Analysis 1

Übungsblatt 9

Die Lösungen müssen in den grauen Briefkasten im Innenhof des MI geworfen werden. Abgabeschluss ist Donnerstag, der 15.12., um 12:00 Uhr.

Schreiben Sie Name, Matrikelnummer und Gruppennummer gut sichtbar auf die erste Seite Ihrer Abgabe und tackern Sie mehrseitige Abgaben.

Aufgabe 1 (5 Punkte): Seien $f: \mathbb{R} \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) := \begin{cases} \sqrt{-x} & \text{für } x \le 0, \\ p(x) & \text{für } 0 < x < 1, \\ \frac{1}{x} & \text{für } x \ge 1, \end{cases} \qquad g(x) := \begin{cases} p(x) & \text{für } x \le 2, \\ -x & \text{für } x > 2, \end{cases}$$

wobei p ein Polynom von Grad 2 ist. Bestimmen Sie p derart, dass sowohl f als auch g stetig sind. Skizzieren Sie die Graphen von f und g.

Aufgabe 2 (2+2+2 Punkte): (a) Zeigen Sie, dass für $x \in \mathbb{R}$ mit |x| < 1 gilt

$$|\exp(x) - 1| \le \sum_{k=1}^{\infty} |x|^k = \frac{|x|}{1 - |x|}.$$

- (b) Zeigen Sie, dass die Funktion exp: $\mathbb{R} \to \mathbb{R}$ stetig in 0 ist.
- (c) Zeigen Sie, dass die Funktion exp: $\mathbb{R} \to \mathbb{R}$ stetig ist. Hinweis: $\exp(x+y) = \exp(x) \exp(y)$.

Aufgabe 3: Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit der Eigenschaft f(x+y) = f(x) + f(y) für alle $x, y \in \mathbb{R}$. Zeigen Sie, dass f stetig auf \mathbb{R} ist, falls f stetig in 0 ist.

Aufgabe 4 (2+2+2 Punkte): Sei die Funktion f definiert durch

$$f(x) = \begin{cases} 0 & \text{für } |x| < \pi, \\ 1 & \text{für } |x| \ge \pi. \end{cases}$$

- (a) Ist $f: \mathbb{R} \to \mathbb{R}$ stetig?
- (b) Ist $f: \mathbb{Q} \to \mathbb{R}$ stetig?
- (c) Ist $f: \mathbb{Z} \to \mathbb{R}$ stetig?

Aufgabe 5: Wir betrachten die Funktionen $f_n : \mathbb{R} \to \mathbb{R}$ definiert durch

$$f_n(x) = \sum_{k=0}^{4n} (-x)^k.$$

Berechnen Sie die folgenden Grenzwerte oder zeigen Sie, dass der Grenzwert nicht existiert.

(a) $\lim_{x\downarrow 1} \lim_{n\to\infty} f_n(x)$,

(c) $\lim_{x \uparrow 1} \lim_{n \to \infty} f_n(x)$.

(b) $\lim_{n\to\infty} \lim_{x\downarrow 1} f_n(x)$,

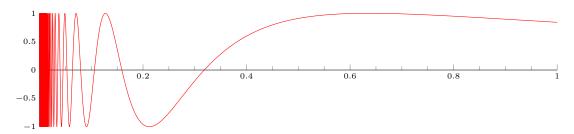
(d) $\lim_{n\to\infty} \lim_{x\uparrow 1} f_n(x)$.

Aufgabe 6 (5 Punkte): Sei I ein Intervall in \mathbb{R} . Eine Funktion $f: I \to \mathbb{R}$ heißt gleichmäßig stetig auf I, wenn

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in I \colon |x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon.$$

Wir betrachten die Funktion $f(x) = \sin(\frac{1}{x})$ auf I = (0,1).

- (a) Ist f stetig auf I?
- (b) Ist f gleichmäßig stetig auf I?



Aufgabe 7: Sind die folgenden Funktionen stetig oder sogar gleichmäßig stetig?

- (a) $f: (0,1) \to \mathbb{R} \text{ mit } f(x) = \frac{1}{x}$,
- (b) $f: (1, \infty) \to \mathbb{R}$ mit $f(x) = \frac{1}{x}$,
- (c) $g: \mathbb{R} \to \mathbb{R} \text{ mit } g(x) = x^2$,
- (d) $h: \mathbb{R} \to \mathbb{R}$ mit $h(x) = \sqrt{|x|}$.

Begründen Sie Ihre Antworten.

Die Fachschaft lädt alle Studierenden zu den folgenden Veranstaltungen ein:

Am Dienstag, dem 13.12., treffen wir uns um 18:00 Uhr am Weihnachtsmarkt St. Aposteln (Nähe Neumarkt) zu einer Weihnachtsmarkttour.

Am Samstag, dem 17.12., findet das erste Mal seit Corona wieder unsere legendäre Weihnachtsfeier statt.

Start ist um 17:47 Uhr im Efferino in der Hahnenstraße 25 in Hürth.