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1 Preliminaries

Let be an open connected set in R with boundary = ¯ (R \ ) Let be the second order

di erential operator:

=
X
=1

( ) +
X
=1

( ) + ( ) (1)

with ( ) and ( ) Here we have used = and = Without

loss of generality one assumes =

Definition 1 We will fix the following notions.

• The operator is called elliptic on if for every there is ( ) 0 such that

X
=1

( ) ( ) | |2 for all R

• The operator is called strictly elliptic on if there is 0 such thatX
=1

( ) | |2 for all R and

• The operator is called uniformly elliptic on if there are 0 such that

| |2
X
=1

( ) | |2 for all R and
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Remark 2 These definitions are not uniform throughout the literature. However, if the are

bounded on ¯ then strictly elliptic implies uniformly elliptic and most references then agree.

Remark 3 The assumption ( ) is to weak to expect even solutions of =
¡
¯
¢

to satisfy 2 ( ) and for that reason one usually assumes to be more regular. The maximum

principle however does not need to be continuous.

Some notations that we will use are as follows. For 0 and R we will write an open

ball by

( ) = { R ; | | }
For a function we will use + which are defined by

+ ( ) = max (0 ( ))

( ) = max (0 ( ))

2 Classical Maximum Principles

Lemma 4 Suppose that is elliptic and that 0 If 2 ( ) and 0 in then cannot

attain a nonnegative maximum in

Proof. Suppose that has a nonnegative maximum in 0 ThenX
=1

( ) ( 0) + ( ) ( 0) 0

Moreover, we may diagonalize the symmetric matrix by T ( ( 0))T = D with T the transpose

of T Notice that ( 0) 0 One finds with = T and ( ) = ( ) thatX
=1

( 0) ( 0) =
X
=1

( 0)
X
=1

T
X
=1

T

µ ¶
(T 0)

=
X
=1

2

2 (T 0)

Since has a maximum at T 0 we have
2

2 (T 0) 0 for all implying

X
=1

2

2 (T 0) 0

Hence ( 0) 0 a contradiction.

Theorem 5 (Weak Maximum Principle) Suppose that is bounded and that is strictly

elliptic with 0 If 2 ( )
¡
¯
¢
and 0 in then a nonnegative maximum is

attained at the boundary.

Proof. Suppose that {| 1| } Consider ( ) = ( ) + 1 with 0 Then

= +
¡

2
11 ( ) + 1 ( ) + ( )

¢
1¡

2 k 1k k k ¢
1

One chooses large enough to find 0 By the previous lemma cannot have a nonnegative

maximum in Hence

sup sup sup + = sup + sup + +
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if {| | } The result follows for 0

The proof of this maximum principle uses local arguments. If we skip the assumption that

is bounded we obtain:

Corollary 6 Suppose that is strictly elliptic with 0 If 2 ( )
¡
¯
¢
and 0 in

then cannot attain a strict1 nonnegative maximum in

Before stating the strong maximum principle by E. Hopf (1927) for general with coe cients

which are solely uniformly bounded, let us recall from Protter and Weinberger’s book ([5, page

156]) some historical dates.

1839, C.F. Gauss and S. Earnshaw (seperately), M.P. for (sub)harmonic functions.

1892, A. Paraf, M.P. for with 0 in 2 dimensions.

1894, T. Moutard, M.P. for with 0 in higher dimensions.

1905, E. Picard, M.P. for with 0 in 2 dimensions.

1927, M. Picone, Generalized M.P. for

1927, E. Hopf, M.P. for assuming just uniformly bounded coe cients.

1952, E. Hopf and O.A. Oleinik (seperately), M.P. including boundary point estimate.

Theorem 7 (Strong Maximum Principle) Suppose that is strictly elliptic and that 0
If 2 ( )

¡
¯
¢
and 0 in then either sup or does not attain a nonnegative

maximum in

Proof. Let = sup and set = { ; ( ) = } We are done if { } Arguing

by contradiction we assume that and \ are non-empty.

The argument proceeds in three steps. First one fixes an appropriate open ball and in the next
step an auxiliary function is defined that is positive on and only on this ball. For the sum of

and this auxiliary function one obtains a contradiction on a second ball by the weak maximum

principle.

The first ball ( ) needs to be away from and to ‘touch’ in exactly one point. In other

words, ( ) having the following properties su ces:

1. ( ) \ ;

2. 2 ( ) ;

3. ( ) contains a single point.

1We say that the function has a strict maximum at if there is a ball ( ) such that ( ) ( ) for all
( ) \ { }
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I. Construction of Br (x
¤). Since u is continuous n§ is open and hence contains a open

ball. Taking the center x1 of this ball and a point x2 2 § there is an arc in connecting x1 with

x2: We continue in shorthand.

- Denote by x3 the …rst point on this arc in §:
- Set s = d (x3; @ ) = inf fjx3 ¡ xj ;x 2 @ g :
- Take x4 on the arc between x1 and x3 with jx4 ¡ x3j < 1

2s:

- Let Br1 (x4) denote the largest ball around x4 that is contained in n§: One …nds 0 < r1 < 1
2s:

- Take x5 2 @Br1 (x4) \§:
- Finally set x¤ = 1

2x4 +
1
2x5 and r =

1
2r1:

Since Br (x¤) ½ Br1 (x4)[fx5g it follows that Br (x¤)\§ contains a single point, namely x5: Since
Br (x

¤) ½ Br1 (x4) ½ B 1
2s
(x3) and d (x3; @ ) = s one …nds B2r (x

¤) ½ :

The second ball mentioned above will be B 1
2 r
(x5) :

II. The auxiliary function. Set

h (x) =
e¡

®
2 jx¡x¤j2 ¡ e¡®

2 r
2

¡ e¡®
2 r

2 ; (2)

with ® to be …xed later. Notice that h (x¤) = max h = and½
h (x) > 0 if x 2 Br (x¤) ;
h (x) < 0 if x =2 Br (x¤) :

Moreover, for x 2 B 1
2 r
(x5) we have jx¡ x¤j 2

¡
1
2r;

3
2r
¢
and

Lh =
®2
Pn

i;j=1 aij (xi¡x¤i )(xj¡x¤j )¡®
Pn

i=1(aii+bi (xi¡x¤i ))+c
1¡e¡®

2
r2

e¡
®
2 jx¡x¤j2 ¡ c 1

1¡e¡®
2
r2
e¡

®
2 r

2

¸
Ã
4®2 ¸

¡
1
2r
¢2 ¡ 2® nX

i=1

¡
aii + jbij 32r

¢
+ c

!
e¡

®
2 jx¡x¤j2

¡ e¡®
2 r

2 :
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Hence one may take ® large such that Lh > 0 on B 1
2 r
(x5) :

III. The contradiction. Finally one considers w = u+ "h and chooses " > 0 by

" =
2

³
m¡max

n
u (x) ;x 2 Br (x¤) \ @B 1

2 r
(x5)

o´
: (3)

Since u is continuous the maximum on this compact set is attained and since that set is disjoint

from § one …nds " > 0: Consider the boundary value problem for w on B 1
2 r
(x5) :

- For x 2 @B 1
2 r
(x5) \Br (x¤) one has

w (x) = u (x) + "h (x) · m¡ "+
2
" < m:

- For x 2 @B 1
2 r
(x5) nBr (x¤) one has

w (x) = u (x) + "h (x) · m+ "h (x) < m:
One also has w (x5) = u (x5) + "h (x5) = m + 0: Since Lw > 0 one obtains a contradiction with
the weak M.P. or even with Lemma 2.1.

Corollary 2.5 (Positivity Preserving Property) Let be bounded and suppose that L is strictly

elliptic with c · 0: If u 2 C2 ( ) \C ¡¹¢ satis…es½ ¡Lu ¸ 0 in ;

u ¸ 0 on @ ;
(4)

then either u (x) > 0 for x 2 or u ´ 0:

Remark 2.6 Let f 2 C ¡¹¢ and ' 2 C (@ ) : A function w 2 C2 ( ) \C ¡¹¢ satisfying½ ¡Lw ¸ f in ;

w ¸ ' on @ ;
(5)

is called a supersolution for ½ ¡Lu = f in ;

u = ' on @ ;
(6)

If the maximum principle holds then one …nds that a supersolution for (6) lies above a solution

for (6); w ¸ u: In particular, since solutions are also supersolutions, if there are two solutions u1
and u2 then both u1 ¸ u2 and u2 ¸ u1 hold true. In other words, (6) has at most one solution in
C2 ( ) \C ¡¹¢ :
Assuming more for @ one obtains an even stronger conclusion, that is, E. Hopf’s result in

1952.

Theorem 2.7 (Hopf’s boundary point Lemma) Suppose that satis…es the interior sphere

condition2 at x0 2 @ : Let L be strictly elliptic with c · 0: If u 2 C2 ( ) \C ¡¹¢ satis…es Lu ¸ 0
and max¹ u (x) = u (x0) : Then either u ´ u (x0) on or

lim inf
t#0

u (x0)¡ u (x0 + tº)
t

> 0 (possibly +1)

for every direction º pointing into an interior sphere.

If u 2 C1 ( [ fx0g) then @u(x0)
@º < 0:

2There is a ball B ½ with x0 2 @B:
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Proof. By the S.M.P. we have u (x) < m := u (x0) for all x 2 : Let B = Br1 (x1) ½ be

such that x0 2 @B: We proceed as in the proof of the S.M.P. with Br (x¤) = B 1
2 r1

¡
1
2x0 +

1
2x1

¢
and B 1

2 r
(x5) = B 1

2 r
(x0) : One de…nes h and " as in (2) and (3) to …nd

L (u+ "h) > 0 in \B 1
2 r
(x0) ;

u+ "h · m on @ n fx0g ;
u+ "h < m on \ @B 1

2 r
(x0) :

Hence u+ "h < m in \B 1
2 r
(x0) implying that for some ch > 0

u (x0 + tº)¡ u (x0) · ¡"h (x0 + tº) · ¡" ch t for t 2
µ
0;
2
r

¶
:

There are two directions in order to weaken the restriction on c: Skipping the sign condition

for c but adding one for u one obtains the next result.

Theorem 2.8 (Maximum Principle for nonpositive functions) Let be bounded. Suppose

that L is strictly elliptic (no sign assumption on c). If u 2 C2 ( ) \ C ¡¹¢ satis…es Lu ¸ 0 in
and u · 0 on ¹ ; then either u (x) < 0 for all x 2 ; or u ´ 0:
Moreover, if satis…es an interior sphere condition at x0 2 @ and u 2 C1 ( [ fx0g) with
u < u (x0) = 0 in ; then

@u(x0)
@º < 0 for every direction º pointing into an interior sphere.

Proof. Writing c (x) = c+ (x) ¡ c¡ (x) with c+; c¡ ¸ 0 one …nds that L ¡ c+ satis…es the

condition of the S.M.P. and moreover from u · 0 it follows that¡
L¡ c+¢u ¸ ¡c+u ¸ 0:

The conclusion for the derivative follows from Theorem 2.7.

Theorem 2.9 (Maximum Principle when a positive supersolution exists ) Let be bounded.

Suppose that L is strictly elliptic (no sign assumption on c) and that there exists w 2 C2 ¡¹¢ with
w > 0 and ¡Lw ¸ 0 on ¹ : If u 2 C2 ( ) \C ¡¹¢ satis…es Lu ¸ 0 in ; then either there exists a

constant t 2 R such that u ´ t w; or u=w does not attain a nonnegative maximum in :

Remark 2.10 One may rephrase this for supersolutions as follows. If there exists one function

w 2 C2 ¡¹¢ with ¡Lw ¸ 0 and w > 0 on ¹ then all functions v 2 C2 ( ) \C ¡¹¢ such that½ ¡Lv ¸ 0 in ;

v ¸ 0 on @ ;
(7)

satisfy either v ´ 0 or v > 0 in : One swallow makes summer. Apply the theorem to ¡v:

Remark 2.11 If ¹ ½ 1 and if L is de…ned on 1 and happens to have a positive eigenfunction

' with eigenvalue ¸
1 for the Dirichlet problem on 1 :8<: ¡L' = ¸ 1' in 1;

' = 0 on @ 1;

' > 0 in 1;

(8)

then this w = ' may serve in the theorem above. It shows that a maximum principle holds on

for c < ¸ 1 :
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Proof. Set v = u=w: Then with ~bi = bi +
Pn
j=1

2aij
w Djw and ~c =

Lw
w one has

Lu = L (vw) =

0@ nX
i;j=1

aijDijv +
nX
i=1

~biDiv +
Lw

w
v

1Aw: (9)

Then Lu · 0 implies ~Lv · 0 with ~L as in (9) and since this ~L does satisfy the conditions of the
Strong Maximum Principle, in particular the sign condition for ~c = Lw

w ; one …nds that either v is

constant or that v does not attain a nonnegative maximum in :

Theorem 2.12 (Maximum Principle for narrow domains) Suppose that L is strictly elliptic

(no sign assumption on c). Then there is d > 0 such that if S ½ fx 2 ; jx1j < dg and u 2
C2 (S)\C ¡ ¹S¢ satis…es Lu ¸ 0 in S; then there exists w 2 C2 ¡ ¹S¢ with w > 0 and ¡Lw ¸ 0 on ¹S:
Proof. For w (x) = cos (®x1) and jx1j · ¼

4®we have w (x) > 0 and

¡Lw =
¡
®2a11 ¡ c

¢
cos (®x1) + ®b1 sin (®x1)

¸ ¡
®2¸¡ ® kb1k1 ¡ kck1

¢
1
2

p
2:

The claim follows by taking ® large enough and de…ning d = ¼
4® :

3 A priori estimates based on the maximum principle

First we will derive an L1-estimate for solutions of½ ¡Lu = f in ;

u = ' on @ ;
(10)

with f 2 C ¡¹¢ and ' 2 C (@ ) :

Proposition 3.1 Assume that is bounded. Let L be uniformly elliptic with c · 0 and suppose
that u 2 C2 ( ) \C ¡¹¢ satis…es (10). Then

u (x) · max
@

'+ +Cmax
¹
f+;

where C = C (diam ( ) ; ¸; kbk1 =¸; kck1 =¸) :

Remark 3.2 The result applied to ¡u immediately yields u (x) ¸ ¡ (max@ '¡ +Cmax¹ f¡)
and hence

ju (x)j · max
@

j'j+Cmax
¹
jf j :

Proof. Assume that ½ fx 2 Rn; jx1j < rg and set

w (x) = max
@

'+ + (cosh®r ¡ cosh®x1)max
¹
f+;

with ® chosen large enough such that L (cosh®r ¡ cosh®x1) · ¡ : Indeed, this estimate holds

true by

L (cosh®r ¡ cosh®x1) =
¡¡®2a11 ¡ c¢ cosh®x1 ¡ ®b1 sinh®x1 + c cosh®r

· ¡ ¡®2¸¡ ® kbk1 ¡ kck1¢ cosh®x1
7



and taking ® = + ¸¡1 + ¸¡1 kbk1 + ¸¡1 kck1 : Notice that for jx1j < r it holds that 0 ·
cosh®r ¡ cosh®x1 · cosh®r: We have

¡L (w ¡ u) ¸
µ
max
¹
f+
¶
¡ f ¸ 0 in

and

w ¡ u =
µ
max
@

'+
¶
¡ ' ¸ 0 on @ :

By Corollary 2.5 one …nds w ¡ u ¸ 0 in and hence

u (x) · w (x) · max
@

'+ +Cmax
¹
f+

when we take C ¸ cosh®r: Since we may assume r = 1
2 diam( ) we set

C = C (diam ( ) ; ¸; kbk1 =¸; kck1 =¸) = ediam( )(1+¸¡1+¸¡1kbk1+¸¡1kck1):

Next we will derive an L1-estimate for the …rst derivatives of functions satisfying

¡Lu = f 2 C1 ¡¹¢ (11)

by sup@ jruj plus the C1-norm of f;

kfkC1(¹) = kfk1 + krfk1 :

Whenever L = ¢ :=
Pn
i=1Dii such an estimate for C

3-functions u follows from Di¢u = ¢Diu
and applying the previous theorem. For non-constant coe¢cients this does not go through that

simple.

Proposition 3.3 Assume that is bounded. Let L be uniformly elliptic with aij ; bi; c 2 C1
¡
¹
¢
:

Suppose that u 2 C3 ( ) \C1 ¡¹¢ satis…es (11). Then
jru (x)j · sup

@
jruj+C ( + kfkC1) for all x 2 ;

where C = C
¡
diam( ) ; kuk1 ; ¸; kaijkC1 ; kbikC1 ; kckC1

¢
:

Proof. Instead for a single derivative we will use a maximum principle for jruj2 : Set L0 = L¡c:
Denoting the Hessian by r2 = (Dij) with

¯̄r2u¯̄2 =Pn
i;j=1 (Diju)

2
, it follows from

Di

³
jruj2

´
= 2

nX
`=1

D`uDi`u and Dij

³
jruj2

´
= 2

nX
`=1

(Di`uDj`u+D`uDij`u)

that, using strict ellipticity,

nX
`=1

(L0D`u)D`u = 1
2L0

³
jruj2

´
¡

nX
`=1

nX
i;j=1

aijDi`uDj`u

· 1
2L0

³
jruj2

´
¡ ¸ ¯̄r2u¯̄2 : (12)

Moreover, di¤erentiating (11) with respect to x`; multiplying by @`u we have:

¡ D`f D`u = (D`Lu)D`u =

= (LD`u)D`u+

0@ nX
i;j=1

D`aij Diju+
nX
i=1

D`biDiu+D`c u

1A @`u
· (L0D`u)D`u¡ c (D`u)2 +C:

¡¯̄r2u¯̄+ jruj+ juj¢ jruj (13)
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with C0 =
Pn
i;j=1 kaijkC1 +

Pn
i=1 kbikC1 + kckC1 : Summing (13) and combining with (12) one

obtains

L0

³
jruj2

´
¸ 2

nX
`=1

(L0D`u)D`u+ 2¸
¯̄r2u¯̄2

¸ ¡2rf ¢ ru+ 2c jruj2 + 2¸ ¯̄r2u¯̄2 ¡ 2nC0: ¡¯̄r2u¯̄+ jruj+ juj¢ jruj ;
and by using Cauchy-Schwarz’s inequality it follows with C1 = +

n2C2
0

¸ + 3nC0 + 2 kck1 that

L0

³
jruj2

´
¸ ¸ ¯̄r2u¯̄2 ¡ jrf j2 ¡C1 jruj2 ¡ nC0 juj2 : (14)

One also has

L0
¡
u2
¢
= 2

nX
i;j=1

aijDiuDju+ 2uLu¡ 2cu2

¸ 2¸ jruj2 + 2uf ¡ 2c u2
¸ 2¸ jruj2 ¡ f2 ¡ (2c+ ) u2: (15)

Taking ® = + ¸¡1C1 one obtains from (14) and (15) that

L0

³
jruj2 + ®u2

´
¸ ¸ ¯̄r2u¯̄2 + ¸ jruj2 ¡ jrf j2 ¡ ® jf j2 ¡C2 (16)

for C2 = C2
¡kuk1 ; ¸; kaijkC1 ; kbikC1 ; kckC1

¢
:

To remove the remaining negative terms on the right hand side we add another term, namely

(C2 + ® kfkC1) cosh (¯x1) with ¯ = ¸
¡1=2 + ¸¡1 kbk1 : Such ¯ is large enough for ¯2¸¡ ¯ jbj ¸

to hold and

L0 cosh (¯x1) = a11¯
2 cosh (¯x1) + b1¯ sinh (¯x1)

¸ ¡
¯2¸¡ ¯ jbj¢ cosh (¯x1) ¸ :

One gets

L0

³
jruj2 + ®u2 + (C2 + ® kfkC1) cosh (¯x1)

´
¸ 0;

and the maximum principle implies

sup jruj2 · sup

µ
jruj2 + ®u2 +

µ
C2 +

µ
®+

2

¶
kfkC1

¶
cosh (¯x1)

¶
= sup

@

µ
jruj2 + ®u2 +

µ
C2 +

µ
®+

2

¶
kfkC1

¶
cosh (¯x1)

¶
and since we may assume cosh (¯x1) · cosh (¯ diam( )) it holds that

sup jruj · sup
@
jruj+C3 ( + kfkC1)

with C3 = C3
¡
diam( ) ; kuk1 ; ¸; kaijkC1 ; kbikC1 ; kckC1

¢
:

A similar estimate holds for the …rst derivatives of functions satisfying the semilinear equation

¡Lu = f (x; u) for x 2 (17)

with f 2 C1 ¡¹ £R¢ :
9



Proposition 3.4 Assume that is bounded. Let L be uniformly elliptic with aij ; bi; c 2 C1
¡
¹
¢
:

Suppose that u 2 C3 ( ) \C1 ¡¹¢ satis…es (17). Then
jru (x)j · sup

@
jruj+C for all x 2 ;

where C = C
³
diam ( ) ; kfkC1(¹£R) ; kuk1 ; ¸; kaijkC1 ; kbikC1 ; kckC1

´
:

Proof. Instead of (14) and (15) we have

L0

³
jruj2

´
¸ ¸

¯̄r2u¯̄2 ¡ 2 jrxf j2 ¡ ³C1 + 2 jfuj2´ jruj2 ¡ nC0 juj2 ; (18)

L0
¡
u2
¢ ¸ 2¸ jruj2 ¡ f2 ¡ (2c+ ) u2: (19)

Taking ® = + ¸¡1
³
C1 + 2 jfuj2

´
we continue by

L0

³
jruj2 + ®u2

´
¸ ¡C5

with C5 = C5
³
kuk1 ; ¸; kaijkC1 ; kbikC1 ; kckC1 ; kfkC1(¹£R)

´
: And with an added C5 cosh (¯x1)

we …nd

L0

³
jruj2 + ®u2 +C5 cosh (¯x1)

´
¸ 0

and proceed as before.

4 Comparison principles

For linear problems a comparison principle is the maximum principle used for the di¤erence of

two functions. See for example Remark 2.6. Only for nonlinear problems one should make a

distinction between those two types of principles. If the nonlinearity does not appear in the

di¤erential operator, such as in ½ ¡Lu = f (x; u) in ;

u = 0 on @ ;
(20)

the system is usually called semilinear.

Proposition 4.1 (semilinear comparison principle) Let L be strictly elliptic with c = 0 and
f 2 C1 ¡¹ £R¢ : If u1 · u2 are both solutions of (20), then either u1 ´ u2 or u1 (x) < u2 (x) for
all x 2 :

Proof. De…ne g 2 L1 ( ) by

g (x) =

(
f(x;u2(x))¡f(x;u1(x))

u2(x)¡u1(x) if u2 (x) 6= u1 (x) ;
@f
@u (x; u2 (x)) if u2 (x) = u1 (x) :

(21)

Then ¡ (L¡ g (x)) (u2 ¡ u1) = 0 in and u2 ¡ u1 = 0 on @ : One proceeds by Theorem 2.8.

The comparison principle shows a semilinear equivalent of Corollary 2.5:

Corollary 4.2 Let L be strictly elliptic with c = 0 and f 2 C1 ¡¹ £R¢ with f (x; 0) ¸ 0: If u ¸ 0
is a solution of (20), then either u ´ 0 or u (x) > 0 for all x 2 :

10



Proof. De…ne g 2 L1 ( ) by

g (x) =

(
f(x;u(x))¡f(x;0)

u(x) if u (x) > 0;
@f
@u (x; 0) if u (x) = 0:

(22)

Then ¡ (L¡ g (x))u = f (x; 0) ¸ 0 and one concludes by Theorem 2.8.

For ½ ¡¢u = f (u) in ;

u = 0 on @ ;
(23)

with f 2 C1 (R) ; one conjectures that f (0) ¸ 0 is not necessary in Corollary 4.2. The problem is

still open in general domains!

An application of Hopf’s boundary point Lemma for solutions of (23) is the following.

Proposition 4.3 Let f 2 C1 (R) with f (0) ¸ 0 and suppose that has an entrant corner3. If

u 2 C1 ¡¹¢ \C2 ( ) is a nonnegative solution of (23), then u ´ 0 and f (0) = 0:
Proof. If x0 2 @ denotes the corner and Br (x1) and Br (x2) are two inner balls touching

@ in x0; then there exists º 2 Rn such that x0 + º 2 Br (x1) and x0 ¡ º 2 Br (x2) : Note that
satis…es an interior sphere condition at x0: Set g as in (22) to …nd

¡¢u¡ g (x)u = f (0) :

Since f (0) ¸ 0 we …nd ¡¢u+g¡u = g+u+f (0) ¸ 0 and by the strong maximum principle either
u ´ 0 or u > 0: Supposing that u > 0 it follows by Hopf’s boundary point Lemma, and using
u 2 C1 ¡¹¢ ; that

0 > lim sup
t#0

u (x0 ¡ tº)¡ u (x0)
t jºj =

@u

@º
(x0) = lim inf

t#0
u (x0)¡ u (x0 + tº)

t jºj > 0:

Hence u ´ 0 and consequently f (0) = 0:

5 Alexandrov’s maximum principle

One needs to de…ne the notion of upper contact set of a function u; which is roughly said the set

of points in that have a tangent plane above u:

De…nition 5.1 For u 2 C ¡¹¢ the upper contact set ¡+ is de…ned by
¡+ = fy 2 ; 9 py 2 Rn such that 8x 2 : u (x) · u (y) + py ¢ (x¡ y)g :

3We say that has an entrant corner at x0 2 @ if there are two di¤erent balls Br (x1) ; Br (x2) ½ (same r)
with x0 2 @Br (x1) \ @Br (x2) :

11



If is bounded the set ¡+ is relatively closed in :

If u 2 C1 ( ) and y 2 ¡+ one takes py = ru (y) : Moreover, if u 2 C2 ( ) then the Hessian
matrix (Diju) is nonpositive on ¡

+:

First a lemma with this upper contact set.

Lemma 5.2 Suppose that is bounded. Let g 2 C (Rn) be nonnegative and u 2 C ¡¹¢ \C2 ( ) :
Set

M =
sup u¡ sup@ u

diam( )
:

Then Z
BM (0)

g (z) dz ·
Z
¡+
g (ru (x)) jdet (Diju (x))j dx: (24)

Proof. Let § denote the images of ¡+ under the mapping ru: If this mapping is a bijection,
then by a change of variables,Z

§

g (z) dz =

Z
¡+
g (ru (x)) jdet (Diju (x))j dx:

Since the mapping is only onto and since g ¸ 0 we …ndZ
§

g (z) dz ·
Z
¡+
g (ru (x)) jdet (Diju (x))j dx:

Hence it is su¢cient to show that BM (0) ½ §: In other words show that for every a 2 Rn with
jaj <M there exists y 2 ¡+ such that a = ru (y) :
Set La (t) = minx2¹ (t+ a ¢ x¡ u (x)) : This function La is continuous, positive for t large

enough and negative for ¡t large. Let ta denote its largest root. It follows that ta+a ¢x¡u (x) ¸ 0
for all x 2 and ta + a ¢ y ¡ u (y) = 0 for some y 2 ¹ : Hence

u (y) ¸ u (x) + a ¢ (y ¡ x) :
Taking x0 such that u (x0) = sup u; one …nds

u (y) ¸ sup
@
u+M diam( ) + a ¢ (y ¡ x0) > sup

@
u;

and hence that y =2 @ : For y 2 the assumption u 2 C1 ( ) implies that a = ru (y) : By
construction we have y 2 ¡+:
For an elliptic operator L as in (1) one de…nes

¤
(x) = (det (aij (x)))

1=n
:

Indeed, the de…nition of ellipticity implies that
¤
is well-de…ned and even that

¤
(x) ¸ ¸ (x) :

In case of strict ellipticity
¤
(x) ¸ ¸ and assuming uniform ellipticity also

¤
(x) · ¤ holds;

¤
(x) is the geometric average of the eigenvalues of (aij (x)) :

12



Corollary 5.3 Under the conditions of Lemma 5.2 one obtains for g ´ :

supu · sup
@
u+

diam

!
1=n
n

ÃZ
¡+

Ã
¡
Pn
i;j=1 aij (x)Diju (x)

n
¤

!n
dx

!1=n
where !n =

2¼n=2

n¡(n=2) is the volume of the unit ball in R
n:

Remark 5.4 Considering + = fx 2 ;u (x) > 0g one obtains

supu · sup
@
u+ +

diam

!
1=n
n

ÃZ
¡+\ +

Ã
¡Pn

i;j=1 aij (x)Diju (x)

n
¤

!n
dx

!1=n
:

Proof. Note that
Pn
i;j=1 aij (x)Diju (x) = tr (AD) with A = (aij (x)) and D = (Diju (x)) :

Remember that both the determinant and the trace do not change under orthogonal transforma-

tions. On ¡+ the matrix AD is nonpositive. Hence, using the fact that the geometric mean of
nonnegative numbers is less than the arithmetic mean, we …nd, denoting the eigenvalues of ¡AD
by ¸i; that

¤
(det (¡D))1=n = (det (¡AD))1=n = n

p
¸1¸2 : : : ¸n · ¸1 + ¸2 + ¢ ¢ ¢+ ¸n

n
=
tr (¡AD)

n
; (25)

or in other words

det (Diju (x)) ·
Ã
¡Pn

i;j=1 aij (x)Diju (x)

n
¤

!n
: (26)

Using (26) for the right hand side of (24) andZ
BM (0)

dz =Mn!n =

µ
sup u¡ sup@ u

diam

¶n
!n

for the left hand side, the claim follows.

Theorem 5.5 (Alexandrov’s Maximum Principle) Let be bounded and L elliptic with c ·
0: Suppose that u 2 C2 ( ) \C ¡¹¢ satis…es Lu ¸ f with

jbj
¤ ;

f
¤ 2 Ln ( ) ;

and let ¡+ denote the upper contact set of u: Then one has

supu · sup
@
u+ +C:diam :

°°°° f¡¤°°°°
Ln(¡+)

;

with

C = C

Ã
n;

°°°° jbj¤°°°°
Ln(¡+)

!
:

Proof. In Corollary 5.3 the term on the right hand side contains the leading order derivatives

of Lu: In case that bi = c = 0 the proof is complete since f · Lu · 0 on ¡+:
For bi or c not equal 0 one proceeds as follows for x 2 +; hence c (x)u (x) · 0; and for ¹ 2 R+;

¡
nX

i;j=1

aijDiju ·
nX
i=1

biDiu+ cu¡ f

·
nX
i=1

biDiu+ f
¡ · ¡jbj ; ¹¡1f¡¢ ¢ (jruj ; ¹)

·
³
jbjn + ¡¹¡1f¡¢n´ 1

n

(jrujn + ¹n) 1n ( + )
n¡2
n

13



by Cauchy-Schwarz and Hölder’s inequality.

We will use Lemma 5.2 with replaced by +; that isZ
B ~M (0)

g (z) dz ·
Z
¡+\ +

g (ru (x)) jdet (Diju (x))j dx; (27)

with

~M =
sup u¡ sup@ u+

diam( )
:

Choosing in Lemma 5.2 g (z) = (jzjn + ¹n)¡1 we obtain for the left side, with ¾n = n!n the surface
area of the unit ball in Rn;Z

B ~M (0)

g (z) dz = ¾n

Z ~M

r=0

(rn + ¹n)¡1 rn¡1dr = ¾n log
³³

~M=¹
´n
+
´
:

For the right hand side, as in the proof of Corollary 5.3, see (26),Z
¡+
g (ru (x)) jdet (Diju (x))j dx

·
Z
¡+\ + jrujn + ¹n

Ã
¡
Pn
i;j=1 aij (x)Diju (x)

n
¤

!n
dx

·
Z
¡+\ + jrujn + ¹n

¡jbjn + ¡¹¡1f¡¢n¢ (jrujn + ¹n) 2n¡2
nn
¡ ¤¢n dx

=
2n¡2

nn

Z
¡+\ +

jbjn + ¡¹¡1f¡¢n¡ ¤¢n dx:

Now we choose ¹ =
°°f¡= ¤°°

Ln(¡+\ +)
and …nd

¾n log

ÃÃ
~M°°f¡= ¤°°
Ln(¡+\ +)

!n
+

!
· 2n¡2

nn

ÃZ
¡+\ +

jbjn¡ ¤¢n dx+
!
:

De…ning

C = exp

Ã
2n¡2

¾nnn

Ã°°°° jbj¤°°°°
Ln(¡+\ +)

+

!!
(28)

the claim follows.

Without the sign condition for c there remains a maximum principle for narrow domains. The

Alexandrov’s Maximum Principle implies a similar result for small domains.

Theorem 5.6 (Maximum Principle for small domains) Suppose that is bounded and that

L is strictly elliptic (without sign condition for c). Then there exists a constant ±; with ± =

±
³
n;diam ; ¸; kbkLn( ) ; kc+k1

´
; such that the following holds.

If j j < ± and u 2 C2 ( ) \C ¡¹¢ satis…es Lu ¸ 0 in and u · 0 on @ ; then u · 0 in :

Proof. The operator L¡c+ satis…es the condition of Theorem 5.5 and from ¡Lu · 0 it follows
that ¡

L¡ c+¢u ¸ ¡c+u ¸ ¡c+u+
14



and hence, since sup@ u+ = 0;

supu · C diam

¸

°°c+u+°°
Ln( )

· C diam

¸

°°c+°°1 j j 1n supu+:

If ± =
¡
C diam

¸ kc+k1
¢¡n

one …nds sup u · 0: Notice that the C used here, de…ned in (28),

depends on kbkLn( ) :

6 Maximum principle and continuous perturbations

Using comparison principles for connected families of sub- and supersolutions one obtains a very

powerful tool in deriving a priori estimates. One such result is the moving plane method used by

Gidas, Ni and Nirenberg to prove symmetry of positive solutions to½ ¡¢u = f (u) in ;

u = 0 on @ ;
(29)

on domains satisfying some symmetry conditions. Another one is McNabb’s sweeping principle

used to its full extend by Serrin. First let us …x a notion of supersolution.

De…nition 6.1 A function v 2 C ¡¹¢ \C2 ( ) is called a supersolution for½ ¡¢u = f (u) in ;

u = h on @ ;
(30)

if v ¸ h on @ and ¡¢v ¸ f (v) :

Remark 6.2 A much more useful concept of supersolution assumes v 2 C ¡¹¢ and replaces ¡¢v ¸
f (v) by

R
((¡¢Á) v ¡ Áf (v)) dx ¸ 0 for all Á 2 C10 ( ) with Á ¸ 0:

The argument combining the strong maximum principle and continuous perturbations goes as

follows. One needs:

² a continuous family of supersolutions vt; say t 2 [0; ], possibly on a subdomain or on an
appropriate family of subdomains t;

² a strong maximum principle on each of the subdomains.

Roughly spoken the conclusion is that if v0 > u on t; then either vt > u for all t 2 [0; ] or
there is a t1 2 [0; ] such that vt1 ´ u: For a precise statement we have to re…ne the notion of

positivity.

For a …xed domain such a result is known as a ‘sweeping principle’. A …rst reference to this

result is a paper of McNabb from 1961. In the following version we assume that @ = ¡1 [ ¡2;
with ¡1;¡2 closed and disjoint, possibly empty. We let e 2 C

¡
¹
¢\C1 ( [ ¡2) be such that e > 0

on [ ¡1 and @
@ne < 0 = e on ¡2; where n denotes the outward normal. Moreover, we de…ne

Ce
¡
¹
¢
=

©
w 2 C ¡¹¢ ; jwj < c e for some c > 0ª ;

kwke =
°°°w
e

°°°
1
:

Theorem 6.3 (Sweeping Principle) Let be bounded with @ 2 C2 and @ = ¡1[¡2 as above,
f 2 C1 (R) and let u 2 C ¡¹¢ \C1 ( [ ¡2) \C2 ( ) be a solution of (30). Suppose fvt; t 2 [0; ]g
is a family of supersolutions in C

¡
¹
¢ \C1 ( [ ¡2) \C2 ( ) for (30) such that:

15



1. t! (vt ¡ v0) 2 Ce
¡
¹
¢
is continuous (with respect to the k¢ke-norm);

2. vt = u on ¡2 and vt > u on ¡1;

3. v0 ¸ u in ¹;
Then either vt ´ u for some t 2 [0; ] ; or there exists c > 0 such that vt ¸ u+ c e on ¹ for
all t 2 [0; ] :

Proof. Set I =
©
t 2 [0; ] ; vt ¸ u in ¹

ª
and assume that vt 6´ u for all t 2 [0; ] : By the way,

notice that vt ´ u for some t 2 [0; ] can only occur when ¡1 is empty. The set I is nonempty by
assumption 3 and closed by assumption 1. We will show that I is open. Indeed, if t is such that

vt ¸ u in ¹ then ¡¢(vt ¡ u) = f (vt)¡ f (u) and setting g as in (21) one obtains½ ¡¢(vt ¡ u) + g¡ (vt ¡ u) ¸ g+ (vt ¡ u) ¸ 0 in ;

vt ¡ u ¸ 0 on @ ;

and hence by the strong maximum principle vt ¡ u > 0 in or vt ´ u: Moreover, for the …rst

case Hopf’s boundary point Lemma and the assumption that u; vt 2 C1 ( [ ¡2) imply that
¡ @
@n (vt ¡ u) > 0 on ¡2: Hence there is ct > 0 such that vt ¡ u ¸ ct e on ¹ : By assumption 1

it follows that t lies in the interior of I: Hence I is open, implying I = [0; ] : Moreover, since I is
compact a uniform c > 0 exists.

Example 6.4 Suppose that f 2 C1 is such that f (u) > 0 for u < and f (u) < 0 for u > : Using

the above version of the sweeping principle one may show that for ¸ À every positive solution

u¸ of ½ ¡¢u = ¸f (u) in ;

u = 0 on @ ;
(31)

is near in the interior of : Indeed, let '1; ¹1 denote the …rst eigenfunction/eigenvalue of ¡¢' =
¹' in B1 and ' = 0 on @B1 where B1 is the unit ball in Rn: This …rst eigenfunction is radially
symmetric and we assume it to be normalized such that ' (0) = : Now let " > 0 and take ±" > 0
such that

±" u · f (u) for u 2 [0; ¡ "] :

Set vt (x) = t'1

³p
¸±"p
¹ (x¡ x¤)

´
for any x¤ 2 with distance to the boundary d (x¤; @ ) >

p
¹p
¸±"

=: r0: On Br0 (x
¤) one …nds for t 2 [0; ¡ "] that ¡¢vt = ¸±"vt · ¸f (vt) : Since vt = 0 < u¸

on @Br0 (x
¤) and v0 = 0 < u¸ on Br0 (x

¤) it is an appropriate family of subsolutions. From
v1¡" < u¸ in Br0 (x¤) one concludes that ¡ " = v1¡" (x¤) < u¸ (x¤) : Since the strong maximum
principle implies that maxu¸ < we may summarize:

¡ " < u¸ (x) < for x 2 with d (x¤; @ ) >

p
¹p
¸±"

:

More intricate results not only consider a family of supersolutions but also simultaneously

modify the domain. One such result is the result by Gidas, Ni and Nirenberg ([3] or [1]). The idea

was used earlier by Serrin in [10].

Before stating the result let us …rst …x some notations. We will be moving planes in the

x1-direction but of course also any other direction will do.

Some sets that will be used are:

the moving plane: T¸ = fx 2 Rn;x1 = ¸g ;
the subdomain: §¸ = fx 2 ;x1 < ¸g ;
the re‡ected point: x¸ = (2¸¡ x1; x2; : : : ; xn) ;
the re‡ected subdomain: §0¸ = fx¸;x 2 §¸g ;
the starting value for ¸: ¸0 = inf fx1;x 2 g ;
the maximal value for ¸: ¸¤ = sup

©
¸; §0¹ ½ for all ¹ < ¸

ª
:
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Theorem 6.5 (Moving plane argument) Assume that f is Lipschitz, that is bounded and

that ¸0; ¸
¤ and §¸ are as above. If u 2 C

¡
¹
¢ \C2 ( ) satis…es (29) and u > 0 in ; then

u (x) < u (x¸) for all ¸ < ¸¤ and x 2 §¸;
@u
@x1

(x) > 0 for all x 2 §¸:

Remark 6.6 In case that f (0) ¸ 0 one might replace u > 0 in by 0 6´ u ¸ 0: Although it seems
likely that f (0) ¸ 0 is not a genuine restriction, see [2], the general case is still open.

Proof. First remark that if u ´ 0 on some open set in ; then f (0) = 0: If f (0) = 0 then u
satis…es ¡¢u = c (x)u (x) with c (x) = f (u (x)) =u (x) a bounded function. By using the Maximum
Principle for nonpositive functions it follows that u ´ 0 in : Hence u 6´ 0 on any open set in :

We will consider w¸ (x) = u (x¸) ¡ u (x) for x 2 §¸: De…ning g¸ similar as before in (21),
namely

g¸ (x) =

(
f(u(x¸))¡f(u(x))

u(x¸)¡u(x) if u (x¸) 6= u (x) ;
0 if u (x¸) 6= u (x) ;

we …nd

¡¢w¸ (x) = ¡¢(u (x¸)) +¢u (x) = ¡ (¢u) (x¸) +¢u (x)
= f (u (x¸))¡ f (u (x)) = g¸ (x) w¸ (x) in §¸: (32)

Moreover, for ¸ < ¸¤ we have u (x¸) ¸ 0 = u (x) on @ \ @§¸ and u (x¸) = u (x) on \ @§¸:
Hence

w¸ (x) ¸ 0 on @§¸: (33)

Also note that since u is bounded and f is Lipschitz the function g¸ is uniformly bounded on ¹

and hence that we may use the maximum principles for linear equations with a uniform bound for

kc+k1 :
The two basic ingredients in the proof are the maximum principle for small domains (Theorem

5.6) and again the strong maximum principle for nonpositive functions (Theorem 2.8).

Set ¸¤ = sup f¸ 2 [¸0; ¸¤] ;w¹ (x) ¸ 0 for all x 2 §¹ and ¹ 2 [0; ¸]g :We will suppose that ¸¤ <
¸¤ and arrive at a contradiction.
By the maximum principle for small domains (or even the one for narrow domains) one …nds

from (32) and (33) that there is ¸1 > ¸0 such that w¸ (x) ¸ 0 on ¹§¸ for all ¸ 2 (¸0; ¸1] : Hence
¸¤ > 0: By the strong maximum principle either w¸ > 0 in §¸ for all ¸ 2 (¸0; ¸1] or w¸ ´ 0 on ¹§¸
for some ¸ 2 (¸0; ¸1] : We have found that ¸¤ ¸ ¸1:
Next we will show that w¸ ´ 0 on ¹§¸ does not occur for ¸ 2 (¸0; ¸1) : If w¸ ´ 0 on ¹§¸ for

some ¸ 2 (¸0; ¸¤) then, u (x) = 0 for x 2 @
¡
§0¸ [ ¹§¸

¢
and moreover, since part of this boundary,

\ @ ¡§0¸ [ ¹§¸¢ lies inside it contradicts u > 0 in :

17



For ¸ = ¸¤ we have that w¸¤ (x) ¸ 0 on ¹§¸¤ and since ¹§
0
¸¤ [ ¹§¸¤ 6= we just found that

w¸¤ (x) 6´ 0 on ¹§¸¤ : By the strong maximum principle for signed functions (Theorem 2.8) it follows
that w¸¤ (x) > 0 in §¸¤ and even that

@
@x1
w¸¤ (x) > 0 for every x 2 @§¸¤ \ : In order to …nd a

strict bound for w¸¤ away from 0 we restrict ourselves to a compact set as follows. Let ± be as in
Theorem 5.6 and let ¡± be an open neighborhood of @ \ @§¸¤ such that j \ ¡±j < 1

2±: By the

previous estimate we have for some c > 0 that

w¸¤ (x) > c (¸¤ ¡ x1) for x 2 §¸¤n¡±:
By continuity we may increase ¸ somewhat without loosing the positivity. Indeed, by the fact that

w¸¤ 2 C1 (§¸¤) there exists "0 > 0 such that for all " 2 [0; "0] one …nds
w¸¤+" (x) > 0 for x 2 A";

where A" =
©
x 2 ; (x1 + "; x2; : : : ; xn) 2 ¹§¸¤n¡±

ª ½ §¸¤+" is a shifted §¸¤ :

Since ¸! j§¸j is continuous and A" ½ §¸+" we may take "1 2 (0; "0) such that¯̄
¹§¸¤+"n (¡± \A")

¯̄
<
2
± for " 2 [0; "1] :

Finally we consider the maximum principle for small domains on the remaining subset of §¸+"
de…ned by R" = (§¸¤+" \ ¡±) [ (§¸¤+"nA") with " 2 (0; "1) : Since w¸¤+" > 0 on @R" and
¡¢w¸¤+" (x) = g¸¤+" (x) w¸¤+" (x) in R" we …nd that w¸¤+" ¸ 0 in R" and hence w¸ ¸ 0 on ¹§¸
for all ¸ 2 [¸0; ¸¤ + "1] ; a contradiction.
The conclusion that @

@x1
u (x) > 0 for x 2 §¸¤ follows from the fact that w¸ (x) > 0 on §¸ for

all ¸ 2 (¸0; ¸¤) and by Hopf’s boundary point Lemma @
@x1
u (x) = 1

2
@
@x1
w¸ (x) > 0 on T¸ \ :

Corollary 6.7 Let BR (0) ½ Rn: If f is Lipschitz and if u 2 C2 (B) \C
¡
¹B
¢
satis…es8<: ¡¢u = f (u) in B;

u = 0 on @B;

u > 0 in B;

(34)

then u is radially symmetric and @
@jxju (x) < 0 for 0 < jxj < R:

Proof. From the previous theorem we …nd that x1
@
@x1
u (x) < 0 for x 2 BR (0) with x1 6= 0:

Hence @
@x1
u (x) = 0 for x1 = 0: Since ¢ is radially invariant this holds for every direction and we

…nd @
@¿ u (x) = 0 in BR (0) for any tangential direction. In other words, u is radially symmetric.

Since @
@jxju (x) =

@
@ru (r; 0; : : : ; 0) for 0 < r = jxj < R the second claim follows from @u

@x1
(x) < 0

for x 2 BR (0) with x1 > 0:
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Corollary 6.8 Let be a bounded domain in Rn: For º 2 Rn with jºj = we set

§¸ (º) = fx 2 ;x ¢ º > ¸g ;
§0¸ (º) = fx+ 2 (¸¡ x ¢ º) º 2 §¸ (º)g ;
¸¤ (º) = inf

©
¸; §0¹ (º) ½ for all ¹ > ¸

ª
:

De…ne ? = n [
n
§0¸¤(º) (º) ; º 2 Rn with jºj =

o
: If u 2 C2 ( ) \C ¡¹¢ is a solution of8<: ¡¢u = f (u) in ;

u = 0 on @ ;

u > 0 in ;

(35)

then

u < maxu on n ?:

Proof. The result is a direct consequence of using a moving plane argument with a plane

perpendicular to º and applying the previous theorem.

Example 6.9 Consider solutions of (35) for the following two two-dimensional domains, respec-

tively a star with …ve and one with six points, both having some parallel boundary segments:

Some optimal positions for the moving plane are drawn by the dashed lines. Note that viewing

on a screen might result in some distortion.

For the six-star one …nds by the moving plane argument that the maximum lies in the center

and even that the solution is symmetric with respect to the three axes that coincide with optimal

planes. For the …ve-star the moving plane argument shows that the maximum of a solution lies in

the central pentagon but the argument does not yield symmetry.

The moving plane argument has recently been extended to a moving sphere argument by Reichel

and Zou ([9]). It can be used to obtain a result closely related with a famous one by Pohoµzaev

([7]).

Theorem 6.10 Let ½ Rn with n ¸ 3 be bounded and starshaped4 and let f be Lipschitz and
supercritical:

u 7¡! u¡
n+2
n¡2 f (u) is nondecreasing. (36)

Then (35) has no nonzero C2 ( ) \C ¡¹¢-solution.
4A set is called starshaped with respect to x0 if for every x 2 the segment [x0; x] lies in :

fµx+ ( ¡ µ)x0; 0 · µ · g ½ :
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Remark 6.11 A famous result of Pohoµzaev in [7] states that (35), with f 2 C0;® (® > 0) and
as above, has no positive solution in W 2;2 ( ) \C ¡¹¢ whenever

n¡ 2
2n

u f (u) ¸
Z u

0

f (t) dt for all u ¸ 0: (37)

Condition (36) implies (37):Z u

0

f (t) dt =

Z u

0

t
n+2
n¡2 t¡

n+2
n¡2 f (t) dt · u¡n+2

n¡2 f (u)

Z u

0

t
n+2
n¡2 dt =

n¡ 2
2n

uf (u) :

The conditions are equal for pure powers f (u) = up:

Proof. Without loss of generality we may suppose that is starshaped with respect to the

origin. Suppose that u is a nonzero C2 ( )\C ¡¹¢-solution of (35). Instead of a standard re‡ection
one uses a weighted re‡ection with respect to circles. The ‘Kelvin’-transformed u becomes

u½ (x) =

µ
½

jxj
¶n¡2

u

Ã
½2

jxj2x
!

and is well-de…ned on k
½ =

n
x 2 Rn; ½2jxj2x 2

o
:

This u½ satis…es, writing r = jxj ; ! = x
jxj and ¢! the Laplace-Beltrami operator on @B1;

¢u½ (r; !) =

µ
r1¡n

@

@r
rn¡1

@

@r
+
r2
¢!

¶
u½ (r; !)

=

µ
r1¡n

@

@r
rn¡1

@

@r
+
r2
¢!

¶µ³½
r

´n¡2
u
³
½2

r ; !
´¶

= ½n¡2r1¡n
@

@r
rn¡1

@

@r
r2¡nu

³
½2

r ; !
´
+
³½
r

´n+2
(½2=r)2

¢!u
³
½2

r ; !
´

=
³½
r

´n+2Ã
(urr)

³
½2

r ; !
´
+
n¡
½2=r

(ur)
³
½2

r ; !
´
+
(½2=r)2

¢!u
³
½2

r ; !
´!

=
³½
r

´n+2
(¢u)

³
½2

r ; !
´

One uses u 7¡! u¡
n+2
n¡2 f (u) is nondecreasing to …nd that for ½ · r

¡¢u½ (r; !) =
³½
r

´n+2
f
³
u
³
½2

r ; !
´´

=
³½
r

´n+2
f

µ³
r
½

´n¡2
u½ (r; !)

¶
¸ f (u½ (r; !)) :
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Denoting §½ = fx 2 ; jxj > ½g the starshapedness of implies that u½ is de…ned on §½ (whenever
it is nonempty) and one proceeds as in the moving plane argument with

w½ (x) = u½ (x)¡ u (x) :

One …nds on @§½ \ that w½ = 0 and on @§½ \ @ that w½ = u½ ¡ u = u½ ¸ 0: Moreover, for
x 2 §½ one has

¡¢w½ = ¡¢u½ +¢u
= f (u½)¡ f (u) + (¡¢u½ ¡ f (u½)) ¸ g½ (x)w½;

with g½ (x) de…ned similar as before using u½ and u: One …nds

u½ (x) > u (x) for x 2 with jxj > ½:

By decreasing ½ one obtains for x 6= 0 that

u (x) · lim
½#0
u½ (x) · lim

½#0

µ
½

jxj
¶n¡2

maxu = 0;

a contradiction.
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