

Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin G. Fischer Dr. M.C. Zimmermann

Convex Optimization

Winter Term 2020/21

- Exercise Sheet 2 (November 10, 2020) -

Exercise 2.1. Prove the following lemma: If K is a proper convex cone, then its dual cone K^* is proper.

Exercise 2.2. Prove the following lemma: Let *K* be a closed, full-dimensional convex cone. Then *x* lies in the interior of *K* if and only if $x^T y > 0$ for all $y \in K^* \setminus \{0\}$.

Exercise 2.3. Show that the set of non-negative polynomials of degree at most 2d

 $\{(a_0, a_1, \dots, a_{2d}) \in \mathbb{R}^{2d+1} : a_0 + a_1 x + \dots + a_{2d} x^{2d} \ge 0 \text{ for all } x \in \mathbb{R}\}$

is a proper convex cone for any $d \ge 0$.

Exercise 2.4. Prove the following theorem of alternatives: Let $K \subseteq \mathbb{R}^n$ be a proper convex cone, and let $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$. Then exactly one of the following two alternatives holds:

- (a) Either there exists $x \in K \setminus \{0\}$ such that Ax = 0 and $c^{\mathsf{T}}x \ge 0$,
- (b) or there exists $y \in \mathbb{R}^m$ such that $A^{\mathsf{T}}y c \in \operatorname{int} K^*$.