Universität zu Köln

Dozent: Dr. P. Gracar

Assistenten: A. Prévost, L. Schmitz
To hand in: 13.11. during the exercise class

5. Exercise sheet Probability II

(Martingale convergence theorems)

Exercise 5.1

(4 editing points)
Let $\left(M_{n}\right)_{n \in \mathbb{N}_{0}} \subset \mathcal{L}^{2}$ be a martingale w.r.t. $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ with $M_{0}=0 \mathbb{P}$-a.s, $\left(<M>_{n}\right)_{n \in \mathbb{N}_{0}}$ its square variation process and $\left.\tau_{x}:=\inf \left\{n \in \mathbb{N}_{0}:<M>_{n+1}\right\rangle x^{2}\right\}$.
a) For each $m \in \mathbb{N}$, prove the inequality

$$
\mathbb{P}\left(\sup _{0 \leq n \leq m}\left|M_{n}\right|>x\right) \leq \mathbb{P}\left(<M>_{m}>x^{2}\right)+\mathbb{P}\left(\sup _{0 \leq n \leq m}\left|M_{n \wedge \tau_{x}}\right|>x\right) .
$$

b) Show that for all $m \in \mathbb{N}$

$$
\mathbb{P}\left(\sup _{0 \leq n \leq m}\left|M_{n \wedge \tau_{x}}\right| \geq x\right) \leq x^{-2} \mathbb{E}\left[<M>_{m} \wedge x^{2}\right] \quad \forall m \in \mathbb{N}_{0} \text { and } x>0
$$

c) Show that for all $m \in \mathbb{N}$

$$
\int_{(0, \infty)} x^{-2} \mathbb{E}\left[<M>_{m} \wedge x^{2}\right] \mathrm{d} x=2 \mathbb{E}\left[<M>_{m}^{1 / 2}\right]
$$

d) Show that for all $m \in \mathbb{N}$

$$
\mathbb{E}\left[\sup _{0 \leq n \leq m}\left|M_{n}\right|\right] \leq 3 \mathbb{E}\left[<M>_{m}^{1 / 2}\right] .
$$

e) Let $\left(X_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{L}^{2}$ be i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $S_{n}:=\sum_{i=1}^{n} X_{i}$. Let $\tau: \Omega \rightarrow \mathbb{N}$ be a stopping time with $\tau \in \mathcal{L}^{1 / 2}$. Show that $S_{\tau} \in \mathcal{L}^{1}$ and $\mathbb{E}\left[S_{\tau}\right]=0$.

Exercise 5.2

Prove or refute the following statements.
a) If $\left(M_{n}\right)$ is a martingale, then there exists a random variable M_{∞} such that

$$
M_{n} \underset{n \rightarrow \infty}{\longrightarrow} M_{\infty} \mathbb{P} \text {-a.s. }
$$

b) If $\left(M_{n}\right)$ is a square integrable martingale such that $<M>_{\infty} \in \mathcal{L}^{1}$, then there exists a random variable $M_{\infty} \in \mathcal{L}^{2}$ such that

$$
M_{n}^{2}-<M>_{n} \underset{n \rightarrow \infty}{\longrightarrow} M_{\infty}^{2}-<M>_{\infty} \mathbb{P} \text {-a.s. and in } \mathcal{L}^{1}
$$

c) If $\left(M_{n}\right)$ is an \mathcal{L}^{1}-bounded martingale, then there exists a random variable $M_{\infty} \in \mathcal{L}^{1}$ such that

$$
M_{n} \underset{n \rightarrow \infty}{\longrightarrow} M_{\infty} \text { in } \mathcal{L}^{1}
$$

d) If $\left(M_{n}\right)$ is a non-negative \mathcal{L}^{p}-bounded submartingale, $p>1$, then there exists a random variable $M_{\infty} \in \mathcal{L}^{p}$ such that

$$
M_{n} \underset{n \rightarrow \infty}{\longrightarrow} M_{\infty} \mathbb{P} \text {-a.s. and in } \mathcal{L}^{p} .
$$

e) If $\left(M_{n}\right)$ is an \mathcal{L}^{p}-bounded submartingale, $p>1$, then there exists a random variable $M_{\infty} \in \mathcal{L}^{p}$ such that

$$
M_{n} \underset{n \rightarrow \infty}{\longrightarrow} M_{\infty} \mathbb{P} \text {-a.s. and in } \mathcal{L}^{p}
$$

Hint: Take $M_{n}=-e^{S_{n}-a n}$, where $\left(S_{n}\right)$ is the simple random walk on \mathbb{Z}, and choose $a>0$ in a smart way.
f) If $\left(M_{n}\right)$ is an \mathcal{L}^{p}-bounded submartingale, $p>1$, then there exists a random variable $M_{\infty} \in \mathcal{L}^{p}$ such that

$$
M_{n} \underset{n \rightarrow \infty}{\longrightarrow} M_{\infty} \mathbb{P} \text {-a.s. and in } \mathcal{L}^{q} \text { for all } q<p
$$

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!

