Universität zu Köln

SS 2019

Institut für Mathematik

Dozent: Prof. Dr. A. Drewitz

Assistenten: A. Prévost, L. Schmitz

Abgabe: Bis 09.05., 18 Uhr, in den Kästen in Raum 301 des Mathematischen Institutes

5. Übung Wahrscheinlichkeitstheorie I

(Lebesgue-Messbarkeit, Lebesgue-Maß, messbare Funktionen)

Blatt 4: Korrigierte Aufgabe: 4.1 Vorzurechnende Aufgabe: 4.3

Wir schreiben $\lambda := \lambda^1$ für das eindimensionale Lebesgue-Maß auf $\mathcal{L}(\mathbb{R})$ und bemerken, dass es translationsinvariant ist, d.h. $\lambda(A) = \lambda(A+x)$ für alle $A \in \mathcal{L}(\mathbb{R})$ und $x \in \mathbb{R}$, wobei $\mathcal{L}(\mathbb{R})$ die Lebesgue σ -Algebra ist, siehe Bemerkung 1.3.12.

Aufgabe 5.1 (10 Punkte)

Für alle $n \ge 1$ sei

$$A_n = \left\{ \sum_{i=1}^n 2x_i \cdot 3^{-i} : x_i \in \{0, 1\} \text{ für alle } i \in \{1, \dots, n\} \right\}.$$

Die Menge

$$C := \bigcap_{n=1}^{\infty} \dot{\bigcup}_{x \in A_n} \left[x, x + \frac{1}{3^n} \right]$$

heißt eindimensionales Cantorsches Diskontinuum. Ohne Beweis gilt, dass C abgeschlossen ist, und dass jedes $x \in C$ die Darstellung

$$x = \sum_{k=1}^{\infty} 2x_k \cdot 3^{-k}, \qquad x_k \in \{0, 1\},$$
 (1)

besitzt. Die $Cantorfunktion\ F: C \to [0,1]$ erhält man nun, indem man für $x \in C$ mit der Darstellung (1) $F(x) := \sum_{k=1}^\infty x_k \cdot 2^{-k}, \ x_k \in \{0,1\}$ definiert. Dann ist F streng monoton wachsend und surjektiv. Wir definieren jetzt $f: [0,1] \to [0,1]$ durch $f(x) = F^{-1}(x)$ für alle $x \in [0,1]$ und $\tilde{F}: [0,1] \to [0,1]$ durch $\tilde{F}(x) := \sup\{F(y) : y \in C, \ y \leq x\}$.

a) Zeigen Sie für alle $n \in \mathbb{N}$, dass

$$\dot{\bigcup}_{x \in A_{n+1}} \left[x, x + \frac{1}{3^{n+1}} \right] \subset \dot{\bigcup}_{y \in A_n} \left[y, y + \frac{1}{3^n} \right]. \tag{1 Punkt}$$

- b) Zeigen Sie $\lambda(C) = 0$. (1 Punkt)
- c) Zeigen Sie, dass $f^{-1}([0,a]) = [0, \tilde{F}(a)]$ für alle $a \in [0,1]$ gilt und dass f eine $\mathcal{B}([0,1]) \mathcal{B}([0,1])$ -messbare Funktion ist. (3 Punkte)
- d) Es sei $V \subset [0,1]$ wie in Aufgabe 0.1. Zeigen Sie, dass $V \notin \mathcal{L}([0,1])$. (2 Punkte)

e) Zeigen Sie $f(V) \in \mathcal{L}([0,1])$, jedoch $f(V) \notin \mathcal{B}([0,1])$. (3 Punkte)

Aufgabe 5.2 (10 Punkte)

Es sei $E \in \mathcal{L}(\mathbb{R})$ mit $0 < \lambda(E) < \infty$. Wir definieren für $B, C \subset \mathbb{R}$ die Menge $B - C := \{x - y : x \in B, y \in C\}$.

- a) Zeigen Sie, dass für jedes $\delta \in (0,1)$ eine Folge $(I_n)_{n \in \mathbb{N}}$ mit $I_n = (a_n, b_n], a_n, b_n \in \mathbb{R},$ $a_n < b_n, n \in \mathbb{N}$, existiert, sodass $E \subset \bigcup_{n \in \mathbb{N}} I_n$ und $\sum_{n \in \mathbb{N}} \lambda(I_n) \leq \lambda(E)/(1-\delta)$. (2 Punkte)
- b) Zeigen Sie, dass für jedes $\delta > 0$ ein Interval $I = [a, b], a, b \in \mathbb{R}, -\infty < a < b < \infty$, existiert, sodass $\lambda(E \cap I) \geq (1 \delta)\lambda(I)$. (1 Punkt)
- c) Es seien $A,B\in\mathcal{L}(\mathbb{R})$ mit $\lambda(A)=\lambda(B)\geq a>0$ und $\lambda(A\cup B)<2a.$ Zeigen Sie $A\cap B\neq\varnothing$. (1 Punkt)
- d) Zeigen Sie, dass es ein Interval $I = [a, b], a, b \in \mathbb{R}, -\infty < a < b < \infty$, gibt, sodass für alle x mit $|x| < \frac{\lambda(I)}{2}$ gilt:

$$((E \cap I) + x) \cap (E \cap I) \neq \emptyset.$$
 (3 Punkte)

e) Zeigen Sie, dass es ein $\varepsilon > 0$ gibt, sodass

$$(-\varepsilon, \varepsilon) \subset E - E.$$
 (3 Punkte)

Aufgabe 5.3 (10 Punkte)

Es seien $f:(\Omega,\mathcal{F})\to(E,\mathcal{E})$ eine $\mathcal{F}-\mathcal{E}$ -messbare Funktion und

$$\mathcal{A}_f := \{ f^{-1}(B) : B \in \mathcal{E} \}.$$

- a) Zeigen Sie, dass \mathcal{A}_f eine σ -Algebra ist. (1 Punkt)
- b) Zeigen Sie, dass $f \mathcal{A}_f \mathcal{E}$ -messbar ist, und dass \mathcal{A}_f die kleinste σ -Algebra ist, sodass f messbar ist, d.h. für alle σ -Algebra $\mathcal{A}' \neq \mathcal{A}_f$ mit $\mathcal{A}' \subset \mathcal{A}_f$ gilt: f ist nicht $\mathcal{A}' \mathcal{E}$ -messbar. (1 Punkt)
- c) Zeigen Sie, dass für alle $B \in \mathcal{E}$ gilt: $f(f^{-1}(B)) = B \cap f(\Omega)$. (1 Punkt)

Es sei $g:(\Omega, \mathcal{A}_f) \to (E', \mathcal{E}')$ eine $\mathcal{A}_f - \mathcal{E}'$ -messbare Funktion. Für alle $x \in E$ definieren wir $C_x = \{a \in E' : x \in f(g^{-1}(\{a\}))\}.$

Dann gilt $C_x \neq \emptyset$ für alle $x \in f(\Omega)$ und nach dem Auswahlaxiom existiert eine Auswahlfunktion $h: f(\Omega) \to E'$ mit $h(x) \in C_x$ für alle $x \in f(\Omega)$.

d) Zeigen Sie, dass für alle $A, B \in \mathcal{E}'$ mit $A \cap B = \emptyset$ gilt:

$$f(g^{-1}(A)) \cap f(g^{-1}(B)) = \varnothing. \tag{2 Punkte}$$

- e) Zeigen Sie, dass für alle $B \in \mathcal{E}'$ gilt $g^{-1}(B) = f^{-1}(h^{-1}(B))$. (3 Punkte)
- f) Es sei $\mathcal{E}_f = \{A \cap f(\Omega) : A \in \mathcal{E}\}$. Zeigen Sie, dass $h \mathcal{E}_f \mathcal{E}'$ -messbar ist. (2 Punkte)

Anmerkung: Sollten Sie für die Bearbeitung der Aufgaben mehrere Blätter benötigen, so sind diese zusammenzuheften. Bitte beschriften Sie Ihre Lösungen in der ersten Zeile in der folgenden Reihenfolge: Gruppenummer in Rot, Vorname, Name, Matrikelnummer, Blattnummer!