N				
	Λ	Λ / L	L١	•
T	\Box	\mathbf{IVI}	Ľ	•

Aufgabe 1

1. (a) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine Funktion. Wie definiert man "f ist differenzierbar"?

Beweisen oder widerlegen Sie:

- (b) Die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ mit g(x) = ||x|| ist differenzierbar.
- (c) Die Funktion $h: \mathbb{R}^2 \to \mathbb{R}$ mit $h(x) = \cos(\|x\|)$ ist differenzierbar. Hinweis: Taylorpolynom vom Cosinus.

T		_			
	Λ	\mathbb{N}	17 1	Δ.	•
\perp N	$\boldsymbol{\Box}$	ΙV	LI	Ľ	

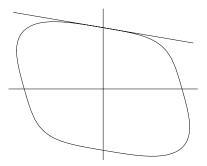
2. Wir betrachten die Kurve $x:[0,2\pi]\to\mathbb{R}^3$ mit

$$x(t) = \left((\cos t)^2, \sqrt{2} \sin t \cos t, (\sin t)^2 \right).$$

- (a) Berechnen Sie die Bogenlänge dieser Kurve.
- (b) Parametrisieren Sie um auf Bogenlänge.
- (c) Zeigen Sie, dass die Spur dieser Kurve in einer Ebene liegt.

\mathbf{T}				
	Λ	ΛA	Γ	•
	$\overline{}$	IV	L'1	

3. Man betrachte die Tangente in (0,1) an $G = \{(x,y); x^4 + 2xy + 3y^4 = 3\}$. Wo schneidet diese Tangente die x-Achse?



N	٨	1 /		
$\perp N$	\boldsymbol{A}	M	Ŀ	

AUFGABE 4

4. (a) Seien $G, H \subset \mathbb{R}^2$ kompakte und konvexe Gebiete. Sei $F : \mathbb{R}^2 \to \mathbb{R}^2$ eine stetig differenzierbare Funktion, die G ein-eindeutig abbildet auf H. Ausserdem sei $F^{inv} : H \to G$ stetig differenzierbar. Sei $\varphi : H \to \mathbb{R}$ eine stetige Funktion. Ergänzen Sie:

$$\int_{H} \varphi(x,y) d(x,y) = \int_{G} \dots d(u,v).$$

(b) Berechnen Sie $\int_{K} \left(1 - x^{2} - y^{2}\right) d\left(x, y\right)$ für

$$K = \{(x, y) \in \mathbb{R}^2; 0 \le x + y \le 4 \text{ und } 0 \le y - x \le 2\}.$$

Hinweis: Verwenden Sie neue Koordinaten u, v mit u = x + y und v = y - x.

5. Sei $A \in M^{2\times 2}(\mathbb{R})$ eine bestimmte Matrix. Für diese Matrix hat das folgende System von Differentialgleichungen

$$\left(\begin{array}{c} x'(t) \\ y'(t) \end{array}\right) = A \left(\begin{array}{c} x(t) \\ y(t) \end{array}\right)$$

die Lösungen

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = x_0 \begin{pmatrix} e^t \cos 2t \\ 2e^t \sin 2t \end{pmatrix} + y_0 \begin{pmatrix} -\frac{1}{2}e^t \sin 2t \\ e^t \cos 2t \end{pmatrix}.$$

Dabei können x_0 und y_0 in \mathbb{R} beliebig gewählt werden.

- (a) Welche Stabilität hat dieses System? (neutral stabil, asymptotisch stabil, instabil, ...)
- (b) Zu welchem Typ gehört dieses System? (Knoten, Strudel, ...)
- (c) Welche Eigenwerte hat A?
- (d) Berechnen Sie $\exp(tA)$.
- (e) Schreiben wir $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Berechnen Sie a, b, c und d.

6. Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = x^4 + 2y^4 - x^2y^2 - y - 3x$$

hat genau ein Extremum, nämlich ein Minimum, und man möchte dieses Minimum approximieren. Ein angewandter Mathematiker benutzt das Newton-Verfahren, um einen Rechner zu programmieren, der dann die Zahlenpaare (x,y) und Werte f(x,y) hier rechts liefert.

(x,y)	f(x,y)
(1,1)	-2
(0.990748, 0.677654)	-2.7154
(0.988040, 0.659279)	-2.71686
(0.987951, 0.658635)	-2.71686
(0.987951, 0.658634)	-2.71686
(0.987951, 0.658634)	-2.71686

Geben Sie die Details eines Newton-Verfahrens zur Approximation des Minimums dieser Funktion f an.

T				
N	Λ	ΝЛ	Γ	•
$\top N$	$\boldsymbol{\sqcap}$	LVL	ت.	•

Aufgabe 7

7. Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = e^{x-y} + 2x^2 + xy^3 - 6x - y^2$$

hat einen stationären Punkt in (1,1). Hat f dort ein Extremum? Wenn ja: Ist es ein Minimum oder ein Maximum? Ist es lokal oder global?

-	N T				
		Λ	\mathbf{N}	Γ	•
	N N	\rightarrow	$\mathbf{I}\mathbf{V}$	l Pı	_

- 8
- 8. Entscheiden Sie bei folgenden Teilmengen des \mathbb{R}^2 , welche offen und welche abgeschlossen sind. Begründen Sie Ihre Aussagen.
 - (a) \emptyset (die leere Menge);
 - (b) $\{(x,y); 0 < x^2 + y^2 < 1\};$
 - (c) $\{(x,0); 0 < x < 1\};$
 - (d) $\{(x,x); x \in \mathbb{Q}\}.$

$$t(x,y) = 1 + x + (y-1) + 2x(y-1) + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \frac{3}{2}x^{2}(y-1) + x(y-1)^{2}.$$

- (a) Geben Sie den Wert von $\left(\frac{\partial^3}{\partial x\partial y\partial x}f\left(x,y\right)\right)_{|(x,y)=(0,1)}$ an.
- (b) Geben Sie das Taylorpolynom zweiter Ordnung von f in (0,1) an.

N	Δ	M	\mathbf{E}	•
T	\Box	TAT	Ľ	•

- $10.\ Benennen Sie den Typ und berechnen Sie alle Lösungen von$
 - (a) u'(x) + xu(x) = x.
 - (b) y'(t) = y(t) (1 y(t)).