Universität zu Köln

Institut für Mathematik Dozent: Dr. P. Gracar Assistenten: A. Prévost, L. Schmitz

To hand in: 04.12. during the exercise class

8. Exercise sheet Probability II

(Regular conditional distribution)

() Constant Constanta

Exercise 8.1

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra, (E, \mathcal{E}) be a measurable space, $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{E})$ a random variable and μ a regular conditional distribution of X knowing \mathcal{G} . Furthermore, let $Y : (\Omega, \mathcal{G}) \to (E', \mathcal{E}')$ be $\mathcal{G} - \mathcal{E}'$ -measurable and $f : (E \times E', \mathcal{E} \otimes \mathcal{E}') \to (\mathbb{R}, \mathcal{B})$ be measurable such that $\mathbb{E}[|f(X, Y)|] < \infty$.

a) Show that

$$\mathbb{E}[f(X,Y) | \mathcal{G}](\omega) = \int_{E} f(x,Y(\omega))\mu(\omega, \, \mathrm{d}x)$$

for \mathbb{P} -almost all $\omega \in \Omega$.

b) Let $(\Omega, \mathcal{F}, \mathbb{P}) = (\mathbb{D}, \mathcal{B}(\mathbb{D}), \mathbb{P})$ with \mathbb{D} as in Exercise 7.4, \mathbb{P} the uniform distribution on \mathbb{D} and

$$\mathcal{G}_{\mathrm{rot}} := \{B \in \mathcal{B}(\mathbb{D}): \ \{(x,y) \in B \text{ and } x^2 + y^2 = u^2 + v^2\} \Longrightarrow \{(u,v) \in B\}\}.$$

the σ -algebra of measurable sets invariant by rotation. For $(x, y) \in \mathbb{D}$, let $Y(x, y) := x^2 + y^2$ and $X(x, y) := \arg((x, y)) \in [0, 2\pi)$ be the angle between the vectors $(\mathbf{0}, (x, y))$ and $(\mathbf{0}, (1, 0))$.

Show that Y is \mathcal{G}_{rot} -measurable and that for every f, such that $\mathbb{E}[|f(X,Y)|] < \infty$ we have

$$\mathbb{E}[f(X,Y) \mid \mathcal{G}_{\text{rot}}](\omega) = \frac{1}{2\pi} \int_0^{2\pi} f(x,Y(\omega)) \, \mathrm{d}x.$$

Exercise 8.2

Let (S, \mathcal{O}) be a Polish space, $X, Y : (\Omega, \mathcal{F}, \mathbb{P}) \mapsto (S, \mathcal{O})$ be random variables, and $\mathbb{P}_{(X,Y)}$ the law of (X, Y).

a) Let us define the projections $\widetilde{X}, \widetilde{Y} : (S^2, \mathcal{O}^{\otimes 2}, \mathbb{P}_{(X,Y)}) \to (S, \mathcal{O})$ by $\widetilde{X}(x, y) = x$ and $\widetilde{Y}(x, y) = y$ for all $x, y \in S$. Show that there exists a regular conditional distribution $\widetilde{\mu}$ of \widetilde{Y} given \widetilde{X} such that $\widetilde{\mu}((x, y), F) = \widetilde{\mu}((x, y'), F)$ for all $x, y, y' \in S$ and $F \in \mathcal{O}$.

(2 editing points)

(4 editing points)

- b) Show that there exists $\mu: S \times \mathcal{B}(S) \to [0,1]$ such that
 - $F \mapsto \mu(x, F)$ is a probability measure for all $x \in A_{\mu}$, with $\mathbb{P}_X(A_{\mu}) = 1$,
 - $\omega \mapsto \mu(X(\omega), F)$ is a version of $\mathbb{P}(Y \in F \mid X)$ for all $F \in \mathcal{O}$.

Hint: You can assume without proof, that for some $\tilde{\mu}$ as in a), there exists a set $\widetilde{A}_{\tilde{\mu}} \in \sigma(\widetilde{X})$ such that $\mathbb{P}_{(X,Y)}(\widetilde{A}_{\tilde{\mu}}) = 1$ and $\tilde{\mu}((x,y), \cdot)$ is a probability for all $(x,y) \in \widetilde{A}_{\tilde{\mu}}$.

Let $g: (S, \mathcal{O}) \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a measurable function such that $g(Y) \in \mathcal{L}^1$. A function $F: S \mapsto \mathbb{R}$ is said to be a version of $\mathbb{E}[g(Y) | X = x]$ if F(X) is a version of $\mathbb{E}[g(Y) | X]$.

c) Show that for all μ as in b),

$$F(x) = \mathbb{1}_{x \in A_{\mu}} \int g(y) \mu(x, \mathrm{d}y)$$

is a version of $\mathbb{E}[g(Y) | X = x]$.

d) Assume that $S = \mathbb{R}$, and that (X, Y) has density f w.r.t. $\nu_1 \otimes \nu_2$, for some measures ν_1, ν_2 on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, and recall the notation from Exercise 7.4. Show that

$$F(x) = \mathbb{1}_{f_X(x) \in (0,\infty)} \int g(y) f_{Y|X}(y|x) \, \mathrm{d}\nu_2(y)$$

is a version of $\mathbb{E}[g(Y) | X = x]$.

Exercise 8.3

(2 editing points)

Let (E_i, \mathcal{E}_i) , $i \in \{0, \dots, 3\}$ be measurable spaces, and for each $i \in \{1, 2, 3\}$, let μ_i be a transition kernel from $(\times_{j=0}^{i-1} E_j, \otimes_{j=0}^{i-1} \mathcal{E}_j)$ to (E_i, \mathcal{E}_i) .

a) Show that for all measurable function $f: E_1 \times E_2 \to \mathbb{R}$ such that $f \in \mathcal{L}^1$

$$\int_{E_1 \times E_2} (\mu_1 \otimes \mu_2)(x_0, \mathrm{d}x) f(x) = \int_{E_1} \mu_1(x_0, \mathrm{d}x_1) \int_{E_2} \mu_2((x_0, x_1), \mathrm{d}x_2) f(x_1, x_2),$$

- b) Show that $\mu_1 \otimes (\mu_2 \otimes \mu_3) = (\mu_1 \otimes \mu_2) \otimes \mu_3$.
- c) Let \mathbb{P}_1 be a probability on (E_1, \mathcal{E}_1) , \mathbb{P}_2 be a probability on (E_2, \mathcal{E}_2) , and let $\mu(x_1, F) = \mathbb{P}_2(F)$ for all $x_1 \in E_1$ and $F \in \mathcal{E}_2$. Show that $\mathbb{P}_1 \otimes \mu = \mathbb{P}_1 \otimes \mathbb{P}_2$. Hint: we recall that the product measure $\mathbb{P}_1 \otimes \mathbb{P}_2$ was defined in Proposition 2.4.3. in Probability I.

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!