Funktionalanalysis

Übungsblatt 7

Die Lösungen müssen eingescannt über **Ilias** eingereicht werden. Abgabeschluss ist am Sonntag, den 14.06.2020, um 23:59 Uhr.

Aufgabe 1: Zeigen Sie, dass die folgenden Abbildungen linear und stetig sind und geben Sie jeweils den adjungierten Operator an:

- a) $\Lambda_1: (L^2(0,\infty), \|\cdot\|_{L^2(0,\infty)}) \to (\ell^2, \|\cdot\|_{\ell^2})$, gegeben durch $\Lambda_1 f = \left(\int_{k-1}^k h(x)f(x)dx\right)_{k\in\mathbb{N}^+}$, wobei $h\in BC(0,\infty)$ eine fest gewählte Funktion ist.
- b) $\Lambda_2: (\ell^2, \|\cdot\|_{\ell^2}) \to (L^2(0, \infty), \|\cdot\|_{L^2(0, \infty)})$ gegeben durch $\Lambda_2(c_1, c_2, \dots)(x) = c_k$ für $x \in (k-1, k]$ mit $k \in \mathbb{N}^+$.

Aufgabe 2: Sei die Norm $\|\cdot\|$ für $u \in C^1([0,1])$ gegeben durch $\|u\| = \max\{\|u\|_{\infty}, \|u'\|_{\infty}\}$. Wir definieren den Operator

$$\Lambda: (C^1([0,1]), \|\cdot\|) \to (C^1([0,1]), \|\cdot\|_{\infty}), \quad (\Lambda u)(x) = \cosh(x)u(x).$$

- a) Zeigen Sie, dass Λ bijektiv, linear und beschränkt ist.
- b) Besitzt Λ eine lineare beschränkte Inverse?

Widerspruch.

Aufgabe 3 (4+4+2 Punkte): a) Sei $(V, \|\cdot\|)$ ein normierter Raum und $U \subset V$ ein Untervektorraum mit $U^{\circ} \neq \emptyset$. Zeigen Sie, dass dann U = V gilt.

- b) Zeigen Sie, dass es keinen Banachraum mit abzählbar unendlicher Dimension gibt, d.h. es gibt keinen Banachraum $(V, \| \cdot \|_V)$ und linear unabhängige $\{v_n\}_{n \in \mathbb{N}^+} \subset V$, sodass $V = \operatorname{Spann}(\{v_n\}_{n \in \mathbb{N}}) = \{\sum_{k=1}^n c_k v_k; c_k \in \mathbb{R}, n \in \mathbb{N}^+\}.$ Hinweis: Sei $\{v_n\}_{n \in \mathbb{N}^+} \subset V$ wie oben beschrieben und $U_k := \operatorname{Span}(v_1, \ldots, v_k)$. Dann gilt $V = \bigcup_{k \in \mathbb{N}^+} U_k$. Verwenden Sie den Satz von Baire und führen Sie dies zu einem
- c) Gibt es eine Norm, sodass der Raum der Polynome mit dieser Norm zu einem Banachraum wird?

Aufgabe 4: Betrachten Sie den Raum $(C([-1,1], \|\cdot\|_1), \text{ wobei } \|u\|_1 = \int_{-1}^1 |u(x)| dx$. Sei für jedes $n \in \mathbb{N}^+$ das folgende Funktional gegeben:

$$A_n: (C([-1,1], \|\cdot\|_1) \to (\mathbb{R}, |\cdot|), \quad A_n(u) = n \int_{-\frac{1}{n}}^{\frac{1}{n}} u(x) dx.$$

- a) Zeigen Sie, dass A_n linear und beschränkt für jedes $n \in \mathbb{N}^+$ ist und $A(u) := \lim_{n \to \infty} A_n(u)$ für jedes $u \in C([-1,1])$ existiert.
- b) Überprüfen Sie, ob A_n in der Operatornorm gegen A konvergiert. Hinweis: Berechnen Sie die Operatornorm von A_n .

- **Aufgabe 5:** a) Seien $(V, \|\cdot\|_V)$ und $(W, \|\cdot\|_W)$ normierte Räume und $\Lambda: V \to W$ ein linearer Operator. Zeigen Sie, dass die beiden folgenden Aussagen äquivalent sind:
 - i. $\{(v, \Lambda v); v \in V\}$ ist abgeschlossen in $(V \times W, \|\cdot\|)$,
 - ii. Für alle Folgen $\{v_n\}_{n\in\mathbb{N}}\subset V$ mit $v_n\to 0$ in V und $\Lambda v_n\to w$ in W gilt w=0.
 - b) Sei $(V, \|\cdot\|_V)$ ein Banachraum und $\Lambda: V \to V$ linear. Sei $B: V \times V \to \mathbb{R}$ eine stetige Bilinearform, die außerdem strikt positiv definit ist. Zeigen Sie, dass wenn $B(\Lambda v, w) = B(v, \Lambda w)$ für alle $v, w \in V$ gilt, dann folgt $\Lambda \in (BL(V; V), \|\cdot\|_{V \to V})$.
- **Aufgabe 6:** a) Seien $(V, \|\cdot\|_V)$ und $(W, \|\cdot\|_W)$ Banachräume und $\Lambda \in (BL(V; W), \|\cdot\|_{V \to W})$ eine bijektive Abbildung. Zeigen Sie, dass es dann zwei Konstanten $c_1, c_2 > 0$ gibt, sodass

$$c_1 ||v||_V \le ||\Lambda v||_W \le c_2 ||v||_V$$
 für alle $v \in V$.

b) Sei V ein Vektorraum mit zwei Normen $\|\cdot\|_1$ und $\|\cdot\|_2$, sodass $(V, \|\cdot\|_1)$ sowie $(V, \|\cdot\|_2)$ Banachräume sind. Zeigen Sie, dass wenn es eine Konstante $c_1 > 0$ gibt mit $\|v\|_2 \le c_1 \|v\|_1$ für alle $v \in V$, dann gibt es auch eine Konstante $c_2 > 0$, sodass $\|v\|_1 \le c_2 \|v\|_2$ für alle $v \in V$. Das heißt die beiden Normen sind äquivalent.

Aufgabe 7 (3+4+3 Punkte): Seien $a, b \in \mathbb{R}$ mit a < b und $K \in C([a, b]^2)$. Zeigen Sie, dass die Integralgleichung

$$u(x) - \int_a^x K(x, y)u(y)dy = g(x), \tag{1}$$

für jedes $g \in C([a, b])$ eine eindeutige Lösung $u \in C([a, b])$ besitzt. Gehen Sie dabei wie folgt vor:

a) Zeigen Sie, dass der Operator $\Lambda: (C([a,b]),\|\cdot\|_{\infty}) \to (C([a,b]),\|\cdot\|_{\infty})$ gegeben durch

$$\Lambda(u)(x) = \int_{a}^{x} K(x, y)u(y)dy$$

linear und beschränkt ist.

b) Zeigen Sie, dass es eine Konstante M > 0 gibt, sodass

$$|\Lambda^n(u)(x)| \le \frac{\|u\|_{\infty} M^n}{n!} (x-a)^n$$
 für alle $n \in \mathbb{N}^+$.

c) Zeigen Sie, dass $\nu(\Lambda) < 1$ und damit die Behauptung, dass es für jedes $g \in C([a,b])$ eine eindeutige Lösung $u \in C([a,b])$ der Gleichung (1) gibt.

Hinweis: Sie dürfen verwenden, dass $\lim_{n\to\infty} (n!)^{1/n} = \infty$.

- **Aufgabe 8:** a) Sei $(H, \langle \cdot, \cdot \rangle)$ ein reeller Hilbertraum und $\| \cdot \|$ die durch das innere Produkt induzierte Norm. Sei $\Lambda \in BL((H, \| \cdot \|); (H, \| \cdot \|))$ ein selbstadjungierter Operator. Zeigen Sie, dass dann $\nu(\Lambda) = \|\Lambda\|_{H \to H}$.
 - b) Berechnen Sie den Spektralradius des Operators

$$\Lambda: (L^2(0,1), \|\cdot\|_2) \to (L^2(0,1), \|\cdot\|_2), \quad \Lambda(u)(x) = xu(x).$$