Analysis 3

Übungsblatt 12

Die Lösungen müssen in den entsprechenden Kasten im Studierendenraum 3. Stock MI geworfen werden. Abgabeschluss ist Donnerstag, der 18.1., um 12:00 Uhr.

Schreiben Sie Name, Matrikelnummer und Gruppennummer gut sichtbar auf die erste Seite Ihrer Abgabe und tackern Sie mehrseitige Abgaben.

Aufgabe 1: Berechnen Sie für jedes $s \in E = \{(x, y, z) : x^2 + y^2 + z^2 - xy = 1\}$ den Tangentialraum $T_s E$.

Hinweis: Für $s = (0, 0, 1)^T$ gilt:

$$\begin{aligned} & \textit{Der Tangentialraum } T_s E = \left\{ (s, v): \ v = c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ c_1, c_2 \in \mathbb{R} \right\} \\ & \textit{Die Tangentialfläche ist } F = \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ c_1, c_2 \in \mathbb{R} \right\}. \end{aligned}$$

Aufgabe 2: Sei $V = \mathbb{R}^4$ und

$$\omega_1(x,y) = x_1y_2 - x_2y_1$$
 $\omega_2(x,y) = x_3y_4 - x_4y_3$.

- (a) Begründen Sie, dass $\omega_1, \omega_2 \in \Lambda^2(V^*)$.
- (b) Berechnen Sie $\omega_1 \wedge \omega_2$.

Aufgabe 3: Sei V ein endlich-dimensionaler reeller Vektorraum. Zeigen Sie: Die 1-Formen $\alpha_1, \ldots, \alpha_k \in V^*$ sind genau dann linear unabhängig, wenn $\alpha_1 \wedge \ldots \wedge \alpha_k \neq 0$.

Aufgabe 4 (3+2+5 Punkte): Sei V ein endlich-dimensionaler reeller Vektorraum. Wir betrachten den Einhänge-Operator $J: V \times \Lambda^k(V^*) \to \Lambda^{k-1}(V^*)$ aus der Definition 12.14. Zeigen Sie:

- (a) \bot ist bilinear.
- (b) Für alle $v, w \in V$ und $\omega \in \Lambda^p(V^*)$ mit $p \geq 2$ gilt

$$(v \,\lrcorner\, (w \,\lrcorner\, \omega)) = -(w \,\lrcorner\, (v \,\lrcorner\, \omega))$$

(c) Für alle $v \in V$, $\omega \in \Lambda^p(V^*)$ und $\chi \in \Lambda^q(V^*)$ gilt

$$(v \, \lrcorner \, (\omega \wedge \chi)) = (v \, \lrcorner \, \omega) \wedge \chi + (-1)^p \omega \wedge (v \, \lrcorner \, \chi)$$

Hinweis: Induktion nach p.

Aufgabe 5 (5 Punkte): Sei $f: U \to V$ eine differenzierbare Abbildung zwischen zwei offenen Mengen $U \subset \mathbb{R}^m$ und $V \subset \mathbb{R}^n$ und ω eine p-Form, sowie χ eine q-Form auf V mit $p, q \in \mathbb{N}^+$. Zeigen Sie:

$$f^*(\omega \wedge \chi) = (f^*\omega) \wedge (f^*\chi).$$

Aufgabe 6 (5 Punkte): Seien ω_1 und ω_2 die folgenden 1-Formen:

$$\omega_1 = 2x_1^2 dx_1 + (x_1 + x_2) dx_2$$
 und $\omega_2 = x_1^3 dx_1 + x_2 x_3 dx_2 - (x_1^2 + x_2^2 + x_3^2) dx_3$.

Berechnen Sie die äußeren Ableitungen $d\omega_1, d\omega_2$ und $d(\omega_1 \wedge \omega_2)$ und verifizieren Sie so die Identität $d(\omega_1 \wedge \omega_2) = (d\omega_1) \wedge \omega_2 - \omega_1 \wedge (d\omega_2)$

Aufgabe 7: Seien V, W reelle Vektorräume und $L: W \to V$ eine lineare Abbildung. Weiter sei $T^*: \Lambda^k(V^*) \to \Lambda^k(W^*)$ wie im Skript via

$$L^*\omega(w_1,\ldots,w_k) = \omega(Lw_1,\ldots,Lw_k)$$

definiert. Zeigen Sie:

- (a) $T^*(\omega \wedge \eta) = (T^*\omega) \wedge (T^*\eta)$
- (b) $(T \circ S)^* = S^* \circ T^*$
- (c) Sei nun W=V. Zeigen Sie, dass es ein $c\in\mathbb{R}$ gibt, sodass für jede $\omega\in\Lambda^n(V^*)$ gilt:

$$T^*\omega = c\omega$$

und stellt man T bezüglich einer Basis durch eine Matrix A dar, so gilt $c = \det A$.

Aufgabe 8: Man betrachte \mathbb{R}^{2n} die Form

$$\omega = \mathrm{d}x_1 \wedge \mathrm{d}x_{n+1} + \mathrm{d}x_2 \wedge \mathrm{d}x_{n+2} + \ldots + \mathrm{d}x_n \wedge \mathrm{d}x_{2n}.$$

Zeigen Sie:

- (a) $\omega \in \Lambda^2(V^*)$.
- (b) Die n-te äußere Potenz hat die Darstellung

$$\underbrace{\omega \wedge \ldots \wedge \omega}_{n\text{-Mal}} = (-1)^{n(n-1)/2} n! dx_1 \wedge \ldots \wedge dx_n \wedge dx_{n+1} \wedge \ldots \wedge dx_{2n}.$$