## Universität zu Köln

SS 2019

Institut für Mathematik

Dozent: Prof. Dr. A. Drewitz

Assistenten: A. Prévost, L. Schmitz

Abgabe: Bis 02.05., 18 Uhr, in den Kästen in Raum 301 des Mathematischen Institutes

## 4. Übung Wahrscheinlichkeitstheorie I

(Äußeres Maß, Vollständigkeit, Produktmaßraum)



Blatt 3: Korrigierte Aufgabe: 3.3 Vorzurechnende Aufgabe: 3.1

Für alle  $\mathcal{A} \subset 2^{\Omega}$  mit  $\emptyset \in \mathcal{A}$  und Mengenfunktionen  $\mu : \mathcal{A} \to [0, \infty]$  mit  $\mu(\emptyset) = 0$  definieren wir das äußere Maß  $\mu^*$  auf  $2^{\Omega}$  wie in Theorem 1.3.9. durch

$$\mu^*(A) := \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : A \subset \bigcup_{i=1}^{\infty} A_i \text{ und } A_1, A_2, \dots \in \mathcal{A} \right\}, A \subset \Omega,$$
 (4.0.1)

Aufgabe 4.1 (10 Punkte)

Es seien  $\mathcal{I}$  ein Halbring,  $\mu$  ein Inhalt auf  $\mathcal{I}$ ,  $\mu^*$  das äußere Maß wie in (4.0.1) und

$$\mathcal{M}_{\mu^*} := \{ A \subset 2^{\Omega} : A \text{ ist } \mu^*\text{-messbar} \}.$$

Für jedes Mengensystem  $\mathcal{A} \subset 2^{\Omega}$  sagen wir, dass  $\mathcal{A}$  vollständig ist, wenn für alle  $A \subset B \in \mathcal{A}$  mit  $\mu^*(B) = 0$  auch gilt:  $A \in \mathcal{A}$ .

- a) Zeigen Sie, dass die durch  $\mathcal{I}$  erzeugte vollständige  $\sigma$ -Algebra  $\overline{\sigma}(\mathcal{I})$  existiert, d.h.  $\mathcal{I} \subset \overline{\sigma}(\mathcal{I})$  und für jede weitere vollständige  $\sigma$ -Algebra  $\mathcal{A}$  mit  $\mathcal{I} \subset \mathcal{A}$  gilt:  $\overline{\sigma}(\mathcal{I}) \subset \mathcal{A}$ . (1 Punkt)
- b) Zeigen Sie  $\sigma(\mathcal{I}) \subset \overline{\sigma}(\mathcal{I}) \subset \mathcal{M}_{\mu^*}$ . (2 Punkte)
- c) Es sei  $A \subset \Omega$ . Zeigen Sie, dass für alle  $n \in \mathbb{N}$  ein  $A_n \in \sigma(\mathcal{I})$  existiert mit  $A \subset A_n$  und  $\mu^*(A_n) \leq \mu^*(A) + \frac{1}{2^n}$ . (2 Punkte)
- d) Es seien  $A \in \mathcal{M}_{\mu^*}$  mit  $\mu^*(A) < \infty$  und  $A_n$ ,  $n \in \mathbb{N}$ , wie in c). Zeigen Sie, dass für alle  $n \in \mathbb{N}$  gilt:

$$\mu^* \Big( A^c \cap \big( \bigcup_{i > n} A_i \big) \Big) \le \frac{1}{2^n}.$$

(1 Punkt)

- e) Es sei  $A \in \mathcal{M}_{\mu^*}$  mit  $\mu^*(A) < \infty$ . Zeigen Sie, dass  $B \in \sigma(\mathcal{I})$  existiert mit  $A \subset B$  und  $\mu^*(B \setminus A) = 0$ . (2 Punkte)
- f) Zeigen Sie, dass wenn  $\mu_{|\mathcal{M}_{\mu^*}}^*$   $\sigma$ -endlich ist,  $\overline{\sigma}(\mathcal{I}) = \mathcal{M}_{\mu^*}$  gilt. (2 Punkte)

Aufgabe 4.2 (10 Punkte)

Es seien  $\Omega = \{0,1\}^{\mathbb{N}}$  und  $p \in [0,1]$ . Wir definieren  $[\omega_1, \ldots, \omega_n] := \{(\omega_1', \omega_2', \ldots) \in \Omega : \omega_i' = \omega_i \text{ für alle } i \in \{1, \ldots, n\}\}$  und

$$\mathcal{A} := \{ [\omega_1, \dots, \omega_n] : \omega_i \in \{0, 1\} \text{ für alle } i \in \{1, \dots, n\}, \ n \in \mathbb{N} \} \cup \{\varnothing\}.$$

- a) Zeigen Sie, dass  $\mathcal{A}$  ein Halbring auf  $\Omega$  ist. (2 Punkte)
- b) Zeigen Sie, dass  $\widetilde{\mu}: \mathcal{A} \to [0,1]$ , definiert durch

$$\begin{cases} \widetilde{\mu}([\omega_1, \dots, \omega_n]) = p^k (1-p)^{n-k} \text{ mit } k = \sum_{i=1}^n \omega_i, \\ \widetilde{\mu}(\varnothing) = 0, \end{cases}$$

ein Inhalt auf A ist.

(2 Punkte)

c) Es sei  $(B_n)_{n\in\mathbb{N}}\in(2^{\Omega})^{\mathbb{N}}$  mit  $B_n\supset B_{n+1}$  für alle  $n\in\mathbb{N}$  und  $B_n\neq\emptyset$  für alle n. Zeigen Sie, dass es ein  $\omega=(\omega_1,\omega_2,\ldots)\in\Omega$  gibt mit

$$[\omega_1,\ldots,\omega_k]\cap B_n\neq\emptyset$$
 für alle  $k,n\in\mathbb{N}$ .

(2 Punkte)

- d) Es seien  $\omega$  und  $(B_n)_{n\in\mathbb{N}}$  wie in c), wobei  $B_n = \bigcup_{k=1}^{m_n} C_k^{(n)}$  mit paarweise disjunkten  $C_1^{(n)}, \ldots, C_{m_n}^{(n)} \in \mathcal{A}$ . Zeigen Sie, dass es für jedes n ein  $i_n \in \{1, \ldots, m_n\}$  gibt, sodass für hinreichend großes k gilt:  $[\omega_1, \ldots, \omega_k] \subset C_{i_n}^{(n)}$ . Schließen Sie  $\bigcap_{n=1}^{\infty} B_n \neq \emptyset$ . (2 Punkte)
- e) Zeigen Sie mithilfe von d) und der Subadditivität von  $\widetilde{\mu}$ , dass  $\widetilde{\mu}$  aus b)  $\sigma$ -subadditiv ist. Schließen Sie, dass es ein eindeutig bestimmtes Wahrscheinlichkeitsmaß  $\mu$  auf  $\sigma(\mathcal{A})$  gibt, das  $\widetilde{\mu}$  fortsetzt. (2 Punkte)

Aufgabe 4.3 (10 Punkte)

Es sei  $\Omega$  eine nicht abzählbare Menge und  $\nu^*:2^\Omega\to[0,\infty]$  die Mengenfunktion definiert durch

$$\nu^*(A) = \begin{cases} 0, & \text{wenn } A = \emptyset, \\ 1, & \text{wenn } \emptyset \neq A \text{ abz\"{a}hlbar ist,} \\ 2, & \text{sonst.} \end{cases}$$

- a) Es seien  $\mu$  eine Mengenfunktion auf  $\mathcal{A} \subset 2^{\Omega}$ ,  $\mu^*$  wie in (4.0.1) und  $\widetilde{\mu}^*$  ein äußeres Maß auf  $2^{\Omega}$  mit  $\widetilde{\mu}_{|\mathcal{A}}^* = \mu$ . Zeigen Sie  $\widetilde{\mu}^* \leq \mu^*$  (d.h.  $\widetilde{\mu}^*(A) \leq \mu^*(A)$  für alle  $A \subset \Omega$ ). (2 Punkte)
- b) Zeigen Sie, dass  $\nu^*$  ein äußeres Maß ist. (2 Punkte)
- c) Zeigen Sie, dass nur  $\varnothing$  und  $\Omega$   $\nu^*$ -messbar sind. (2 Punkte)
- d) Es seien  $\mu := \nu_{|\{\varnothing,\Omega\}}^*$  und  $\mu^*$  wie in (4.0.1). Zeigen Sie, dass  $A \subset \Omega$  existiert mit  $\nu^*(A) < \mu^*(A)$ .
- e) Es seien  $\mathcal{R} = \{A \subset \Omega : A \text{ ist endlich}\}, \mu : \mathcal{R} \to [0, \infty]$  das Zählmaß auf  $\mathcal{R}$  und  $\mu^*$  wie in (4.0.1). Zeigen Sie, dass  $\mu^*$  das eindeutige äußere Maß auf  $2^{\Omega}$  mit  $\mu_{|\mathcal{R}}^* = \mu$  ist. (2 Punkte)

Anmerkung: Sollten Sie für die Bearbeitung der Aufgaben mehrere Blätter benötigen, so sind diese zusammenzuheften. Bitte beschriften Sie Ihre Lösungen in der ersten Zeile in der folgenden Reihenfolge: Gruppenummer in Rot, Vorname, Name, Matrikelnummer, Blattnummer!