## Universität zu Köln

Institut für Mathematik
Dozent: Dr. P. Gracar
Assistenten: A. Prévost, L. Schmitz

## Solution for <br> 0. Exercise sheet Probability II

(To work on during the second week)

## Exercise 0.1

a) Compute the characteristic function of a random variable $X$ with distribution $\operatorname{Bin}(n, p)$, for $n \in \mathbb{N}$ and $p \in(0,1)$.
b) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of independent random variables, such that the law of $X_{n}$ is $\operatorname{Uni}(1, \ldots, n)$ for all $n \in \mathbb{N}$. What is the probability that $X_{n}=1$ infinitely often?
c) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of random variables, such that the law of $X_{n}$ is $\operatorname{Geo}\left(\frac{\lambda}{n}\right)$ for all $n \in \mathbb{N}, \lambda>0$. Show that

$$
\frac{X_{n}}{n} \quad \Longrightarrow \quad X \sim \operatorname{Exp}(\lambda)
$$

d) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of random variables, so that the density of $X_{n}$ is $f_{n}(x)=$ $2 x n^{2} e^{-x^{2} n^{2}} \mathbb{1}_{(0, \infty)}(x)$ for all $n \in \mathbb{N}, \lambda>0$. Show that

$$
X_{n} \xrightarrow{\mathbb{P}} 0 .
$$

Lösung.
a) We have

$$
\begin{aligned}
\varphi_{X}(t) & =\mathbb{E}[\exp (i X t)]=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \exp (i k t) \\
& =\sum_{k=0}^{n}\binom{n}{k}(\exp (i t) p)^{k}(1-p)^{n-k} \\
& =\left(p e^{i t}+1-p\right)^{n} .
\end{aligned}
$$

b) For all $n \in \mathbb{N}$ we have

$$
\mathbb{P}\left(X_{n}=1\right)=\operatorname{Uni}_{\{1, \ldots, n\}}(\{1\})=\frac{1}{n}
$$

and thus

$$
\sum_{n \in \mathbb{N}} \mathbb{P}\left(X_{n}=1\right)=\sum_{n \in \mathbb{N}} \frac{1}{n}=\infty
$$

Since $\left(X_{n}\right)_{n \in \mathbb{N}}$ is an independent family, we have by Borel-Cantelli lemma

$$
\mathbb{P}\left(X_{n}=1 \text { infinitely often }\right)=\mathbb{P}\left(\limsup _{n \rightarrow \infty}\left\{X_{n}=1\right\}\right)=1
$$

c) We have for all $x>0$

$$
\begin{aligned}
\mathbb{P}\left(\frac{1}{n} X_{n} \leq x\right) & =1-\mathbb{P}\left(X_{n}>n x\right) \\
& =1-\mathbb{P}\left(X_{n}>\lfloor n x\rfloor\right) \\
& =1-\left(1-\frac{\lambda}{n}\right)^{\lfloor n x\rfloor}=1-\left(\left(1-\frac{\lambda}{n}\right)^{n}\right)^{\frac{\lfloor n x\rfloor}{n}} \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1-\left(e^{-\lambda}\right)^{x}=1-e^{-x \lambda}
\end{aligned}
$$

since $\frac{x n-1}{n}=x-\frac{1}{n}<\frac{\lfloor n x\rfloor}{n} \leq x$. For $x \leq 0$ we have $\mathbb{P}\left(\frac{1}{n} X_{n} \leq x\right)=0$. Thus the claim follows.
d) Let $\varepsilon>0$, we have

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{n}-0\right| \geq \varepsilon\right) & =1-\mathbb{P}\left(X_{n} \in[0, \varepsilon)\right)=1-\int_{0}^{\varepsilon} 2 t n^{2} e^{-t^{2} n^{2}} \mathrm{~d} t \\
& =1+\left[e^{-t^{2} n^{2}}\right]_{0}^{\varepsilon}=e^{-\varepsilon^{2} n^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

## Exercise 0.2

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ and $X$ be non-negative random variables in $\mathcal{L}^{p}(\Omega, \mathcal{F}, \mathbb{P})$, such that $X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X$ $\mathbb{P}$-a.s. In the first two questions, we assume that $p \in \mathbb{N}$.
a) Show that if $\left\|X_{n}-X\right\|_{p} \underset{n \rightarrow \infty}{\longrightarrow} 0$, then $\left\|X_{n}\right\|_{p} \underset{n \rightarrow \infty}{\longrightarrow}\|X\|_{p}$.
b) Show that

$$
\int\left(\left(X_{n}-X\right)^{p}\right)^{-} \mathrm{d} \mathbb{P} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

c) Show that, if $p=1$,

$$
\left\|X_{n}\right\|_{1} \underset{n \rightarrow \infty}{\longrightarrow}\|X\|_{1} \quad \Longleftrightarrow \quad\left\|X_{n}-X\right\|_{1} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

d) If $p=\infty$, does the following equivalence always hold:

$$
\left\|X_{n}\right\|_{\infty}^{\longrightarrow}\|X\|_{\infty} \quad \Longleftrightarrow \quad\left\|X_{n}-X\right\|_{\infty} \underset{n \rightarrow \infty}{\longrightarrow} 0 ?
$$

## Lösung.

a) By Minkowski Inequality we have

$$
\left\|X_{n}\right\|_{p}=\left\|X_{n}-X+X\right\|_{p} \leq\left\|X_{n}-X\right\|_{p}+\|X\|_{p}
$$

Similarly we have $\|X\|_{p} \leq\left\|X_{n}-X\right\|_{p}+\left\|X_{n}\right\|_{p}$, and thus $\left|\left\|X_{n}\right\|_{p}-\|X\|_{p}\right| \leq\left\|X_{n}-X\right\|_{p}$, and we can conclude.
b) Since $\left(\left(X_{n}-X\right)^{p}\right)^{-} \leq\left|X_{n}-X\right|^{p} \mathbb{1}_{X>X_{n}} \leq X^{p}$ and $X \in \mathcal{L}^{p}$, we have have by the dominated convergence theorem

$$
\int\left(\left(X_{n}-X\right)^{p}\right)^{-} \mathrm{d} \mathbb{P} \rightarrow 0
$$

c) We have

$$
\begin{aligned}
\int\left(X_{n}-X\right)^{+} \mathrm{d} \mathbb{P} & =\int_{X_{n} \geq X}\left(X_{n}-X\right) \mathrm{d} \mathbb{P} \\
& =\int X_{n} \mathrm{~d} \mathbb{P}-\int X \mathrm{~d} \mathbb{P}-\int_{X_{n}<X}\left(X_{n}-X\right) \mathrm{d} \mathbb{P} .
\end{aligned}
$$

But

$$
\left|\int_{X_{n}<X}\left(X_{n}-X\right) d \mathbb{P}\right| \leq\left|\int\left(X_{n}-X\right)^{-} d \mathbb{P}\right| \rightarrow 0
$$

and thus $\lim _{n \rightarrow \infty} \int X_{n} \mathrm{~d} \mathbb{P}=\int X \mathrm{~d} \mathbb{P}$ and b) give

$$
\int\left(X_{n}-X\right)^{+} \mathrm{d} \mathbb{P} \rightarrow 0
$$

Combining this with a ) and b ), we can conclude.
d) No: By definition we have $\|X\|_{\infty}=\inf \{M \in \mathbb{R}: \mathbb{P}(X \geq M)=0\}$. We take $\Omega=\mathbb{N}$, $\mathcal{F}=2^{\mathbb{N}}, \mathbb{P}=\operatorname{Poi}(1), X_{n}=\mathbb{1}_{\{1, n\}}$ and $X=\mathbb{1}_{\{1\}}$. Then we have $X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X \mathbb{P}$-a.s. But $\mathbb{P}(X \geq M)=0$ for all $M>1$ and $\mathbb{P}(X \geq 1)=\operatorname{Poi}(1)(\{1\})>0$, so $\|X\|_{\infty}=1$. Analogously, $\left\|X_{n}\right\|_{\infty}=\|X\|_{\infty}=1$. But we have $\left\|X_{n}-X\right\|_{\infty}=\left\|\mathbb{1}_{n}\right\|_{\infty}=1$.

## Exercise 0.3

Let $X:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{E})$ and $Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be two random variables. The goal of this exercise is to show that:
$Y$ is $\sigma(X)$-measurable $\Leftrightarrow \exists$ a $\mathcal{E}-\mathcal{B}(\mathbb{R})$-measurable function $f: E \rightarrow \mathbb{R}$ such that $Y=f \circ X$.
a) Show $\Leftarrow$.
b) Show $\Rightarrow$ when $Y$ is a simple non-negative function.
c) Show $\Rightarrow$ when $Y$ is non-negative.
d) Show $\Rightarrow$.

## Lösung.

a) We have for all $B \in \mathcal{B}(\mathbb{R})$

$$
Y^{-1}(B)=(f \circ X)^{-1}(B)=X^{-1}(\underbrace{f^{-1}(B)}_{\in \mathcal{E}}) \in \sigma(X),
$$

and thus $Y$ is $\sigma(X)$-measurable.
b) Let us assume that $Y=\sum_{i=1} a_{i} \mathbb{1}_{A_{i}}$, where $A_{i} \in \sigma(X)$, and let $B_{i} \in \mathcal{E}$ be such that $X^{-1}\left(B_{i}\right)=A_{i}$. Defining

$$
f=\sum_{i=1}^{n} a_{i} \mathbb{1}_{B_{i}}
$$

we have that $f$ is $\mathcal{E}-\mathcal{B}(\mathbb{R})$-measurable and

$$
f \circ X=\sum_{i=1}^{n} a_{i} \mathbb{1}_{X \in B_{i}}=\sum_{i=1}^{n} a_{i} \mathbb{1}_{A_{i}}=Y
$$

c) We first assume that $X$ is non-negative. By the lecture "Wahrscheinlichkeitstheory I", there exists a sequence of $\sigma(X)-\mathcal{B}(\mathbb{R})$-measurable simple functions $\left(Y_{n}\right)_{n \in \mathbb{N}}$, increasing to $Y$, that we can explicitly write as

$$
Y_{n}:=\sum_{k=0}^{n 2^{n}-1} \frac{k}{2^{n}} 1_{\left\{\frac{k}{2^{n}} \leq Y<\frac{k+1}{2^{n}}\right\}}+n 1_{Y \geq n}
$$

By b), there exists for all $n \in \mathbb{N}$ a $\mathcal{E}-\mathcal{B}(\mathbb{R})$-measurable function $f_{n}$ such that $Y_{n}=f_{n} \circ X$. Let us define

$$
f(x):=\mathbb{1}_{\lim \sup _{n \rightarrow \infty}} f_{n}(x)<\infty \limsup _{n \rightarrow \infty} f_{n}(x)
$$

Since the limsup of measurable function is measurable, we clearly have that $f$ is $\mathcal{E}$ -$\mathcal{B}(\mathbb{R})$-measurable. Since $f_{n} \circ X=Y_{n} \underset{n \rightarrow \infty}{\longrightarrow} Y$, we also have $Y=f(X)$.
d) We write $Y=Y^{+}-Y^{-}$, then there exists two $\sigma(X)-\mathcal{B}(R)$-measurable functions $f^{+}$ and $f^{-}$such that

$$
Y^{+}=f^{+} \circ X \quad \text { und } \quad Y^{-}=f^{-} \circ X
$$

Taking $f=f^{+}-f^{-}$, we clear have that $f$ is $\sigma(X)-\mathcal{B}(R)$-measurable and that $Y=f \circ X$.

