Universität zu Köln

WS 2019/2020
Institut für Mathematik
Dozent: Dr. P. Gracar
Assistenten: A. Prévost, L. Schmitz
To hand in: 20.11. during the exercise class

6. Exercise sheet Probability II

(Generalisation of law of large numbers and central limit theorem, backwards martingales)

Exercise 6.1

Prove Lemma 2.3.24: Let $\left(X_{n}\right)$ and $\left(Y_{n}\right)$ be two sequences of random variables satisfying the following conditions:

- There exists $c \in \mathbb{R}$ such that $X_{n} \xrightarrow{\mathbb{P}} c$ as $n \rightarrow \infty$;
- the sequences $\left(Y_{n}\right)$ and $\left(X_{n} Y_{n}\right)$ are both uniformly integrable;
- $\mathbb{E}\left[Y_{n}\right] \longrightarrow 1$ as $n \rightarrow \infty$.
a) Show that for all $\varepsilon>0$

$$
\mathbb{E}\left[X_{n} Y_{n} \mathbb{1}_{\left|X_{n}-c\right| \geq \varepsilon}\right] \underset{n \rightarrow \infty}{\longrightarrow} 0 \quad \text { and } \quad \mathbb{E}\left[Y_{n} \mathbb{1}_{\left|X_{n}-c\right| \geq \varepsilon}\right] \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

b) Show that

$$
\mathbb{E}\left[X_{n} Y_{n}\right] \underset{n \rightarrow \infty}{\longrightarrow} c .
$$

Exercise 6.2

(4 editing points)
In a) and c) you are not allowed to use previously known laws of large numbers.
a) Let $\left(X_{n}\right) \subset \mathcal{L}^{1}$ be an i.i.d. sequence of random variables. Show the strong law of large numbers:

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[X] \mathbb{P} \text {-a.s. and in } \mathcal{L}^{1}
$$

Hint: Use backward martingales as well as Kolmogorov's 0-1-law.
b) Let $\left(X_{n}\right) \subset \mathcal{L}^{2}$ be a pairwise uncorrelated sequence of random variables such that for all $i \in \mathbb{N}$

$$
\frac{1}{\alpha_{n}^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

for some sequence $\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ of positive numbers. Show that

$$
\frac{1}{\alpha_{n}} \sum_{i=1}^{n}\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \text { in probability and in } \mathcal{L}^{2}
$$

Hint: You can use the weak law of large numbers (Theorem 3.6.5 in the script of WTI).
c) Let $\left(X_{n}\right) \subset \mathcal{L}^{2}$ be an independent sequence of random variables such that for all $i \in \mathbb{N}$

$$
\sum_{i=1}^{\infty} \frac{\operatorname{Var}\left(X_{i}\right)}{\alpha_{i}^{2}}<\infty
$$

for some positive, non-decreasing sequence $\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ such that $\alpha_{n} \underset{n \rightarrow \infty}{\longrightarrow} \infty$. Show that

$$
\frac{1}{\alpha_{n}} \sum_{i=1}^{n}\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \mathbb{P} \text {-a.s. and in } \mathcal{L}^{2}
$$

Hint: Study $M_{n}=\sum_{i=1}^{n} \frac{X_{i}-\mathbb{E}\left[X_{i}\right]}{\alpha_{i}}$ and use Kronecker's lemma: if $\left(u_{k}\right)_{k \geq 0}$ and $\left(b_{k}\right)_{k \geq 0}$ are two sequences such that $b_{k}>0$ for all $k \in \mathbb{N}, \sum_{k \geq 1} u_{k}$ exists and is finite and b_{k} increases to ∞, then $\frac{1}{b_{n}} \sum_{k=1}^{n} u_{k} b_{k} \underset{n \rightarrow \infty}{\longrightarrow} 0$.
d) Let $\left(Y_{n}\right)$ be an independent sequence of random variables such that $\mathbb{P}\left(Y_{n}=\frac{1}{\sqrt{n}}\right)=\mathbb{P}\left(Y_{n}=\right.$ $\left.-\frac{1}{\sqrt{n}}\right)=\mathbb{P}\left(Y_{n}=0\right)=\frac{1}{3}$. Show that

$$
\frac{1}{\log (n)} \sum_{i=1}^{n} Y_{i} \underset{n \rightarrow \infty}{\longrightarrow} 0 \mathbb{P} \text {-a.s. and in } \mathcal{L}^{2}
$$

and that

$$
\frac{1}{\sqrt{\log (n)}} \sum_{i=1}^{n} Y_{i} \underset{n \rightarrow \infty}{\longrightarrow} \mathcal{N}\left(0, \frac{2}{3}\right) \text { in law. }
$$

Exercise 6.3

Let $\left(X_{n}\right), n \in-\mathbb{N}_{0}$, be a sequence of random variables with $X_{-n} \longrightarrow X_{-\infty} \mathbb{P}$-a.s. for $n \rightarrow+\infty$ and $\left|X_{-n}\right| \leq Z \mathbb{P}$-a.s. for all n, where $Z \in \mathcal{L}^{1}$. Let $\left(\mathcal{F}_{n}\right), n \in-\mathbb{N}_{0}$, be a decreasing sequence of sub- σ-algebras, i.e. $\mathcal{F}_{-n} \downarrow \mathcal{F}_{-\infty}$ for $n \rightarrow+\infty$, and let $W_{N}:=\sup \left\{\left|X_{-n}-X_{-m}\right|, n, m \geq N\right\}$ for all $N \in \mathbb{N}_{0}$.
a) Show that for all $N \in \mathbb{N}_{0}$

$$
\limsup _{n \rightarrow+\infty} \mathbb{E}\left[\left|X_{-n}-X_{-\infty}\right| \mid \mathcal{F}_{-n}\right] \leq \lim _{n \rightarrow+\infty} \mathbb{E}\left[W_{N} \mid \mathcal{F}_{-n}\right]
$$

b) Show that

$$
\mathbb{E}\left[X_{-n} \mid \mathcal{F}_{-n}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[X_{-\infty} \mid \mathcal{F}_{-\infty}\right] \mathbb{P} \text {-a.s. }
$$

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!

