Universität zu Köln
Mathematisches Institut
Prof. Dr. F. Vallentin
G. Fischer

Dr. M.C. Zimmermann

Convex Optimization

Winter Term 2020/21
— Exercise Sheet 5 (December 8, 2020) —

Exercise 5.1. Determine the Löwner-John ellipsoid $\mathcal{E}_{\text {in }}\left(C_{n}\right)$ of the regular n-gon C_{n} in the plane

$$
C_{n}=\operatorname{conv}\left\{(\cos (2 \pi k / n), \sin (2 \pi k / n)) \in \mathbb{R}^{2}: k=0,1, \ldots, n-1\right\}
$$

Exercise 5.2.

(a) Let $P \subseteq \mathbb{R}^{n}$ be an n-dimensional polytope and let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Show:

$$
\mathcal{E}_{\text {out }}(A P)=A \mathcal{E}_{\text {out }}(P)
$$

(b) Let $T \subseteq \mathbb{R}^{3}$ be a regular tetrahedron with inradius 1 . Show that $\mathcal{E}_{i n}(T)=B_{3}$ and that

$$
B_{3} \subseteq T \subseteq 3 B_{3}
$$

holds.

Exercise 5.3. Let $C \in \mathcal{S}^{n}$ be a symmetric matrix and let $G=(V, E)$ be a graph with vertex set $V=[n]$. The solution of the following MAXDET problem

$$
\begin{array}{cl}
\max & \operatorname{det}\left(C+\sum_{\{i, j\} \in E} x_{i j} E_{i j}\right)^{1 / n} \\
& C+\sum_{\{i, j\} \in E} x_{i j} E_{i j} \in \mathcal{S}_{\succeq 0}^{n}
\end{array}
$$

is said to be a G-modification of C with maximal entropy. Show: If a G-modification of C with maximal entropy $A^{*}=C+\sum_{\{i, j\} \in E} x_{i j}^{*} E_{i j}$ exists, then

$$
\forall\{i, j\} \in E:\left(\left(A^{*}\right)^{-1}\right)_{i j}=0
$$

Exercise 5.4. Let $P \subseteq \mathbb{R}^{n}$ be a centrally symmetric polytope ($P=-P$). Find a conic program (with possibly infinitely many constraints) which determines the minimal value $\rho \in \mathbb{R}$ such that there exists an ellipsoid E for which $E \subseteq P \subseteq \rho E$ holds.

