Universität zu Köln

Institut für Mathematik Dozent: Dr. P. Gracar Assistenten: A. Prévost, L. Schmitz

To hand in: 15.1. during the exercise class

12. Exercise sheet Probability II

(Ergodicity, subbaditive ergodic theorem)

I

Throughout the exercise sheet, for a measure-preserving transformation θ , you can replace the definition of the σ -algebra of θ -invariant sets \mathcal{I} from Definition 4.0.7. by

$$\mathcal{I}^* := \{ A \in \mathcal{F} : \mathbb{P}(A \triangle \theta^{-1}(A)) = 0 \},\$$

where Δ denotes the symmetric difference, and use any result from the lecture, up to \mathbb{P} -a.s. modifications, with \mathcal{I}^* instead of \mathcal{I} without justification.

Exercise 12.1

Let θ be an ergodic transformation and let $A \in \mathcal{F}$. Define the $\mathcal{F} - 2^{\mathbb{N} \cup \{\infty\}}$ -measurable random variable

$$\eta_A(\omega) := \inf \left\{ n \ge 1 : \ \theta^n(\omega) \in A \right\},\$$

where $\inf(\emptyset) := \infty$. Show that

- a) $\{\eta_A = \infty\} \subset \theta^{-1} (\{\eta_A = \infty\});$
- b) $\eta_A < \infty$ P-a.s. for all $A \in \mathcal{F}$ such that $\mathbb{P}(A) > 0$;
- c) for all $A \in \mathcal{F}$ and $n \in \mathbb{N}$, taking $A_n := A \cap \{\eta_A = n\}$ and $B_n := A^c \cap \{\eta_A = n\}$, we have

$$\mathbb{P}(B_n) = \mathbb{P}(A_{n+1}) + \mathbb{P}(B_{n+1}).$$

d) for all $A \in \mathcal{F}$ such that $\mathbb{P}(A) > 0$ we have

$$\mathbb{E}[\eta_A \,|\, A] = \frac{1}{\mathbb{P}(A)}.$$

Exercise 12.2

Let $(Y_n)_{n \in \mathbb{N}_0} \subset \mathcal{L}^1$ be a sequence of integrable random variables and θ be a measure-preserving transformation such that for all $m, n \in \mathbb{N}_0$ with $0 \le m \le n$ we have

$$Y_n \le Y_m + Y_{n-m} \circ \theta^m$$
 and $\inf_{n \in \mathbb{N}} \frac{\mathbb{E}[Y_n]}{n} > -\infty.$

Show that

a) there exists a random variable Y_{∞} such that

$$\frac{Y_n}{n} \underset{n \to \infty}{\longrightarrow} Y_{\infty} \quad \mathbb{P}\text{-a.s. and in } L^1 \text{ and } \mathbb{E}[Y_{\infty}] = \lim_{n \to \infty} \frac{\mathbb{E}[Y_n]}{n};$$

b) Y_{∞} is $\mathcal{I}^* - \mathcal{B}(\mathbb{R})$ -measurable, and, if θ is ergodic, then Y_{∞} is constant \mathbb{P} -a.s.

(2 editing points)

(2 editing points)

Exercise 12.3

(4 editing points)

Let us fix some $d \ge 2$, and for some $x \in \mathbb{Z}^d$ we denote by $x_i, i \in \{1, \ldots, d\}$, the *i*-th coordinate of x, by $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ the *i*-th coordinate vector, and we simply write (i, 0) for the vector with first coordinate equal to i, and all other coordinates equal to 0. Let $E = \{\{x, y\} :$ $x = y + e_p$ for some $p \in \{1, \ldots, d\}$ be the set of edges of \mathbb{Z}^d , $(\Omega, \mathcal{F}) = ([0, \infty)^E, \mathcal{B}([0, \infty))^{\otimes E})$, and $X_e : (\Omega, \mathcal{F}) \to ([0, \infty), \mathcal{B}([0, \infty))$ the projection on the *e* coordinate, $e \in E$. We also define for all $i \in \mathbb{Z}$ the set of edges E_i on the right and hitting the hyperplane $\{x_1 = i\}$ by

$$E_i = \{\{x, y\} \in E : x_1 = i, y = x + e_p \text{ for some } p \in \{1, \dots, d\}\},\$$

and $\theta : \Omega \to \Omega$ the transformation such that $X_e \circ \theta = X_{e+e_1}$ for all $e \in E$, where we take $\{x, y\} + e_1 = \{x + e_1, y + e_1\}$. Let \mathbb{P} be a probability on (Ω, \mathcal{F}) , such that $X_e \in \mathcal{L}^1$ for all $e \in E$, and the sequence of columns $(X_e)_{e \in E_i}, i \in \mathbb{Z}$, is stationary. For all $n \in \mathbb{N}$, we define

$$Y_n = \inf_{\pi:(0,0)\to(n,0)} \sum_{e\in\pi} X_e,$$

where the infimum is taken over all finite and connected path π of edges starting in (0,0) and ending in (n,0). In other words, Y_n is the length of the shortest path between (0,0) and (n,0), when each edge e has length X_e .

a) Show that θ is measure-preserving and that for all $0 \le m \le n$,

$$Y_{n-m} \circ \theta^m = \inf_{\pi:(m,0)\to(n,0)} \sum_{e\in\pi} X_e.$$

b) Show that there exists a random variable Y_{∞} such that

$$\frac{Y_n}{n} \xrightarrow[n \to \infty]{} Y_{\infty} \quad \mathbb{P}\text{-a.s. and in } L^1.$$

From now on, we assume that the sequence $(X_e)_{e \in E_i}$, $i \in \mathbb{Z}$, is i.i.d, and we say that an event $A \in \mathcal{F}$ is finite-dimensional if there exists a finite set $K \subset \mathbb{Z}^d$ such that $A \in \sigma(X_e, e \in K)$.

c) Show that for all $A \in \mathcal{F}$ and $n \in \mathbb{N}$, there exists a finite-dimensional event $A_n \in \mathcal{F}$ such that $\mathbb{P}(A \Delta A_n) \leq \frac{1}{n}$.

Hint: You can use without a proof that for all events $A_i, B_i \in \mathcal{F}, i \in \mathbb{N}$,

$$\left(\bigcup_{i\in\mathbb{N}}A_i\right)\Delta\left(\bigcup_{i\in\mathbb{N}}B_i\right)\subset\bigcup_{i\in\mathbb{N}}(A_i\Delta B_i)$$

d) Show that for any event $A \in \mathcal{F}$ with $\theta^{-1}(A) = A$, A_n as in c) and $p \in \mathbb{N}$

$$\left|\mathbb{P}(A_n \cap \theta^{-p}(A_n)) - \mathbb{P}(A)\right| \le \frac{2}{n}.$$

e) Show that θ is ergodic, and so

$$Y_{\infty} = \lim_{n \to \infty} \frac{\mathbb{E}[Y_n]}{n} \mathbb{P}$$
-a.s..

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!