Analysis 1

Übungsblatt 11

Die Lösungen müssen in den grauen Briefkasten im Innenhof des MI geworfen werden. Abgabeschluss ist Donnerstag, der 12.01., um 12:00 Uhr.

Schreiben Sie Name, Matrikelnummer und Gruppennummer gut sichtbar auf die erste Seite Ihrer Abgabe und tackern Sie mehrseitige Abgaben.

Aufgabe 1 (2 + 1 + 1 Punkte): Für $z \in \mathbb{C}$ sind die Funktionen Sinus hyperbolicus und Kosinus hyperbolicus definiert durch

$$\sinh(z) := \frac{e^z - e^{-z}}{2}$$
 und $\cosh(z) := \frac{e^z + e^{-z}}{2}$.

(a) Beweisen Sie, dass für alle $z \in \mathbb{C}$ gilt

$$\sinh(z) = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!}$$
 und $\cosh(z) = \sum_{k=0}^{\infty} \frac{z^{2k}}{(2k)!}$.

- (b) Untersuchen Sie den Zusammenhang zwischen sinh(z) und sin(iz).
- (c) Untersuchen Sie den Zusammenhang zwischen $\cosh(z)$ und $\cos(iz)$.

Aufgabe 2: Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} -x^2 & \text{für } x \in \mathbb{Q}, \\ 0 & \text{für } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Ist f differenzierbar in 0?

Aufgabe 3 (1+1+1+4+3+1 Punkte): Sei $I \subset \mathbb{R}$ ein Intervall. Eine Funktion $f: I \to \mathbb{R}$ heißt gleichmäßig Lipschitz-stetig auf I, wenn es ein L > 0 gibt so, dass

$$|f(x) - f(y)| \le L|x - y|$$
 für alle $x, y \in I$.

Oft nennt man gleichmäßig Lipschitz-stetige Funktionen einfach nur Lipschitz-stetig auf I. Beachten Sie den Unterschied zur Definition der Lipschitz-Stetigkeit in einem Punkt (Definition 11.6).

- (a) Aus der Vorlesung wissen Sie, dass Lipschitz-Stetigkeit in einem Punkt a die Stetigkeit in a impliziert. Folgt aus Stetigkeit in a auch Lipschitz-Stetigkeit in a?
- (b) Offensichtlich impliziert gleichmäßige Lipschitz-Stetigkeit die Lipschitz-Stetigkeit in jedem Punkt. Gilt auch die Umkehrung?

- (c) Folgt aus gleichmäßiger Lipschitz-Stetigkeit gleichmäßige Stetigkeit?
- (d) Folgt aus gleichmäßiger Stetigkeit gleichmäßige Lipschitz-Stetigkeit? *Hinweis*: Betrachten Sie die Funktion $f: (0,1] \to \mathbb{R}$ mit $f(x) = x \sin(\frac{1}{x})$.
- (e) Aus der Vorlesung wissen Sie, dass aus Differenzierbarkeit in a Lipschitz-Stetigkeit in a folgt. Folgt aus Differenzierbarkeit auf einem Intervall I auch gleichmäßige Lipschitz-Stetigkeit auf I? Was passiert, wenn I abgeschlossen ist?
- (f) Folgt aus gleichmäßiger Lipschitz-Stetigkeit auf einem Intervall I auch die Differenzierbarkeit auf I?

Aufgabe 4 (3 Punkte): Es seien $f, g: [a, b] \to \mathbb{R}$ stetige Funktionen, die auf (a, b) differenzierbar sind mit

$$f(a) \leq g(a)$$
.

Zeigen Sie, dass wenn $f'(x) \leq g'(x)$ für alle $x \in (a,b)$ gilt, so gilt auch $f(x) \leq g(x)$ für alle $x \in [a,b]$.

Aufgabe 5: (a) Wir betrachten für $y \in \mathbb{R}$ die Funktion $f: \mathbb{R} \to \mathbb{R}$, definiert durch f(x) = |x + iy|. Zeigen Sie, dass

$$f'(x) = \frac{x}{|x+iy|}$$
 für $x+iy \neq 0$

und dass die Funktion nicht differenzierbar ist für x + iy = 0.

(b) Wir betrachten für $x \in \mathbb{R}$ die Funktion $g: \mathbb{R} \to \mathbb{R}$, definiert durch g(y) = |x + iy|. Zeigen Sie, dass

$$g'(y) = \frac{y}{|x+iy|} \text{ für } x+iy \neq 0$$

und dass die Funktion nicht differenzierbar ist für x + iy = 0.

(c) Ist die nächste Aussage richtig oder falsch?

Wenn $h \colon \mathbb{C} \to \mathbb{C}$, definiert durch h(z) = |z|, komplex differenzierbar ist für $z \neq 0$, dann folgt

- aus (a), dass $h'(z) = \frac{\operatorname{Re}(z)}{|z|}$ für $z \neq 0$, und
- aus (b), dass $ih'(z) = \frac{\operatorname{Im}(z)}{|z|}$ für $z \neq 0$.
- (d) Ist die nächste Aussage richtig oder falsch?

Die Funktion $h \colon \mathbb{C} \to \mathbb{C}$ definiert durch h(z) = |z| ist nirgends komplex differenzierbar.

Aufgabe 6 (2 Punkte): Eine unbekannten Größe $x \in \mathbb{R}$ wird n mal gemessen. Es ergeben sich die Messwerte $a_1, \ldots, a_n \in \mathbb{R}$. Der mittlere quadratische Fehler wird durch

$$f(x) = \frac{1}{n} \sum_{k=1}^{n} (x - a_k)^2$$

definiert. Für welches $x \in \mathbb{R}$ wird dieser Fehler minimal?