Universität zu Köln

Institut für Mathematik
Dozent: Dr. P. Gracar
Assistenten: A. Prévost, L. Schmitz
To hand in: 06.11 during the exercise class

4. Exercise sheet Probability II

(Doob's submartingale- and \mathcal{L}^{1}-inequality, martingale convergence, uniform integrability)

Exercise 4.1

(2 editing points)
Let $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ be a $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ martingale or a non-negative $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ submartingale and $|X|_{n}^{*}:=$ $\max _{0 \leq k \leq n}\left|X_{k}\right|$.
a) Show the inequality

$$
\mathbb{E}\left[|X|_{n}^{*}\right] \leq 1+\mathbb{E}\left[\left|X_{n}\right| \ln \left(|X|_{n}^{*}\right) \mathbb{1}_{|X|_{n}^{*} \geq 1}\right],
$$

where $0 \ln 0:=0$.
b) Show the inequalities

$$
x \ln y \leq x \ln x+\frac{y}{e} \quad \forall x, y>0
$$

and

$$
\mathbb{E}\left[|X|_{n}^{*}\right] \leq \frac{e}{e-1}\left(1+\mathbb{E}\left[\left|X_{n}\right| \cdot \ln \left(\left|X_{n}\right|\right) \mathbb{1}_{\left|X_{n}\right| \geq 1}\right]\right)
$$

Exercise 4.2

Let $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ be an $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ submartingale such that $\sup _{n \geq 0} \mathbb{E}\left[\left(X_{n}\right)^{+}\right]<\infty$, and let $M_{n}=$ $\lim _{m \rightarrow \infty} \mathbb{E}\left[X_{m}^{+} \mid \mathcal{F}_{n}\right]$.
a) Show that $\left(M_{n}\right)_{n \in \mathbb{N}_{0}}$ is well defined, i.e. $\lim _{m \rightarrow \infty} \mathbb{E}\left[X_{m}^{+} \mid \mathcal{F}_{n}\right]$ exists, and is a non-negative $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ martingale.
b) Show that there exists random variables M_{∞} and X_{∞} in \mathcal{L}^{1} such that

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X_{\infty} \text { and } M_{n} \underset{n \rightarrow \infty}{\longrightarrow} M_{\infty} \mathbb{P} \text {-a.s. }
$$

c) Assume that there exists a non-negative random variable $Y \in \mathcal{L}^{1}$ such that $X_{n}^{+} \leq Y$ for all $n \in \mathbb{N}$. Show that

$$
M_{n}=\mathbb{E}\left[X_{\infty}^{+} \mid \mathcal{F}_{n}\right] .
$$

d) Let $\left(Y_{n}\right)_{n \in \mathbb{N}}$ be an i.i.d. sequence of random variables with $\mathbb{P}\left(Y_{1}=1\right)=1-\mathbb{P}\left(Y_{1}=\right.$ $-1)=\frac{1}{2}, S_{n}=\sum_{i=1}^{n} Y_{i}$ the associated random walk, and take $X_{n}=S_{n \wedge \tau_{-1}}$, where $\tau_{-1}=\inf \left\{n \in \mathbb{N}: S_{n}=-1\right\}$. Show that $\sup _{n \geq 0} \mathbb{E}\left[\left(X_{n}\right)^{+}\right]<\infty$ is verified, but

$$
M_{n} \neq \mathbb{E}\left[X_{\infty}^{+} \mid \mathcal{F}_{n}\right] .
$$

e) Assume that, either there exists a non-negative random variable $Y \in \mathcal{L}^{1}$ such that $X_{n}^{+} \leq Y$ for all $n \in \mathbb{N}$, or $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ is a non-negative martingale. Show that

$$
M_{\infty}=X_{\infty}^{+}
$$

Exercise 4.3

Let $\mathcal{S} \subset \mathcal{L}^{1}$ be an L^{1}-bounded family. Show that the property of \mathcal{S} to be uniformly integrable is equivalent to each of the following conditions:
a) For every sequence $\left(A_{n}\right) \subset \mathcal{F}$ with $A_{1} \supset A_{2} \supset \ldots$ and $\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_{n}\right)=0$ we have

$$
\lim _{n \rightarrow \infty}\left(\sup _{X \in \mathcal{S}} \mathbb{E}\left[|X| \mathbb{1}_{A_{n}}\right]\right)=0
$$

b) for every sequence $\left(B_{n}\right) \subset \mathcal{F}$ of pairwise disjoint sets we have

$$
\lim _{n \rightarrow \infty}\left(\sup _{X \in \mathcal{S}} \mathbb{E}\left[|X| \mathbb{1}_{B_{n}}\right]\right)=0
$$

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!

