WS 25/26: The inverse function theorem of Nash and Moser

We shall meet on Tuesdays from 14h to 15:30h in Übungsraum 1 (-119).
Here is a tentative schedule:

14.10. (Christoph) Introduction to Locally Convex Vector Spaces [Ham82, §I.1–I.2], [Sch22, §1.1–1.4].

21.10 (Christoph) Differential Calculus in Locally Convex Vector Spaces [Ham82, §I.3], [Sch22, §1.1–1.4].

28.10. No seminar due to the Workshop ‘Who is afraid of infinite dimensions?’ in Lyon.

04.11. (Jorn) Infinite-Dimensional Manifolds [Ham82, §I.4.1–I.4.4], [Sch22, §1.5–1.7].

11.11. (Jorn) Spaces and Manifolds of Smooth Maps [Sch22, §2].

18.11. (Nico) Infinite-Dimensional Lie Groups [Ham82, §I.4.6], [Sch22, §3].

25.11. (Christoph) The inverse function theorem for Banach spaces [Ham82, §I.5].

02.12. (Rodrigo) The Nash-Moser Category I [Ham82, §II.1–II.2].

09.12. T.B.D.

16.12. (Rodrigo) The Nash-Moser Category II [Ham82, §II.2–II.3].

13.01. (Christoph) The Proof of the Nash-Moser theorem [Ham82, §III.1].

20.01. (Jorn) Applications of the Nash-Moser theorem [Ham82, §III.2].

27.01. T.B.D.

03.02. T.B.D.

References

[Ham82] Richard S. Hamilton. ‘The inverse function theorem of Nash and Moser’. Bull. Am. Math. Soc., New Ser., 7:65–222, 1982.

[Sch22] Alexander Schmeding. ‘An Introduction to Infinite-Dimensional Differential Geometry’. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2022.