Universität zu Köln

Institut für Mathematik Dozent: Dr. P. Gracar Assistenten: A. Prévost, L. Schmitz

To hand in: 13.11. during the exercise class

5. Exercise sheet Probability II

(Martingale convergence theorems)

Exercise 5.1

(4 editing points)

Let $(M_n)_{n \in \mathbb{N}_0} \subset \mathcal{L}^2$ be a martingale w.r.t. $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$ with $M_0 = 0$ P-a.s, $(\langle M \rangle_n)_{n \in \mathbb{N}_0}$ its square variation process and $\tau_x := \inf \{n \in \mathbb{N}_0 : \langle M \rangle_{n+1} > x^2\}$.

a) For each $m \in \mathbb{N}$, prove the inequality

$$\mathbb{P}\Big(\sup_{0 \le n \le m} |M_n| > x\Big) \le \mathbb{P}\left(\langle M \rangle_m > x^2\right) + \mathbb{P}\Big(\sup_{0 \le n \le m} |M_{n \land \tau_x}| > x\Big).$$

b) Show that for all $m \in \mathbb{N}$

$$\mathbb{P}\left(\sup_{0 \le n \le m} |M_{n \land \tau_x}| \ge x\right) \le x^{-2} \mathbb{E}\left[< M >_m \land x^2 \right] \quad \forall m \in \mathbb{N}_0 \text{ and } x > 0$$

c) Show that for all $m \in \mathbb{N}$

$$\int_{(0,\infty)} x^{-2} \mathbb{E}\Big[\langle M \rangle_m \wedge x^2 \Big] \,\mathrm{d}x = 2 \mathbb{E}\Big[\langle M \rangle_m^{1/2} \Big].$$

d) Show that for all $m \in \mathbb{N}$

$$\mathbb{E}\Big[\sup_{0 \le n \le m} |M_n|\Big] \le 3\mathbb{E}\Big[< M >_m^{1/2}\Big].$$

e) Let $(X_n)_{n \in \mathbb{N}} \subset \mathcal{L}^2$ be i.i.d. random variables with $\mathbb{E}[X_1] = 0$ and $S_n := \sum_{i=1}^n X_i$. Let $\tau : \Omega \to \mathbb{N}$ be a stopping time with $\tau \in \mathcal{L}^{1/2}$. Show that $S_\tau \in \mathcal{L}^1$ and $\mathbb{E}[S_\tau] = 0$.

WS 2019/2020

Exercise 5.2

(4 editing points)

Prove or refute the following statements.

a) If (M_n) is a martingale, then there exists a random variable M_{∞} such that

$$M_n \xrightarrow[n \to \infty]{} M_\infty$$
 \mathbb{P} -a.s.

b) If (M_n) is a square integrable martingale such that $\langle M \rangle_{\infty} \in \mathcal{L}^1$, then there exists a random variable $M_{\infty} \in \mathcal{L}^2$ such that

$$M_n^2 - \langle M \rangle_n \xrightarrow[n \to \infty]{} M_\infty^2 - \langle M \rangle_\infty$$
 P-a.s. and in \mathcal{L}^1 .

c) If (M_n) is an \mathcal{L}^1 -bounded martingale, then there exists a random variable $M_\infty \in \mathcal{L}^1$ such that

$$M_n \xrightarrow[n \to \infty]{} M_\infty \text{ in } \mathcal{L}^1$$

d) If (M_n) is a non-negative \mathcal{L}^p -bounded submartingale, p > 1, then there exists a random variable $M_{\infty} \in \mathcal{L}^p$ such that

$$M_n \xrightarrow[n \to \infty]{} M_\infty$$
 \mathbb{P} -a.s. and in \mathcal{L}^p .

e) If (M_n) is an \mathcal{L}^p -bounded submartingale, p > 1, then there exists a random variable $M_{\infty} \in \mathcal{L}^p$ such that

$$M_n \xrightarrow[n \to \infty]{} M_\infty$$
 \mathbb{P} -a.s. and in \mathcal{L}^p .

Hint: Take $M_n = -e^{S_n - an}$, where (S_n) is the simple random walk on \mathbb{Z} , and choose a > 0 in a smart way.

f) If (M_n) is an \mathcal{L}^p -bounded submartingale, p > 1, then there exists a random variable $M_{\infty} \in \mathcal{L}^p$ such that

$$M_n \xrightarrow[n \to \infty]{} M_\infty$$
 \mathbb{P} -a.s. and in \mathcal{L}^q for all $q < p$.

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!