Analysis 1

Übungsblatt 8

Die Lösungen müssen in den Übungsbriefkasten Analysis 1 (Raum 301 im MI) geworfen werden. Abgabeschluss ist am Donnerstag, den 15.12.2016, um 12 Uhr.

Aufgabe 1: Bestimmen Sie, für welche $x \in \mathbb{R}$ die Reihe $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k$

- (a) unbedingt konvergiert,
- (b) bedingt konvergiert,
- (c) divergiert.

Aufgabe 2 (4 Punkte): Für welche $z \in \mathbb{C}$ konvergiert die Reihe $\sum_{n=1}^{\infty} \left(\frac{z+i}{z-2i}\right)^n$.

Aufgabe 3 (2+2+2 Punkte): Bestimmen Sie alle $x \in \mathbb{R}$ bzw. $z \in \mathbb{C}$, für die die Potenzreihe konvergiert bzw. divergiert:

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^{16}}{n!} z^n$$

$$(c) \sum_{n=1}^{\infty} \frac{n}{2^n + 1} z^n$$

Aufgabe 4: Wir definieren die (reellen) Potenzreihen $S, C : \mathbb{R} \to \mathbb{R}$ durch

$$S(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad \text{und} \qquad C(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

- (a) Für welche $x \in \mathbb{R}$ konvergieren diese Reihe absolut?
- (b) Zeigen Sie: $\exp(ix) = C(x) + iS(x)$ für $x \in \mathbb{R}$.

Aufgabe 5: Zeigen Sie die folgende Verallgemeinerung des Cauchy-Produktsatzes:

Seien $\{a_n\}_{n\in\mathbb{N}}$ und $\{b_n\}_{n\in\mathbb{N}}$ zwei komplexe Folgen. Wenn $\sum_{k=0}^{\infty} a_k$ absolut konvergiert und $\sum_{k=0}^{\infty} b_k$ (eventuell nur bedingt) konvergiert, so gilt:

$$\lim_{n \to \infty} \sum_{k=0}^{n} \left(\sum_{m=0}^{k} a_m b_{k-m} \right) = \left(\lim_{n \to \infty} \sum_{k=0}^{n} a_k \right) \cdot \left(\lim_{n \to \infty} \sum_{k=0}^{n} b_k \right)$$

Aufgabe 6: Wir betrachten zwei Reihen $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$. Wahr oder falsch?

- (a) Wenn $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ divergieren, so divergiert auch das Cauchy-Produkt $\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$.
- (b) Es existiert eine Folge a_n von positiven reellen Zahlen, so dass $\sum_{n=0}^{\infty} a_n$ bedingt konvergiert.

Aufgabe 7: Sei
$$a_n = \frac{(-1)^{n+1}}{\sqrt{n+1}}$$
. Gilt $\left(\sum_{n=0}^{\infty} a_n\right)^2 = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k a_{n-k}$?

Aufgabe 8: Beweisen oder widerlegen Sie:

(a)
$$\left(\sum_{n=0}^{\infty} z^n\right)^2 = \sum_{n=0}^{\infty} z^{2n}$$
 für alle $z \in \mathbb{C}$ mit $|z| < 1$.

(b)
$$\left(\sum_{n=0}^{\infty} z^n\right) \left(\sum_{n=0}^{\infty} (-z)^n\right) = \sum_{n=0}^{\infty} z^{2n}$$
 für alle $z \in \mathbb{C}$ mit $|z| < 1$.

Aufgabe 9 (2+2 Punkte): Beweisen oder widerlegen Sie folgende Aussage.

(a) $\forall x \in (-1,1) : \left(\sum_{n=0}^{\infty} \frac{-2x^n}{4n^2 - 1}\right) \left(\sum_{n=0}^{\infty} x^n\right) = \sum_{n=0}^{\infty} \frac{2n + 2}{2n + 1} x^n.$

(b)
$$\forall x \in \mathbb{R} : \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right) \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \right) = \sum_{n=0}^{\infty} (-1)^n \frac{4^n x^{2n+1}}{(2n+1)!}$$

Aufgabe 10 (6 Punkte): Seien $a_n \in \mathbb{C}$ definiert für $n \in \mathbb{Z}$ und $\{b_k\}_{k \in \mathbb{N}}$ eine Folge. Die unendlichen Summen

$$\sum_{n \in \mathbb{Z}} a_n := \lim_{N \to \infty} \sum_{n = -N}^{N} a_n \quad \text{und} \quad \sum_{k \in \mathbb{N}} b_k$$

seien absolut konvergent. Zeigen Sie die Gleichheit

$$\left(\sum_{n\in\mathbb{Z}}a_n\right)\cdot\left(\sum_{k\in\mathbb{N}}b_k\right)=\lim_{n\to\infty}\sum_{k=0}^n\sum_{2|l|\leq n-k}a_l\cdot b_k.$$