Möbiusabbildungen sind bijektive Abbildungen fvon $\widehat{\mathbb{C}}$ nach $\widehat{\mathbb{C}}$ der Form

$$f\left(z\right) = \frac{\alpha z + \beta}{\gamma z + \delta},$$

mit einer Bedingung an $\alpha, \beta, \gamma, \delta$.

- (a) Welche Bedingung erfüllen $\alpha, \beta, \gamma, \delta$?
- (b) Gibt es eine solche Abbildung f mit

$$f(1) = 1, f(0) = i \text{ und } f(-1) = -1 ?$$

(c) Gibt es eine solche Abbildung f mit

$$f(1) = 1$$
, $f(0) = i$, $f(-1) = -1$ und $f(\infty) = -i$?

$$z \in (-\infty, -1] \cup (1, \infty) \Leftrightarrow \frac{1+z}{1-z} \in (-\infty, 0]$$
.

(b) Für welche $z \in \mathbb{C}$ gilt:

$$\frac{d}{dz}\operatorname{Log}\left(\frac{1+z}{1-z}\right) = \frac{2}{1-z^2}?$$

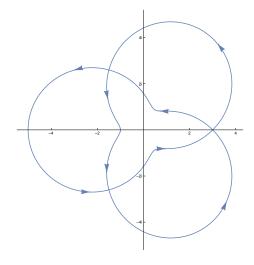
Begründen Sie Ihre Antwort sorgfältig.

Die Bildmenge der Kurve $\gamma:[0,4\pi]\to\mathbb{C},$ definiert durch

$$\gamma(t) = \left(3 + 2\sin\left(\frac{3}{2}t\right)\right)e^{it},$$

ist hier skizziert. Berechnen Sie

$$\int_{\gamma} \frac{4}{4 - z^2} dz.$$



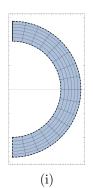
- (a) Zeigen Sie, dass $u\left(x,y\right)=e^{y}\sin\left(x\right)$ harmonisch auf \mathbb{R}^{2} ist.
- (b) Berechnen Sie eine holomorphe Funktion $h:\mathbb{C}\to\mathbb{C}$ derart, dass $\mathrm{Re}\left(h\left(x+iy\right)\right)=u\left(x,y\right)$ für $x,y\in\mathbb{R}.$

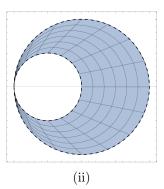
T				
	Λ	\mathcal{N}	Γ	•
\perp N .	H	$\Delta V_{\rm A}$	$L\mathbf{L}$	•

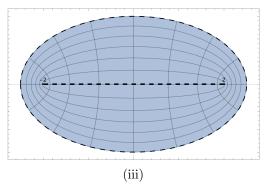
Wir betrachten $f(z) = \frac{1}{\cos(z)}$. Es gibt $a_n \in \mathbb{C}$ derart, dass in der Nähe von 0 folgendes gilt:

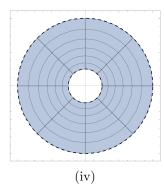
$$f(z) = \sum_{n=0}^{\infty} a_n z^n.$$

- (a) Berechnen Sie a_0, a_1, a_2 und a_3 .
- (b) Welchen Konvergenzradius hat diese Potenzreihe?









Sei $A=\{z\in\mathbb{C};1<|z|<2\}$. Es gibt 4 Abbildungen $f_k:A\to\mathbb{C}$ und 4 Bilder $f_k(A)$.

$$f_1(z) = z^2,$$

$$f_{2}(z) = \sqrt{z} := \sqrt{|z|} \exp\left(\frac{1}{2}i\operatorname{Arg}(z)\right),$$

$$f_3(z) = z + \frac{1}{z},$$

$$f_4(z) = z + |z|.$$

- (a) Welche Abbildung gehört zu welchem Bild?
- (b) Welche Abbildungen sind konform?

Begründen Sie Ihre Antworten.

NAME:	Aufgabe 7 \square	

Geben Sie die Vorschrift einer meromorphen Funktion mit der Hauptteilverteilung $\left\{\frac{k}{(z-k)^2}\right\}_{k\in\mathbb{N}^+}$ an.

NT		70.	<i>r</i> т	٦.
$\perp N$	Α	IV	ΊĿ	մ: ։

Aufgabe 8

Welche ganzen Funktionen $f:\mathbb{C}\to\mathbb{C}$ erfüllen

$$\frac{1}{1+|z|} \le |f(z)| \le 1+|z| \text{ für alle } z \in \mathbb{C} ?$$

\mathbf{T}					
	Λ	$\mathbf{\Lambda}$	/ [\mathbf{E}	•
\perp N .	H	ı۱.	/1.	\mathbf{L}	•

Aufgabe 9

Wahr oder nicht?

(a)
$$\prod_{k=1}^{\infty} \left(1 - \frac{x}{k}\right)$$
 konvergiert für alle $x \in \mathbb{R}^+$.

(b)
$$\prod_{k=1}^{\infty} \left(1 - \frac{z}{k^2}\right)$$
 konvergiert für alle $z \in \mathbb{C}$.

Begründen Sie Ihre Antworten.