## Universität zu Köln

SS 2019

Institut für Mathematik Dozent: Prof. Dr. A. Drewitz

Assistenten: A. Prévost, L. Schmitz

Abgabe: Bis 27.06., 18 Uhr, in den Kästen in Raum 301 des Mathematischen Institutes

## 11. Übung Wahrscheinlichkeitstheorie I

(Borel-Cantelli Lemmas, Unabhängigkeit, terminale  $\sigma$ -Algebra)



Blatt 10: Korrigierte Aufgabe: 10.1

Blatt 11: Vorzurechnende Aufgabe: 11.2

Aufgabe 11.1 (10 Punkte)

Es seien X, Y zwei reelle Zufallsvariablen. Wir schreiben  $\varphi_{(X,Y)}$  für die charakteristische Funktion der  $\mathbb{R}^2$ -wertigen Zufallsvariablen (X,Y).

a) Es seien f und g zwei  $\mathcal{B}(\mathbb{R}) - \mathcal{B}(\mathbb{C})$ -messbare Funktionen, sodass f(X) und g(Y)  $\mathbb{P}$ integrierbar sind. Zeigen Sie, dass wenn X und Y unabhängig sind, dann gilt:

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)].$$

(2 Punkte)

- b) Zeigen Sie, dass X und Y genau dann unabhängig sind, wenn  $\varphi_{(X,Y)}(t,s) = \varphi_X(t)\varphi_Y(s)$  für alle  $t,s\in\mathbb{R}$  gilt. (2 Punkte)
- c) Es sei  $Z = (Z_1, \ldots, Z_d) : (\Omega, \mathcal{F}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$  eine Zufallsvariable, sodass  $C < \infty$  existiert mit  $|Z_j| \leq C$  für alle  $j \in \{1, \ldots, d\}$ . Zeigen Sie für alle  $(t_1, \ldots, t_d) \in \mathbb{R}^d$ :

$$\varphi_Z(t_1,\ldots,t_d) = \sum_{k_1,\ldots,k_d \in \mathbb{N}_0} \frac{(it_1)^{k_1} \times \cdots \times (it_d)^{k_d} \mathbb{E}[Z_1^{k_1} \times \cdots \times Z_d^{k_d}]}{\prod_{j=1}^d k_j!}.$$

(2 Punkte)

d) Wir nehmen an, dass  $C < \infty$  existiert, sodass  $|X| \leq C$  und  $|Y| \leq C$ . Zeigen Sie, dass X und Y genau dann unabhängig sind, wenn für alle  $k, p \in \mathbb{N}$  gilt:

$$\mathbb{E}[X^k Y^p] = \mathbb{E}[X^k] \mathbb{E}[Y^p].$$

(2 Punkte)

e) Es sei nun X eine Uni([-1,1])-verteilte Zufallsvariable und Y=|X|. Zeigen Sie, dass  $\mathbb{E}[XY]=\mathbb{E}[X]\mathbb{E}[Y]$ , aber X und Y nicht unabhängig sind. (2 Punkte)

Aufgabe 11.2 (10 Punkte)

Es sei  $(\Omega, \mathcal{F}, \mathbb{P})$  ein Wahrscheinlichkeitsraum und  $(A_n)_{n \in \mathbb{N}} \in \mathcal{F}^{\mathbb{N}}$  ein Folge von Ereignissen.

a) Es gelte

$$\mathbb{P}(A_n) \underset{n \to \infty}{\longrightarrow} 0$$
 und  $\sum_{n=1}^{\infty} \mathbb{P}(A_n^c \cap A_{n+1}) < \infty.$ 

Zeigen Sie, dass dann gilt:  $\mathbb{P}(\limsup_{n\to\infty} A_n) = 0$ .

(2 Punkte)

b) Es sei  $(X_n)_{n\in\mathbb{N}}$  eine Folge reeller Zufallsvariablen. Zeigen Sie:

$$\mathbb{P}\big(\liminf_{n\to\infty}X_n\geq a\big)=1\iff \mathbb{P}\big(\limsup_{n\to\infty}\big\{X_n\leq a-\varepsilon\big\}\big)=0\quad \text{für alle }\varepsilon>0,$$

$$\mathbb{P}\big(\limsup_{n\to\infty}X_n\leq a\big)=1\iff \mathbb{P}\big(\limsup_{n\to\infty}\big\{X_n\geq a+\varepsilon\big\}\big)=0\quad \text{für alle }\varepsilon>0.$$

(3 Punkte)

Es seien nun  $(X_n)_{n\in\mathbb{N}}$  unabhängig und identisch  $\mathrm{Exp}(1)$ -verteilt und  $Z_n:=\max\{X_1,\ldots,X_n\}$ .

- c) Zeigen Sie:  $\mathbb{P}(\limsup_{n\to\infty} X_n/\ln n \le 1) = 1.$  (1 Punkt)
- d) Zeigen Sie:  $\mathbb{P}\left(\limsup_{n\to\infty} Z_n/\ln n \le 1\right) = 1 = \mathbb{P}\left(\liminf_{n\to\infty} Z_n/\ln n \ge 1\right)$ . (3 Punkte)
- e) Zeigen Sie:  $Z_n/\ln n \to 1$  P-f.s.. (1 Punkt)

## Aufgabe 11.3 (10 Punkte)

Es sei  $(X_i)_{i\in\mathbb{N}}$  eine Folge reeller Zufallsvariablen.

- a) Zeigen Sie Beispiel 3.2.15, d.h. dass  $\sum_{i=1}^{n} X_i$  entweder mit Wahrscheinlichkeit 0 oder 1 konvergiert, wenn  $(X_i)_{i\in\mathbb{N}}$  eine unabhängige Familie ist. (2 Punkte)
- b) Zeigen Sie, dass  $X_n \xrightarrow[n \to \infty]{} 0$  mit Wahrscheinlichkeit 0, wenn  $(X_i)_{i \in \mathbb{N}}$  eine u.i.v. Familie mit  $\mathbb{P}(X_1 \neq 0) > 0$  ist. (1 Punkt)
- c) Es sei X eine nicht-negative Zufallsvariable. Zeigen Sie für alle  $\alpha > 0$ :

$$\sum_{n\in\mathbb{N}_0}\alpha n\mathbb{P}(\alpha n\leq X<\alpha(n+1))\leq \mathbb{E}[X]\leq \sum_{n\in\mathbb{N}_0}\alpha(n+1)\mathbb{P}(\alpha n\leq X<\alpha(n+1))$$

(2 Punkte)

d) Wir nehmen an, dass  $(X_i)_{i\in\mathbb{N}_0}$  eine u.i.v. Familie von nicht-negativen Zufallsvariablen ist. Zeigen Sie für alle  $\alpha > 0$ :

$$\frac{\alpha}{2} \sum_{n \in \mathbb{N}} \mathbb{P}(X_n \ge \alpha n) \le \mathbb{E}[X_1] \le \alpha \sum_{n \in \mathbb{N}_0} \mathbb{P}(X_n \ge \alpha n). \tag{3 Punkte}$$

e) Es sei  $(X_i)_{i\in\mathbb{N}}$  wie in d). Zeigen Sie:

$$\limsup_{n \to \infty} \frac{X_n}{n} = \begin{cases} 0 & \text{f.s.}, & \text{wenn } \mathbb{E}[X_1] < \infty, \\ \infty & \text{f.s.}, & \text{wenn } \mathbb{E}[X_1] = \infty. \end{cases}$$
 (2 Punkte)

Anmerkung: Sollten Sie für die Bearbeitung der Aufgaben mehrere Blätter benötigen, so sind diese zusammenzuheften. Bitte beschriften Sie Ihre Lösungen in der ersten Zeile in der folgenden Reihenfolge: Gruppenummer in Rot, Vorname, Name, Matrikelnummer, Blattnummer!