Universität zu Köln

WS 2019/2020
Institut für Mathematik
Dozent: Dr. P. Gracar
Assistenten: A. Prévost, L. Schmitz
To hand in: 18.12. during the exercise class

10. Exercise sheet Probability II

(Poisson process, Polya's statement)

Exercise 10.1

Let $\kappa:[0, \infty) \rightarrow[0, \infty)$ be a continuous and non-negative function. We say that a process $\left(X_{t}\right)_{t \geq 0}$ taking values in \mathbb{N}_{0} is an inhomogeneous Poisson process (IPP) with rate κ if and only if

- $\left(X_{t}\right)_{t \geq 0}$ is càdlàg and has independent and non-negative increments,
- $\mathbb{P}\left(X_{0}=0\right)=1$,
- for all $n \in \mathbb{N}_{0}$ and all $0 \leq s<t$ we have

$$
\mathbb{P}\left(X_{t}-X_{s}=n\right)=\frac{\left(\int_{[s, t]} \kappa(r) \mathrm{d} r\right)^{n}}{n!} \exp \left\{-\int_{[s, t]} \kappa(r) \mathrm{d} r\right\} .
$$

a) Let $m(t):=\int_{[0, t]} \kappa(s) \mathrm{d} s$ and $\left(N_{t}\right)_{t \geq 0}$ be a Poisson process with rate 1 . Define $\widetilde{N}_{t}:=N_{m(t)}$, $t \geq 0$. Show that $\left(\tilde{N}_{t}\right)_{t \geq 0}$ is an inhomogeneous Poisson process with rate κ.
b) Show that an inhomogeneous Poisson process with rate κ has stationary increments if and only if κ is constant.
c) Assume that κ is constant. Let $\mu_{t}, t \in[0, \infty)$, be the Markov semigroup of transition kernels from Example 3.2.2.b), that is $\mu_{t}(n, B)=\mathbb{P}(\operatorname{Poi}(\kappa t)+n \in B)$ for all $n \in \mathbb{N}_{0}$ and $B \in 2^{\mathbb{N}_{0}}$. Show that, if $\mathbb{P}_{n}, n \in \mathbb{N}_{0}$, and $\left(Y_{t}\right)_{t \geq 0}$, describes a Markov process associated to $\mu_{t}, t \in[0, \infty)$, then $\left(Y_{t}\right)_{t \geq 0}$ has the same distribution under \mathbb{P}_{0} as any (inhomogeneous) Poisson process $\left(X_{t}\right)_{t \geq 0}$ with rate κ.
d) Show that a stochastic process $\left(X_{t}\right)_{t \geq 0}$ taking values in \mathbb{N}_{0} is an inhomogeneous Poisson process with rate κ if and only if
i) $\left(X_{t}\right)_{t \geq 0}$ is càdlàg and has independent and non-negative increments,
ii) $\mathbb{P}\left(X_{0}=0\right)=1$,
iii) $\mathbb{P}\left(X_{t+h}-X_{t}=1\right)=\kappa(t) h+o(h)$ as $h \downarrow 0$ for all $t \geq 0$ and
iv) $\mathbb{P}\left(X_{t+h}-X_{t} \geq 2\right)=o(h)$.

Hint: Show that in both cases for all $n \in \mathbb{N}_{0}$ and all $0 \leq s<t$ we have

$$
\frac{\mathrm{d} \mathbb{P}\left(X_{t}-X_{s}=n\right)}{\mathrm{d} t}=\kappa(t)\left(\mathbb{P}\left(X_{t}-X_{s}=n-1\right)-\mathbb{P}\left(X_{t}-X_{s}=n\right)\right)
$$

Exercise 10.2

Let $d \in \mathbb{N}$ and $L: \mathbb{R}^{\mathbb{Z}^{d}} \rightarrow \mathbb{R}^{\mathbb{Z}^{d}}$, be the generator of the discrete time d-dimensional simple random walk (SRW) $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$. For $A \subset \mathbb{Z}^{d}$ we define $\tau_{A}:=\inf \left\{n \in \mathbb{N}_{0}: X_{n} \in A\right\}$ the first entrance time in A.
a) Let $d \geq 3$ and for $\alpha \in(0, d-2)$ we define $V_{\alpha}(x):=\|x\|_{2}^{-\alpha}$. Show, applying the convergence theorem for a suitable supermartingale, that for some $R>0$ big enough and all $x \in B(0, R)^{c}$ we have

$$
\mathbb{P}_{x}\left(\tau_{B(0, R)}<\infty\right) \leq V_{\alpha}(x / R)
$$

Hint: You can use without a proof that $\left(L V_{\alpha}\right)(x)=\frac{\alpha}{2 d}\|x\|_{2}^{-\alpha-2}(\alpha+2-d+o(1))$ as $\|x\|_{2} \rightarrow \infty$.
b) Let $d \in\{1,2\}$ and define $V(x):=\ln \|x\|_{2}-\frac{1}{\|x\|_{2}}, x \neq 0$. Show, applying the convergence theorem for a suitable supermartingale, that for some $r>0$ large enough and all $x \in \mathbb{Z}^{d}$ we have

$$
\mathbb{P}_{x}\left(\tau_{B(0, R)^{c}}<\tau_{B(0, r)}\right) \underset{R \rightarrow \infty}{\longrightarrow} 0 .
$$

Hint: You can use without a proof that $(L V)(x)=\frac{d-2}{\|x\|_{2}^{2}}+\frac{d-3}{\|x\|_{2}^{3}}+o\left(\frac{1}{\|x\|_{2}^{3}}\right)$ as $\|x\|_{2} \rightarrow \infty$.
c) Show that the SRW on \mathbb{Z}^{d} is recurrent if and only if $d \in\{1,2\}$, i.e.

$$
\left\{\text { for all } x \in \mathbb{Z}^{d}, \mathbb{P}_{x}\left(\tau_{\{0\}}<\infty\right)=1\right\} \Longleftrightarrow d \in\{1,2\}
$$

Hint: You can use without a proof, that if $A \subset \mathbb{Z}^{d}$ is a finite set such that $\mathbb{P}_{x}\left(\tau_{A}<\infty\right)=1$ for all $x \in \mathbb{Z}^{d}$, then $\mathbb{P}_{x}\left(\tau_{\{y\}}<\infty\right)=1$ for all $y \in A$ and $x \in \mathbb{Z}^{d}$.

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!

