Y_{1} & \text { if } X_{n-1}=0 \\ X_{n-1}+Y_{n} & \text { otherwise }\end{cases}
$$

that is $\left(X_{n}\right)_{n \in \mathbb{N}}$ behave like a random walk as long as it doesn't hit 0 , and always jump as Y_{1} just after hitting 0 . We also define $\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$.
a) Show that $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is an $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ adapted process with $\mathbb{E}\left[X_{n+1} \mid X_{n}\right]=X_{n}$ for all $n \in \mathbb{N}_{0}$.
b) Show that $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is not an $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ martingale.
c) Find a Doob decomposition for $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$, i.e. give an $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ martingale $\left(M_{n}\right)_{n \in \mathbb{N}_{0}}$ and an $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ adapted process $\left(A_{n}\right)_{n \in \mathbb{N}_{0}}$ such that $X_{n}=M_{n}+A_{n}$ for all $n \in \mathbb{N}_{0}$.

Exercise 2.3

Let X be a random variable in $(\Omega, \mathcal{F}, \mathbb{P}), \mathcal{G} \subset \mathcal{F}$ be a σ-Algebra, and $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly convex function.
a) Show that for any random variable X, \mathbb{P}-a.s,

$$
\mathbb{P}(X=\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{G})=1 \quad \Longleftrightarrow \quad \mathbb{E}[\varphi(X) \mid \mathcal{G}]=\varphi(\mathbb{E}[X \mid \mathcal{G}])
$$

Hint: You can use that for all $y \in \mathbb{R}$, there exists $m \in \mathbb{R}$ such $\varphi(x)>m(x-y)+\varphi(y)$ for all $x \neq y$.

Let $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ be a filtration, $\left(M_{n}\right)_{n \in \mathbb{N}_{0}}$ be an $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ martingale and $\left(Y_{n}\right)_{n \in \mathbb{N}_{0}}$ be a nonnegative, bounded and $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$-adapted process.
b) Show that a quadratic variation of $(Y \bullet M)_{n \in \mathbb{N}_{0}}$ is given by

$$
<(Y \bullet M)>_{n}=\left(Y^{2} \bullet<M>\right)_{n} \text { for all } n \in \mathbb{N}_{0}
$$

c) Let $\left(\tilde{Y}_{n}\right)_{n \in \mathbb{N}_{0}}$ be a non-negative, bounded and $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$-adapted process. Show that

$$
\left(<(\tilde{Y} \bullet M)>_{n}\right)_{n \in \mathbb{N}_{0}}=\left(<(Y \bullet M)>_{n}\right)_{n \in \mathbb{N}_{0}} \mathbb{P} \text {-a.s. } \Leftrightarrow\left((\tilde{Y} \bullet M)_{n}\right)_{n \in \mathbb{N}_{0}}=\left((Y \bullet M)_{n}\right)_{n \in \mathbb{N}_{0}} \mathbb{P} \text {-a.s. }
$$

d) Give an example of an $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ martingale $\left(M_{n}\right)_{n \in \mathbb{N}_{0}}$ and of two non-negative, bounded and $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$-adapted processes $\left(Y_{n}\right)_{n \in \mathbb{N}_{0}}$ and $\left(\tilde{Y}_{n}\right)_{n \in \mathbb{N}_{0}}$ such that

$$
\begin{gathered}
\mathbb{P}\left(M_{n}=0 \text { for all } n \in \mathbb{N}_{0}\right)<1 \text { and } \mathbb{P}\left(Y_{n}=\tilde{Y}_{n} \text { for all } n \in \mathbb{N}_{0}\right)<1, \\
\text { but }(Y \bullet M)_{n}=(\tilde{Y} \bullet M)_{n} \text { for all } n \in \mathbb{N}_{0} .
\end{gathered}
$$

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!

