Universität zu Köln

WS 2019/2020
Institut für Mathematik
Dozent: Dr. P. Gracar
Assistenten: A. Prévost, L. Schmitz
To hand in: 22.1. during the exercise class

13. Exercise sheet Probability II

(Gaussian vectors, Donsker's theorem)
(Last sheet)

Exercise 13.1

(2 editing points)
Recall that for $d \in \mathbb{N}$ the random variable $\left(X_{k}\right)_{k \in\{1, \ldots, d\}}$ is a d-dimensional Gaussian random vector (GRV) if and only if there exist $\boldsymbol{\mu} \in \mathbb{R}^{d}$ and a positive definite matrix $\Sigma \in \mathbb{R}^{d \times d}$ such that for all $\boldsymbol{a}=\left(a_{1}, \ldots, a_{d}\right)^{\top} \in \mathbb{R}^{d}$ we have $\mathbb{E}\left[e^{i \sum_{i=1}^{d} a_{i} X_{i}}\right]=e^{i a^{\top} \mu-\frac{1}{2} a \top \Sigma a}$.
a) Show that $\left(X_{k}\right)_{k \in\{1, \ldots, d\}}$ is a d-dimensional GRV if and only if for all $\left(a_{1}, \ldots, a_{d}\right)^{\top} \in \mathbb{R}^{d} \backslash\{0\}$ the sum $\sum_{k=1}^{d} a_{k} X_{k}$ is a (non-zero) Gaussian random variable (or 1-dimensional GRV).
b) Let $\left(Y_{k}\right)_{k \in\{1, \ldots, d\}}$ and $\left(Z_{k}\right)_{k \in\{1, \ldots, d\}}$ be independent d-dimensional GRV and define $\left(X_{k}\right)_{k \in\{1, \ldots, 2 d\}}$ by

$$
\begin{aligned}
X_{2 k-1} & :=\frac{1}{2} Y_{k}+Z_{k}, k \in\{1, \ldots, d\}, \\
X_{2 k} & :=\frac{1}{2} Y_{k}-Z_{k}, k \in\{1, \ldots, d\} .
\end{aligned}
$$

Show that $\left(X_{k}\right)_{k \in\{1, \ldots, 2 d\}}$ is a $2 d$-dimensional GRV.
c) As in (5.1.3) in the script we recall $D_{n}:=\left\{k 2^{-n}: k \in\left\{0, \ldots, 2^{n}\right\}\right\}, n \in \mathbb{N}_{0}, D:=\bigcup_{n} D_{n}$, $B_{0}:=0, B_{1}:=X_{1}$ and for all $n \in \mathbb{N}$ and $t \in D_{n} \backslash D_{n-1}$

$$
B_{t}:=\frac{B_{t-2^{-n}}+B_{t+2^{-n}}}{2}+2^{-\frac{n+1}{2}} \cdot X_{t}=\frac{B_{t+2^{-n}}-B_{t-2^{-n}}}{2}+B_{t-2^{-n}}+2^{-\frac{n+1}{2}} \cdot X_{t},
$$

where $\left(X_{t}\right)_{t \in D}$ is an i.i.d. family of standard Gaussian random variables, $X_{t} \sim \mathcal{N}(0,1)$, $t \in D$. Show that for all $n \in \mathbb{N}$ the vector of the increments $\left(B_{t+2^{-n}}-B_{t}\right)_{t \in D_{n} \backslash\{1\}}$ is a GRV.

Exercise 13.2

Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be an i.i.d. family of centered random variables with variance $\sigma^{2} \in(0, \infty)$, let $S_{n}=\sum_{i=1}^{n} X_{i}$ be the associated random walk, and $\left(B_{t}\right)_{t \geq 0}$ be a 1-dimensional Brownian motion.
a) Show that for all $0 \leq s<t$

$$
\frac{S_{\lfloor n t\rfloor-\lfloor n s\rfloor}}{\sigma \sqrt{n}} \Longrightarrow B_{t}-B_{s}
$$

b) Let $p \in \mathbb{N}$, and, for each $n \in \mathbb{N} \cup\{\infty\},\left(X_{1}^{(n)}, \ldots, X_{p}^{(n)}\right)$ be a vector of random variables, such that $X_{i}^{(n)}-X_{i-1}^{(n)}, i \in\{1, \ldots, p\}$, are independent, where $X_{0}^{(n)}=0$. Show that

$$
\begin{gathered}
\left(X_{1}^{(n)}, \ldots, X_{p}^{(n)}\right) \Longrightarrow\left(X_{1}^{(\infty)}, \ldots, X_{p}^{(\infty)}\right) \\
\text { if and only if } \\
X_{i}^{(n)}-X_{i-1}^{(n)} \Longrightarrow X_{i}^{(\infty)}-X_{i-1}^{(\infty)} \text { for all } i \in\{1, \ldots, p\} .
\end{gathered}
$$

c) Show that for all $p \in \mathbb{N}$ and $t_{1}<\cdots<t_{p}$

$$
\left(\frac{S_{\left\lfloor n t_{1}\right\rfloor}}{\sigma \sqrt{n}}, \ldots, \frac{S_{\left\lfloor n t_{p}\right\rfloor}}{\sigma \sqrt{n}}\right) \Longrightarrow\left(B_{t_{1}}, \ldots, B_{t_{p}}\right)
$$

Exercise 13.3

(4 editing points)

Let $\left(B_{t}\right)_{t \geq 0}$ be a 1-dimensional Brownian motion and for each $p \in \mathbb{N}$ let us define $\tau_{0}^{(p)}=0$ and $S_{0}^{(p)}=0$, and, recursively on $n \in \mathbb{N}$,

$$
\tau_{n}^{(p)}=\inf \left\{t>\tau_{n-1}^{(p)}: B_{t} \in \frac{1}{p} \mathbb{Z} \backslash\left\{S_{n-1}^{(p)}\right\}\right\} \text { and } S_{n}^{(p)}=B_{\tau_{n}^{(p)}}
$$

the print of $\left(B_{t}\right)_{t \geq 0}$ on $\frac{1}{p} \mathbb{Z}$, where $\frac{1}{p} \mathbb{Z}=\left\{\frac{k}{p}, k \in \mathbb{Z}\right\}$. You can use without a proof the strong Markov property for Brownian motion: for all $p \in \mathbb{N}$ and $n \in \mathbb{N}$, if $\mathbb{P}\left(\tau_{n}^{(p)}<\infty\right)=1$, then the process $\left(B_{t}^{(n, p)}\right)_{t \geq 0}:=\left(B_{t+\tau_{n}^{(p)}}-S_{n}^{(p)}\right)_{t \geq 0}$ is a Brownian motion independent of $\left(\tau_{1}^{(p)}, \ldots, \tau_{n}^{(p)}\right)$ and $\left(S_{1}^{(p)}, \ldots, S_{n}^{(p)}\right)$.
a) For each $p \in \mathbb{N}$, show that $\mathbb{P}\left(\tau_{n}^{(p)}<\infty\right)=1$ for all $n \in \mathbb{N}$, and that $\left(\tilde{S}_{n}^{(p)}\right)_{n \in \mathbb{N}}:=\left(p S_{n}^{(p)}\right)_{n \in \mathbb{N}}$ is a simple random walk on \mathbb{Z}.
b) Show that \mathbb{P}-a.s, for all $a \in \mathbb{R}$, there exists $t>0$ such that $B_{t}=a$.
c) Show that for all $p \in \mathbb{N}, p^{2}\left(\tau_{i}^{(p)}-\tau_{i-1}^{(p)}\right), i \in \mathbb{N}$, is a sequence of i.i.d. random variable with the same law as $\tau_{1}^{(1)}$.
d) Show that \mathbb{P}-a.s.

$$
\frac{\tilde{S}_{\left\lfloor p^{2} t\right\rfloor}^{(p)}}{p} \underset{p \rightarrow \infty}{\longrightarrow} B_{t} \text { for all } t \geq 0
$$

Hint: you can use without a proof that $\mathbb{E}\left[\tau_{1}^{(1)}\right]=1$.

Remark: Please write your name, Matrikel-number, group number and exercise number in the first row! If you need more than one paper, please staple all your sheets together!

