Sei $\Omega \subset \mathbb{R}^2$ ein beschränktes Gebiet. Wir definieren $J_1, J_2, J: W_0^{1,2}(\Omega) \to \mathbb{R}$ durch

$$J_{1}(u) = \int_{\Omega} (u_{x}(x, y)^{2} + u_{y}(x, y)^{2} + u_{x}(x, y) u_{y}(x, y)) d(x, y),$$
$$J_{2}(u) = \int_{\Omega} \cos(u(x, y)) d(x, y),$$

und setzen $J(u) = J_1(u) + J_2(u)$. Wir sind interessiert an $u_0 \in W_0^{1,2}(\Omega)$ derart, dass

$$J(u_0) = \inf_{u \in W_0^{1,2}(\Omega)} J(u). \tag{1}$$

- \bullet (a) Wenn eine Lösung u_0 existiert, welches schwach formulierte Randwertproblem erfüllt sie?
 - (b) Wenn man zeigen kann, dass $u_0 \in C^2(\overline{\Omega})$ gilt, welches stark formulierte Randwertproblem erfüllt u_0 ?
 - (c) Zeigen Sie die Herleitung diese Randwertprobleme.
- 2 Ist die partielle Differentialgleichung im Randwertproblem von 1b elliptisch? Begründen Sie Ihre Antwort.
- **3** (a) Welche Art Bedingung am Problem braucht man, um von $u_0 \in W_0^{1,2}(\Omega)$ nach $u_0 \in C^2(\overline{\Omega})$ zu gelangen?
 - (b) Skizzieren Sie den Beweis, dass wenn diese Bedingung erfüllt ist und $u_0 \in W_0^{1,2}(\Omega)$ existiert, dass $u_0 \in C^2(\overline{\Omega})$.
- **4** (a) Wann heißt ein Funktional $F:W_{0}^{1,2}\left(\Omega\right)\to\mathbb{R}$ konvex?
 - (b) Ist $J_1: W_0^{1,2}(\Omega) \to \mathbb{R}$ konvex? Begründen Sie Ihre Antwort.
 - (c) Ist $J_2: W_0^{1,2}(\Omega) \to \mathbb{R}$ konvex? Begründen Sie Ihre Antwort.
- **9** (a) Wann heißt ein Funktional $F: W_0^{1,2}(\Omega) \to \mathbb{R}$ koerzitiv?
 - (b) Begründen oder verneinen Sie die Aussage: Das Funktional J ist koerzitiv.
- **6** Wie lautet die Ungleichung von Poincaré-Friedrichs?

Wir nehmen ab hier an, dass es $0 < r < R < \infty$ gibt mit

$$B_r(0) \subset \Omega \subset B_R(0)$$
.

- Begründen oder verneinen Sie die Aussage: Wenn R genügend klein ist, dann kann man mit Hilfe von Poincaré-Friedrichs zeigen, dass das Funktional J konvex ist.
- **3** Angenommen, das Funktional J ist konvex, bestimmen Sie u_0 .

Wir definieren $M_{\Omega} = \left\{ u \in W_0^{1,2}(\Omega); \|u\|_{L^2(\Omega)} = 1 \right\}$. Sei $\varphi^* \in M_{\Omega}$ derart, dass

$$\lambda_{\Omega}^{*} = J_{1}\left(\varphi^{*}\right) = \inf_{u \in M_{\Omega}} J_{1}\left(u\right).$$

- **9** Begründen oder verneinen Sie die Aussage: Wenn $\Omega_1 \subset \Omega_2$, dann gilt $\lambda_{\Omega_2}^* \leq \lambda_{\Omega_1}^*$.
- $oldsymbol{0}$ Begründen oder verneinen Sie die Aussage: Wenn r genügend groß ist, dann hat (1) keine oder mindestens 2 Minima.