Universität zu Köln

WS 2019/2020
Institut für Mathematik
Dozent: Dr. P. Gracar
Assistenten: A. Prévost, L. Schmitz
To hand in: 8.1. during the exercise class

11. Exercise sheet Probability II

(Doob's h-transform, measure-preserving and ergodic transformations)

Exercise 11.1

Let $h(x)=x$ for all $x \in \mathbb{Z}, P$ be the transition matrix associated to the one-dimensional simple random walk on \mathbb{Z}, and P^{h} the Doob's h-transform of P. We also define under some probability $\mathbb{P}_{y}, y \in \mathbb{Z}$, the Markov process associated to the simple random walk on \mathbb{Z}, and under some probabilities $\mathbb{P}_{y}^{h}, y \in \mathbb{Z}$, the Markov process $\left(X_{n}^{h}\right)_{n \in \mathbb{N}}$ associated to the transition matrix P^{h}. For each $x \in \mathbb{N}$, let $\tau_{x}=\inf \left\{n \in \mathbb{N}_{0}: X_{n}^{h}=x\right\}$, with the convention $\inf \varnothing=\infty$.

Show that
a) for all $M>0$ and $x, y \in\{1, \ldots, M\}, \mathbb{P}_{x}^{h}\left(X_{1}^{h}=y\right)=\mathbb{P}_{x}\left(X_{1}=y \mid \tau_{M}<\tau_{0}\right)$ (we say that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a simple random walk conditioned on not hitting 0$)$,
b) for all $x, y, z \in \mathbb{N}, x<y<z, \mathbb{P}_{y}^{h}\left(\tau_{x}<\tau_{z}\right)=\frac{x(z-y)}{y(z-x)}$,
c) for all $x, y \in \mathbb{N}, \mathbb{P}_{y}^{h}\left(\tau_{x}<\infty\right)=\frac{x}{y} \wedge 1$,
d) for all $x \in \mathbb{N}, \mathbb{P}_{x}^{h}\left(\forall n \in \mathbb{N}, X_{n} \neq x\right)=\frac{1}{2 x}$.

Christmas Bonus Exercise

Exercise 11.2

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\theta: \Omega \rightarrow \Omega$ be a measurable function and $p \in \mathbb{N} \backslash\{1\}$. Define two other measurable function $T, S: \Omega \rightarrow \Omega$, which have the property

$$
T=\theta^{p} \quad \text { and } \quad \theta=S^{p}
$$

We also define I_{θ}, I_{S} and I_{T} as the σ-algebras of θ, S or T invariant sets, and we take $X \in$ $\mathcal{L}^{1}(\Omega, \mathcal{F}, \mathbb{P})$. Prove or refute the following statements
a) if S is measure-preserving, then θ is measure-preserving;
b) if T is measure-preserving, then θ is measure-preserving;
c) if S is mixing, then θ is mixing;
d) if θ is measure-preserving and T is mixing, then θ is mixing;
e) if S is ergodic, then θ is ergodic;
f) if θ is measure-preserving and T is ergodic, then θ is ergodic;
g) if T is measure-preserving, then \mathbb{P}-a.s.

$$
\frac{1}{n} \sum_{k=0}^{n-1} X \circ \theta^{k} \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{p} \sum_{k=0}^{p-1} \mathbb{E}\left[X \circ \theta^{k} \mid \mathcal{I}_{T}\right] ;
$$

h) if S is ergodic, then \mathbb{P}-a.s.

$$
\mathbb{E}[X]=\frac{1}{p} \sum_{k=0}^{p-1} \mathbb{E}\left[X \circ S^{k} \mid \mathcal{I}_{\theta}\right]
$$

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!

