Analysis 2

Übungsblatt 1

Die Lösungen müssen in den Übungsbriefkasten Analysis 2 (Raum 301 im MI) geworfen werden. Abgabeschluss ist am Donnerstag, den 27.04.2017, um 12 Uhr.

Aufgabe 1: Sei P die Menge der reellen Polynome. Zur Erinnerung:

$$p(x) = a_n x^n + \ldots + a_1 x + a_0 \tag{1}$$

mit $a_0, \ldots, a_n \in \mathbb{R}$ und $n \in \mathbb{N}$ heißt ein reelles Polynom in x.

Für $f, g \in P$ und $\alpha \in \mathbb{R}$ definiert man:

- die Addition f + g via (f + g)(x) = f(x) + g(x) und
- die Multiplikation $\alpha \cdot f$ via $(\alpha \cdot f) = \alpha f(x)$.

Zeigen Sie, dass $(P, +, \mathbb{R}, .)$ ein Vektorraum ist.

Aufgabe 2 (4 Punkte): Sei P der Vektorraum der Polynome wie in Aufgabe 1. Für ein Polynom p wie in (1) definieren wir

$$||p||_1 := \sum_{k=0}^n |a_k|$$
.

Prüfen Sie, ob $\|\cdot\|_1$ eine Norm auf P ist.

Aufgabe 3: Sei V ein Vektorraum und $\|\cdot\|: V \to \mathbb{R}$ eine Norm auf V. Zeigen Sie:

(a) Wenn $\|\cdot\|$ die Gleichung

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y^2||)$$
 für alle $x, y \in V$ (2)

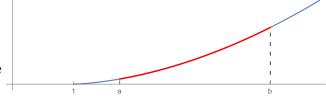
erfüllt, so definiert $\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$ ein inneres Produkt auf V und es gilt $\|x\| = \sqrt{\langle x, x \rangle}$.

(b) Gibt es ein inneres Produkt $\langle \, \cdot \, , \, \cdot \, \rangle$, so dass $||x|| = \sqrt{\langle \, x \, , \, x \, \rangle}$ gilt, dann erfüllt $|| \cdot ||$ die Gleichung (2).

Aufgabe 4: Es seien $1 \le a < b$ gegeben. Der Graph der Funktion

$$\gamma(t) = \frac{1}{2} \left(t\sqrt{t^2 - 1} - \ln\left(\sqrt{t^2 - 1} + t\right) \right)$$

für $t \in [a, b]$ stellt eine zweidimensionale Kurve dar. Berechne ihre Bogenlänge.



Aufgabe 5 (1+2 Punkte): Sei $f : \mathbb{R} \to \mathbb{R}^2$ durch

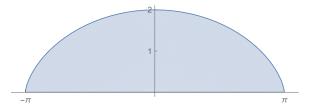
$$f(t) = (1 + \cos(t)) \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$

definiert. Zeigen Sie, dass f differenzierbar, aber nicht glatt ist.

Aufgabe 6 (3+3 Punkte): Sei $f:(0,2\pi)\to\mathbb{R}^2$ die Kurve, die durch

$$f(t) = \begin{pmatrix} t - \sin(t) - \pi \\ 1 - \cos(t) \end{pmatrix}$$

definiert ist.



- (a) Berechnen Sie die Bogenlänge.
- (b) Berechnen Sie den Flächeninhalt des Gebietes, welches von der Kurve und der horizontalen Achse eingeschlossen wird.

Aufgabe 7: Seien a, b > 0 und $f: [0, 2\pi] \to \mathbb{R}^2$ die Kurve, die durch

$$f(t) = \left(\begin{array}{c} a\cos(t) \\ b\sin(t) \end{array}\right)$$

definiert ist.

- (a) Zeigen Sie, dass f eine geschlossene, glatte Kurve ist.
- (b) Zeichnen Sie die Spur der Kurve.
- (c) Bestimmen Sie den Flächeninhalt des von der Kurve eingeschlossenen Gebiets.

Aufgabe 8 (2+2+3 Punkte): Es sei für t > 0 die folgende Kurve gegeben:

$$f(t) = \begin{pmatrix} \frac{1}{2}t^2 + \frac{1}{2} \\ 1 - t \\ \frac{\sqrt{8}}{3}(t^{3/2} - 1) \end{pmatrix}$$

- (a) Berechnen Sie den Winkel zwischen der Kurve am Punkt f(1) und der Geraden durch 0 und f(1).
- (b) Zeigen Sie, dass f eine glatte Kurve ist.
- (c) Bestimmen Sie die Umparametrisierung auf Bogenlänge.

Aufgabe 9: Sei $a \in \mathbb{R} \setminus \{0\}$ und k < 0. Die Funktion $\phi : [0, \infty) \to \mathbb{R}^2$ sei gegeben durch

2

$$\phi(t) = \begin{pmatrix} a \exp(kt) \cos(t) \\ a \exp(kt) \sin(t) \end{pmatrix}$$

- (a) Ist die Kurve glatt?
- (b) Berechnen Sie die Bogenlänge der Kurve.
- (c) Berechnen Sie den Winkel zwischen der Kurve an einem beliebigen Punkt P und der Geraden durch 0 und P.

