## Universität zu Köln

WS 2019/2020
Institut für Mathematik
Dozent: Dr. P. Gracar
Assistenten: A. Prévost, L. Schmitz
To hand in: 15.1. during the exercise class

## 12. Exercise sheet Probability II

(Ergodicity, subbaditive ergodic theorem)


Throughout the exercise sheet, for a measure-preserving transformation $\theta$, you can replace the definition of the $\sigma$-algebra of $\theta$-invariant sets $\mathcal{I}$ from Definition 4.0.7. by

$$
\mathcal{I}^{*}:=\left\{A \in \mathcal{F}: \mathbb{P}\left(A \triangle \theta^{-1}(A)\right)=0\right\},
$$

where $\Delta$ denotes the symmetric difference, and use any result from the lecture, up to $\mathbb{P}$-a.s. modifications, with $\mathcal{I}^{*}$ instead of $\mathcal{I}$ without justification.

## Exercise 12.1

Let $\theta$ be an ergodic transformation and let $A \in \mathcal{F}$. Define the $\mathcal{F}-2^{\mathbb{N} \cup\{\infty\}}$-measurable random variable

$$
\eta_{A}(\omega):=\inf \left\{n \geq 1: \theta^{n}(\omega) \in A\right\}
$$

where $\inf (\emptyset):=\infty$. Show that
a) $\left\{\eta_{A}=\infty\right\} \subset \theta^{-1}\left(\left\{\eta_{A}=\infty\right\}\right)$;
b) $\eta_{A}<\infty \mathbb{P}$-a.s. for all $A \in \mathcal{F}$ such that $\mathbb{P}(A)>0$;
c) for all $A \in \mathcal{F}$ and $n \in \mathbb{N}$, taking $A_{n}:=A \cap\left\{\eta_{A}=n\right\}$ and $B_{n}:=A^{c} \cap\left\{\eta_{A}=n\right\}$, we have

$$
\mathbb{P}\left(B_{n}\right)=\mathbb{P}\left(A_{n+1}\right)+\mathbb{P}\left(B_{n+1}\right)
$$

d) for all $A \in \mathcal{F}$ such that $\mathbb{P}(A)>0$ we have

$$
\mathbb{E}\left[\eta_{A} \mid A\right]=\frac{1}{\mathbb{P}(A)}
$$

## Exercise 12.2

Let $\left(Y_{n}\right)_{n \in \mathbb{N}_{0}} \subset \mathcal{L}^{1}$ be a sequence of integrable random variables and $\theta$ be a measure-preserving transformation such that for all $m, n \in \mathbb{N}_{0}$ with $0 \leq m \leq n$ we have

$$
Y_{n} \leq Y_{m}+Y_{n-m} \circ \theta^{m} \text { and } \inf _{n \in \mathbb{N}} \frac{\mathbb{E}\left[Y_{n}\right]}{n}>-\infty
$$

Show that
a) there exists a random variable $Y_{\infty}$ such that

$$
\frac{Y_{n}}{n} \underset{n \rightarrow \infty}{\longrightarrow} Y_{\infty} \quad \mathbb{P} \text {-a.s. and in } L^{1} \text { and } \mathbb{E}\left[Y_{\infty}\right]=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[Y_{n}\right]}{n} ;
$$

b) $Y_{\infty}$ is $\mathcal{I}^{*}-\mathcal{B}(\mathbb{R})$-measurable, and, if $\theta$ is ergodic, then $Y_{\infty}$ is constant $\mathbb{P}$-a.s.

## Exercise 12.3

Let us fix some $d \geq 2$, and for some $x \in \mathbb{Z}^{d}$ we denote by $x_{i}, i \in\{1, \ldots, d\}$, the $i$-th coordinate of $x$, by $e_{i}=(0, \ldots 0,1,0, \ldots, 0)$ the $i$-th coordinate vector, and we simply write $(i, 0)$ for the vector with first coordinate equal to $i$, and all other coordinates equal to 0 . Let $E=\{\{x, y\}$ : $x=y+e_{p}$ for some $\left.p \in\{1, \ldots, d\}\right\}$ be the set of edges of $\mathbb{Z}^{d},(\Omega, \mathcal{F})=\left([0, \infty)^{E}, \mathcal{B}([0, \infty))^{\otimes E}\right)$, and $X_{e}:(\Omega, \mathcal{F}) \rightarrow([0, \infty), \mathcal{B}([0, \infty))$ the projection on the $e$ coordinate, $e \in E$. We also define for all $i \in \mathbb{Z}$ the set of edges $E_{i}$ on the right and hitting the hyperplane $\left\{x_{1}=i\right\}$ by

$$
E_{i}=\left\{\{x, y\} \in E: x_{1}=i, y=x+e_{p} \text { for some } p \in\{1, \ldots, d\}\right\}
$$

and $\theta: \Omega \rightarrow \Omega$ the transformation such that $X_{e} \circ \theta=X_{e+e_{1}}$ for all $e \in E$, where we take $\{x, y\}+e_{1}=\left\{x+e_{1}, y+e_{1}\right\}$. Let $\mathbb{P}$ be a probability on $(\Omega, \mathcal{F})$, such that $X_{e} \in \mathcal{L}^{1}$ for all $e \in E$, and the sequence of columns $\left(X_{e}\right)_{e \in E_{i}}, i \in \mathbb{Z}$, is stationary. For all $n \in \mathbb{N}$, we define

$$
Y_{n}=\inf _{\pi:(0,0) \rightarrow(n, 0)} \sum_{e \in \pi} X_{e}
$$

where the infimum is taken over all finite and connected path $\pi$ of edges starting in $(0,0)$ and ending in $(n, 0)$. In other words, $Y_{n}$ is the length of the shortest path between $(0,0)$ and $(n, 0)$, when each edge $e$ has length $X_{e}$.
a) Show that $\theta$ is measure-preserving and that for all $0 \leq m \leq n$,

$$
Y_{n-m} \circ \theta^{m}=\inf _{\pi:(m, 0) \rightarrow(n, 0)} \sum_{e \in \pi} X_{e}
$$

b) Show that there exists a random variable $Y_{\infty}$ such that

$$
\frac{Y_{n}}{n} \underset{n \rightarrow \infty}{\longrightarrow} Y_{\infty} \quad \mathbb{P} \text {-a.s. and in } L^{1}
$$

From now on, we assume that the sequence $\left(X_{e}\right)_{e \in E_{i}}, i \in \mathbb{Z}$, is i.i.d, and we say that an event $A \in \mathcal{F}$ is finite-dimensional if there exists a finite set $K \subset \mathbb{Z}^{d}$ such that $A \in \sigma\left(X_{e}, e \in K\right)$.
c) Show that for all $A \in \mathcal{F}$ and $n \in \mathbb{N}$, there exists a finite-dimensional event $A_{n} \in \mathcal{F}$ such that $\mathbb{P}\left(A \Delta A_{n}\right) \leq \frac{1}{n}$.
Hint: You can use without a proof that for all events $A_{i}, B_{i} \in \mathcal{F}, i \in \mathbb{N}$,

$$
\left(\bigcup_{i \in \mathbb{N}} A_{i}\right) \Delta\left(\bigcup_{i \in \mathbb{N}} B_{i}\right) \subset \bigcup_{i \in \mathbb{N}}\left(A_{i} \Delta B_{i}\right) .
$$

d) Show that for any event $A \in \mathcal{F}$ with $\theta^{-1}(A)=A, A_{n}$ as in c) and $p \in \mathbb{N}$

$$
\left|\mathbb{P}\left(A_{n} \cap \theta^{-p}\left(A_{n}\right)\right)-\mathbb{P}(A)\right| \leq \frac{2}{n}
$$

e) Show that $\theta$ is ergodic, and so

$$
Y_{\infty}=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[Y_{n}\right]}{n} \mathbb{P} \text {-a.s.. }
$$

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!

