Universität zu Köln
Mathematisches Institut
Prof. Dr. F. Vallentin
G. Fischer

Dr. M.C. Zimmermann

Convex Optimization

Winter Term 2020/21

— Exercise Sheet 3 (November 17, 2020) —

Exercise 3.1. Show: int $\mathcal{S}_{+}^{n}=\mathcal{S}_{++}^{n}$.

Exercise 3.2. Recall that a complex square matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian (or self-adjoint) if $A=A^{*}$, i.e., $A_{i j}=\bar{A}_{j i}$ for all entries of A. The Hermitian matrices form a real vector space (of dimension n^{2}), with the Frobenius inner product

$$
\langle A, B\rangle=\sum_{i j} \bar{A}_{i j} B_{i j}=\operatorname{Tr}\left(A^{*} B\right)
$$

A Hermitian matrix $M \in \mathbb{C}^{n \times n}$ is positive semidefinite if $z^{*} M z \geq 0$ for all $z \in \mathbb{C}^{n}$, or equivalently if all eigenvalues of M are non-negative.
Consider the set \mathcal{H}_{+}^{n} of positive semidefinite complex $n \times n$-matrices as a subset of the Hermitian matrices. Show:
(a) \mathcal{H}_{+}^{n} is a self-dual proper convex cone for any $n \geq 1$.
(b) \mathcal{H}_{+}^{2} is isometric to \mathcal{L}^{3+1}.

Exercise 3.3. Given $x_{1}, \ldots, x_{n} \in \mathbb{R}$, consider the following matrix

$$
X=\left(\begin{array}{cccc}
1 & x_{1} & \ldots & x_{n} \\
x_{1} & x_{1} & 0 & 0 \\
\vdots & 0 & \ddots & 0 \\
x_{n} & 0 & 0 & x_{n}
\end{array}\right)
$$

That is, $X \in \mathcal{S}^{n+1}$ is the matrix indexed by $\{0,1, \ldots, n\}$, with entries $X_{00}=1, X_{0 i}=X_{i 0}=X_{i i}=$ x_{i} for $i \in[n]$, and all other entries are equal to 0 .
Use the Schur complement to show:

$$
X \succeq 0 \Longleftrightarrow x_{i} \geq 0 \text { for all } i \in[n] \text { and } \sum_{i=1}^{n} x_{i} \leq 1
$$

Exercise 3.4. A matrix $X \in \mathcal{S}^{n}$ is said to be diagonally dominant if

$$
X_{i i} \geq \sum_{j \in[n]: j \neq i}\left|X_{i j}\right| \text { for all } i \in[n]
$$

A matrix X is called scaled diagonally dominant if there is positive definite diagonal matrix D so that $D X D$ is diagonally dominant.
(a) Show: If X is diagonally dominant, then $X \succeq 0$.
(b) Show: If X is scaled diagonally dominant, then $X \succeq 0$.

