Funktionalanalysis

Übungsblatt 1

Die Lösungen müssen eingescannt über **Ilias** eingereicht werden. Sollten dabei Probleme auftreten melden Sie sich bei Inka Schnieders. Abgabeschluss ist am Sonntag, den 26.04.2020, um 23:59 Uhr.

Aufgabe 1: Sei $\{e_n\}_{n\in\mathbb{N}}$ die Folge von Einheitsvektoren in ℓ^2 , wobei

$$\ell^2 := \left\{ x = (x_1, x_2, \dots); \sum_{k=1}^{\infty} |x_k|^2 < \infty \right\}, \langle x, y \rangle := \sum_{k=1}^{\infty} x_k y_k \quad \text{für } x, y \in \ell^2.$$

Aus Beispiel 1.9. des Vorlesungsskriptes wissen wir, dass $(\ell^2, \langle \cdot, \cdot \rangle)$ ein Hilbertraum ist.

- a) Zeigen Sie, dass die Menge der Einheitsvektoren $\{e_n; n \in \mathbb{N}\}$ nicht folgenkompakt ist. Hinweis: Eine Teilmenge $K \subset \ell^2$ heißt folgenkompakt, wenn jede Folge in K eine konvergente Teilfolge mit Grenzwert in K besitzt.
- b) Inwiefern steht das im Widerspruch zu bekannten Kompaktheitsaussagen für endlich dimensionale Vektorräume?
- c) Zeigen Sie, dass $\lim_{n\to\infty} \langle e_n, c \rangle = 0$ für alle $c \in \ell^2$ gilt.

Aufgabe 2 (2+2+2 Punkte): Wir betrachten $(\ell^2, \|\cdot\|_2)$ und den Operator $T_1 : \ell^2 \to \ell^2$ definiert durch

$$T_1((x_1, x_2, \dots)) = (x_1, \frac{x_2}{2}, \frac{x_3}{3}, \dots).$$

- a) Geben Sie einen inversen Operator an. Also einen Operator I, sodass $(I \circ T_1)(x) = x$ für alle $x \in \ell^2$ (d.h. I ist eine Linksinverse) und $(T_1 \circ I)(x) = x$ für alle $x \in \ell^2$, die im Definitionsbereich von I liegen (d.h. I ist eine Rechtsinverse).
- b) Zeigen Sie, dass dieser inverse Operator nicht stetig ist.
- c) Geben Sie einen stetigen linearen Operator $T_2:\ell^2\to\ell^2$ an, der keine stetige lineare Linksinverse besitzt, jedoch eine stetige lineare Rechtsinverse.

Aufgabe 3: Sei X ein normierter reeller endlichdimensionaler Raum. Zeigen Sie, dass der abgeschlossene Einheitsball $\overline{B_1(0)} = \{x \in X; ||x|| \le 1\}$ kompakt ist.

Hinweis: 1. Hier kann die folgende Definition von Kompaktheit verwendet werden: Eine Menge $M \subset X$ nennt man kompakt in X, wenn es zu jeder offenen Überdeckung von M, endlich viele dieser offenen Mengen ausreichen, um M zu überdecken.

2. Man darf verwenden, dass jeder reelle n-dimensionale Raum homöomorph zum euklidischen Raum \mathbb{R}^n ist.

Aufgabe 4: Sei $A = (a_{ij})_{i,j=1}^n \in M^{n \times n}(\mathbb{R})$ eine reelle $(n \times n)$ -Matrix. Sei $X_1 = (\mathbb{R}^n, \|\cdot\|_{\infty})$ mit $\|x\|_{\infty} = \max_{k=1,\dots,n} |x_k|$ und $X_2 = (\mathbb{R}^n, \|\cdot\|_1)$ mit $\|x\|_1 = \sum_{k=1}^n |x_k|$. Seien $T_i : X_i \to X_i$ gegeben durch $T_i(x) = A \cdot x$ für $i \in \{1, 2\}$. Zeigen Sie, dass für die Operatornormen $\|T_i\|$ folgendes gilt:

- a) $||T_1|| = \max_{i=1,\dots,n} \sum_{j=1}^n |a_{ij}|$ und
- b) $||T_2|| = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}|.$

Aufgabe 5 (5 Punkte): Seien $a_{i,j} \in \mathbb{R}$ für alle $i, j \in \mathbb{N}^+$, sodass $\sum_{i,j=1}^{\infty} a_{ij}^2 < \infty$. Wir definieren den Operator $A: \ell^2 \to \ell^2$ durch

$$x \mapsto Ax = \left(\sum_{j=1}^{\infty} a_{1j}x_j, \sum_{j=1}^{\infty} a_{2j}x_j, \dots\right).$$

Zeigen Sie, dass der Operator wohldefiniert und beschränkt ist.

Aufgabe 6: Sei X ein reeller Vektorraum. Wir nennen eine Funktion $p: X \to \mathbb{R}$ subadditiv, wenn $p(x+y) \leq p(x) + p(y)$ für alle $x, y \in X$. Sei $p: X \to \mathbb{R}$ subadditiv und es gelte p(tx) = tp(x) für alle $x \in X$ und $t \in \mathbb{R}$. Zeigen Sie, dass p dann linear ist.

Aufgabe 7 (3+3+3 Punkte): Sei X der Raum der stückweise stetigen Funktionen von [0,1] nach \mathbb{R} . Es werden alle Funktionen identifiziert, die bis auf endlich viele Stellen übereinstimmen.

a) Zeigen Sie, dass $(X, \|\cdot\|_1)$ mit

$$||u||_1 := \int_0^1 |u(x)| dx \text{ für } u \in X$$

ein normierter Raum ist.

- b) Zeigen Sie, dass der Raum der stetigen Funktionen C([0,1]) nicht abgeschlossen in X ist, indem Sie eine Folge von stetigen Funktionen finden, die in X zu einer unstetigen Funktion konvergiert.
- c) Zeigen Sie, dass die Normen $\|\cdot\|_1$ und $\|\cdot\|_{\infty}$ nicht äquivalent auf C([0,1]) sind.

Hinweis: Man nennt eine Funktion $f:[0,1] \to \mathbb{R}$ stückweise stetig, wenn es endlich viele Punkte $0 = x_1 < \cdots < x_n = 1$ gibt, sodass f auf (x_i, x_{i+1}) stetig ist und die Grenzwerte $\lim_{x \downarrow x_i} f(x)$ sowie $\lim_{x \uparrow x_{i+1}} f(x)$ existieren.

Aufgabe 8: Betrachten Sie eine Indexmenge \mathcal{I} und für Funktionen $x:\mathcal{I}\to\mathbb{R}$ definieren wir $|\cdot|_p$ durch

$$|x|_p := \sup_{J \subset \mathcal{I} \text{ endlich}} \left(\sum_{i \in J} |x(i)|^p \right)^{\frac{1}{p}}.$$

Zeigen Sie, dass $|x|_p < \infty$ nur dann gelten kann, wenn $|x(i)| \neq 0$ nur für höchstens abzählbar viele $i \in \mathcal{I}$ gilt.