Wireless Netwo

rk Simplification:

the GaussianV-Relay Diamond Network

Caner Nazaroglu, AyfeDzgiir, Member, IEEE and Christina Fragouliviember, IEEE

Abstract—We consider the GaussianN-relay diamond net-
work, where a source wants to communicate to a destination roe
through a layer of N-relay nodes. We investigate the following
question: what fraction of the capacity can we maintain by
using only k& out of the N available relays? We show that
independent of the channel configurations and the operating
SNR, we can always find a subset of relays which alone
provide a rate ﬁé — G, where C is the information theoretic
cutset upper bound on the capacity of the whole network and
G is independent of the channel coefficients and the SNR and
depends only onN and k (logarithmic in N and linear in k).
In particular, for k = 1, this means that half of the capacity of
any N-relay diamond network can be approximately achieved
by routing information over a single relay. We also show that
this fraction is tight: there are configurations of the N-relay
diamond network where every subset ofk relays alone can at
most provide approximately a fraction kLH of the total capacity.
These high-capacityk-relay subnetworks can be also discovered
efficiently. We propose an algorithm that computes a constan
gap approximation to the capacity of the GaussianN-relay
diamond network in O(N log N) running time and discovers a
high-capacity k-relay subnetwork in O(kN) running time.

This result also provides a new approximation to the capacit
of the Gaussian N-relay diamond network which is hybrid in
nature: it has both multiplicative and additive gaps. In the inter-
mediate SNR regime, this hybrid approximation is tighter than
existing purely additive or purely multiplicative approxi mations
to the capacity of this network.

I. INTRODUCTION

Fig. 1. The GaussiaiV-relay diamond network. The source is connected
to the relays through a broadcast channel, while the reley<@nnected to
the destination through a multiple-access channel.

ask the following question: can we achieve (a good part of)
the capacity of a wireless network by using only a (small)
subset of (perhaps a large number of) available relay nodes?
Traditionally, network information theory aims to charac-
terize the best end-to-end communication rate we can aehiev
in a network, without providing any understanding of the
importance of each relay for achieving this rate [1], [3]],[2
[4], [6]. However, in order to design simple and efficient
communication architectures for wireless networks, ajparh
knowing the capacity of a large network, it may be even more
useful to know what is the largest rate we can achieve by using
only a given number of the relays. We may want to know how

Consider a source connected to a destination through rate increases if we allow for more relays; how it conegar
network of wireless relays arranged in an arbitrary topglogy, the capacity of the network; and how to efficiently disaove
There are several ways to use this network. For exampgﬁe subset of relays providing the largest capacity.

we can route the information from the source to the desti-
nation over a single path, using point-to-point connedion

Or, following an information theoretic approach, we cankse

to optimally utilize all the available relays to achieve the
network capacity, the largest end-to-end communicatioae ra
this network can support. Clearly the first approach has dow
complexity and uses fewer resources of the network, whi
the second can potentially achieve much higher throughp

In this paper, we aim to understand the fundamental tra

off between using fewer relays and achieving larger rated, a

As a first step in this direction, in this paper, we consider a
source that communicates to a destination over the Gaussian
-relay diamond network depicted in Fig. 1. This is a two-
Stage network, where the source node is connectddtelays
hrough a broadcast channel and the relays are connecteal to t
estination through a multiple-access channel. We askt wha
re{alction of the capacity we can achieve by using ahnlgut of

e N relays (for example, if we route the information between

e source node and the destination over a single relay).

perhaps the possibility of having both at the same time. WeThe fraction of the capacity we can get with relays

naturally depends on the channel gains. Indeed, consider fo
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(eexample in Fig. 2. For the identical channel gains in Fig) 2(a

we can show that the communication rate achieved using only
one of the relays is onlyl bit/s/Hz away from the cut-set
upper bound on the capacity of the network; while for the
anti-symmetrical channel gains as in Fig. 2(b) using onlg on
of the relays achieves (within 1 bit/s/Hz) ortialf of the cutset



subset of-relay nodes such that the information-theoretic cut-
set upper bound on the capacity of thiselay sub-network is

Case (a) (s)

Case (b)

! ®\t2
@ larger thankLJrl (C —3log N); i.e., this step only involves the
t 9 2 cut-set upper bounds on the capacities of the corresponding
networks. We then use the compress-and-forward type of
" ®\t2 strategies in [4], [5], [6], over thi-relay sub-network. These
strategies are known to achieve the cut-set upper bound on
@ the capacity of any arbitrary Gaussian relay network within
a gap that is linear in the number of relay nodes utilized. In
2 e t particular, the result of [6] implies that we can achieve the
cut-set upper bound on the capacity of theelay network
Fig. 2. Two instantiations of a diamond relay network. within 1.3k bits/s/Hz. Combining these two steps yields (1).
An alternative relaying strategy that is often considermad f
the N-relay diamond network in the literature is amplify-and-
upper bound on the capacity of the network. forward [7], [8], [11]. For example, [11] shows that amplify
To avoid channel-specific results, we can try to providgnd-forward at the relays can achieve the cutset upper bound
worst-case guarantees that hold universally for all pdssitbn the capacity of theV-relay diamond network withir8.6
channel gains. For example, is it possible that2imelay bits/s/Hz when all channel gains in the first and the second
networks, we can always find a single relay to use and stlages are equal. To show that this approximate optimality o
achievehalf of the capacity of the diamond network Withinamp|ify_and_forward is only limited to the the case of equal
1 bit/s/Hz (as was the case for the two examples in Fig. Zhannel gains, we show that the rate achieved by this sjyrateg
We prove in this paper that this is indeed always the case.i§napproximately equal to the capacity of the best relayalon
fact, we show that even if we have an arbitrary numbeof in any arbitraryN-relay diamond network. More precisely, we
relays, we can remove all but one of them and still achie¥gow that
approximately half of the capacity of the whole network. Cap < C1 +2log N

where Car is the best rate achievable with amplify-and-

forward at the N relays, andC; is the rate achieved by
Our main result is to show that in every Gaussi¥rrelay using only the best relay (say, with a decode-and-forward

diamond network, there exist &-relay sub-network whose strategy) while keeping the rest of the relays silent. This

A. Overview of Main Results

capacityC), satisfies result says that amplify-and-forward with th€ relays can
b at most provide a beamforming gain, bounded Zipg N,
Cr > Tl C —1.3k— 1 log N (1) over the best relay. Since our result in (2) shows that there

are configurations ofV-relay diamond networks where the
where( is the cut-set upper bound on the capacity of Me best relay alone can at most provide approximately half the
relay diamond network. Intuitively, this holds because lif acapacity of the whole network, the two results together ympl
k-relay subnetworks have small capacity, the capacity of thigat amplify-and-forward can be limited to approximatedffh
whole network cannot be too large. Asncreases, the differ- the capacity of the network in certain configurations. This
ence between the capacity of the beselay subnetwork and implies that amplify-and-forward fails to provide condtan
that of the whole network naturally decreases. The surgyisigap approximations for the capacity of thérelay diamond
outcome here is that the fraction of the capacity we can getwork, such as those provide by the compress-and-forward
with & relays is independent of the number of available reldype of strategies in [4], [5], [6], [9] or partial-decodedk
nodesN. Moreover, it increases quite quickly wittt in the forward in [10].
high-capacity regime, we can get at least half-the capadity Finally, a natural question given our existence result in (1
everyN-relay diamond network by simply routing informationis whether such high-capacity-relay subnetworks can be
over the best relay, usirgrelays we achieve a fraction 8f3, discovered efficiently. Our existence proof naturally segg
etc. an algorithm for discovering such networks@{kN) running

We also show that the lower bound in (1) is tight in théime given the cutset upper bour@ and the configuration
multiplicative fraction, i.e., for givenV and k, it is possible of the N-relay diamond network. However, a direct compu-
to find N-relay diamond networks where the capacityeséry tation of C itself requires evaluating the cut capacity over

k-relay sub-diamond network is at most exponentially many cuts. [12] shows that the problem of
1 computing a constant gap approximationttocan be casted
Cr < k—+10+ 1.3k + 3logk, (2) as a minimization of a submodular function and solved in

O(N%a + N%) running time using state-of-the-art algorithms

whereC' is the capacity of the whole network. For the casfor submodular function minimization, whereis the time it

k=1andN =2, one such example is case (b) in Fig. 2. takes to compute the value of a single cut which is typically
We prove the result (1) in two steps. We first show thgtolynomial in N. Our work reveals that information flow

in every GaussianV-Relay diamond network, there exists an wireless networks has much more structure than mere



submodularity. We show that the combinatorial structui thor vice-a-versa [11]. These purely additive or multiplicat
allows us to obtain the simplification result in (1) can beapacity approximations are relevant in the high or the low
also used to devise an algorithm to compute a constant g@ldR regimes respectively, while a hybrid approximation can
approximation to the cutset upper bound on the capacityeof the also useful at intermediate SNR’s.

N-relay diamond network i®(N log N) time. The properties  The fact that (3) can be tighter than (4) also implies that
of wireless information flow beyond submodularity are ferth employing an unnecessarily large number of relays with the
exploited in [13] where Non-Shannon properties of Gaussiaompress-and-forward type of strategies in [4], [5], [6hca
random variables are used to obtain simplification reswits findeed deteriorate rather than improve the communicaéiten r

the N-relay diamond network with multiple antennas. Recall that the result in (3) is obtained by applying these
strategies with a carefully chosen subsetkofelays, while
Il. RELATED WORK AND POSITIONING (4) is obtained by using the same strategy with all fkie

Two lines of work have previously looked at a form of nett€lays. Motivated by this observation, recent work [10][2
work simplification for wireless networks. First, relaysetion has demonstrated the need to optimize the quantizatioisleve
techniques in [14], [15], [16], design practical algoritathat N thesg strategies which allows to ach|evg the information
allow to select the best single relay in an N-relay diamorfj€oretic cutset upper bound on the capacity of Meelay
network, and show that such algorithms provide cooperatif@mond network withinO(log N) bits/s/Hz. More precisely,
diversity. These works look only at maintaining diversityda these works show that (4), valid for any wireless networkwit
not capacity. Second, work in [11], [17], [18], [19] looks at" relays, can be refined to
selecting a subset of the best relays when restricted taeutil C—log(N+1)—logN—-1<C<CT
an amplify and forward strategy. Our work differs in that
we do not restrict our attention to specific strategies (orfar the N-relay diamond network. This new result can be
single relay) but instead provide universal capacity tssioir  readily used to tighten our simplification result in (1) to
arbitrary strategies. Eo_ 3k

Our result can also be regarded as a new approximation t&'% = Fr1 C —log(k+1) —loghk —1 - kot log NV,
the capacityC' of the GaussianV-Relay diamond network.
We show that

by simply using the optimized quantization levels for the
relay subnetwork.

LU—L%— sk logN <C<C Vk,1<k<N-1,
k+1 k+1 ©) 1. M ODEL
where C' denotes the cut-set upper bound. The best of theWe consider the GaussiaN-relay diamond network de-
earlier additive approximation results in [4], [5], [6] Ve picted in Fig. 1 where the source nogleants to communicate
— — to the destination nodé with the help of V relay nodes. Let
C-13N=C=<C. (4) X,[t] and X;[t] denote the signals transmitted by the source
for the N-relay diamond network, while the best multiplicanodes and the relay nodéc {1,..., N} respectively at time
tive approximation to the capacity of the Gaussisirrelay instantt € N. Let Y;[t] andY;[t] denote the signals received
diamond network is given by [11] by the destination nodé and the relay nodé € {1,..., N}
. - respectively at time instarit The transmitted signaX;;[t] by
WO <C<C, (5) relayi is a causal function of the its corresponding received
signal Y;[t]. The received signals relate to the transmitted
for a constant’ > 0 independent of everything else. signals as
The lower bound we provide in (3) is tighter than both
(4) and (5) in the intermediate SNR regime and wheéris Yilt] = his Xs[t] + Zilt],
large. The auxiliary parametédr in (3) allows to optimize N
this lower bound as a function of and N. When N is Yalt] = hiaX:[t] + Z[t],
=1

large, choosing a smalk reduces the additive gap from

O(N) in (4) to O(log N). This improvement in the additive where h;, denotes the complex channel coefficient between
gap can be more important than tI%%C' loss due to the the source node and the relay nodend h;; denotes the
multiplicative gap wherC' (and therefore) is not too large, complex channel coefficient between the relay noded the
overall yielding a tighter lower bound than (4). Whéhis destination nodeZ;[t], i = 1,..., N and Z[t] are indepen-
large andN is small increasing: to N reduces (3) to (4). dent and identically distributed circularly symmetric Gsian
Similarly, when N is large andC' is not too small, (3) can random variables of varianeg®. All nodes are subject to an
be clearly tighter than (5). This approach suggests a newerage power constraifit and we define SNR= P/o2. Note
approximation philosophy to the capacity of wireless nekso that the equal power constraint assumption is without Idss o
where multiplicative and additive gaps to the cutset uppgenerality as the channel coefficients are arbitrary. Warass
bound are allowed simultaneously and are traded throutjtat the channel coefficients are known at all the nodes. We
an auxiliary parameter (in our ca%d. Earlier works in the are interested in the maximum reliable communication €ate
literature have either aimed to characterize the capadthyiv in bits/channel use that can be achieved between the source
an additive gap by allowing no multiplicative gap [4], [5],and the destination node in this network.



IV. MAIN RESULTS Theorem 2:In any GaussiamV-relay diamond network, the

. . . ) ) . rateC, r achieved by amplify-and-forward at the€ relays is
The main result of this paper is summarized in the fOHOW'ngounded by

theorems.

Theorem 1:Consider an arbitrary GaussiaN-relay dia-
mond network. LetC), be the largest rate at which we carwhere C; is the capacity provided by routing over the best
communicate from the source node to the destination usifgjay-
only & out of the N relays while the remaining/ — k relays Finally, we address the algorithmic complexity of discever

Car < C1+2logN,

are kept silent. Then ing a high-capacity:-relay subnetwork in Theorem 1.
Theorem 3:A constant gap approximation to the capacity
c. > k O— 1.3k — log N, (6) of the Gaussiaer_—relqy diamond network can be compute_zd in
E+1 k+1 O(N log N) running time. Thek-relay subnetwork satisfying

can be discovered i (kN) running time, given the
figuration of the network and the approximation to the
cutset upper bound.

Theorem 1 is proven in VI, Theorem 2 is proven in

whereC' denotes the cut-set upper bound on the capacity g%)n
the N-relay network. Moreover, for any giveN andk, there
exist configurations of the Gaussiairelay diamond network

such that k Section VIII, and Theorem 3 is proven in Section VII. The
C < k—+10 + 1.3k + 3logk, (7) following section derives a simple approximation to thesetit
upper bound on the capacity of thérelay diamond network,
whereC' is the capacity of theéV-relay network. which forms the basis for all these results.
Remark 1:For the casek = 1, we have the following
tighter bound, V. APPROXIMATING THE CUT-SET UPPERBOUND
cy > }6 3 log N. In this section we derive upper and lower bounds on the cut-
-2 2 set upper bound, that essentially reduce calculating iiseva

q toa purely combinatorial problem.

In the following, let [N]={1,2,---,N}. By the cut-set
upper bound [22, Theorem 14.10.1], the capadityof the
IQsetwork is upper bounded by,

The theorem states that in every Gaussianelay diamon
network, there exists a subsetiofelays which alone provide
approximately a fractio&/(k+1) of the capacity of the whole
network. On the other hand, there are also configuratio
where eachk-relay sub-network alone can at most provideC' < C=  max min (X, X; Ya, Yinpa |X[N]\A)
this fraction of the capacity. The approximations are withi Xo: X1, XN AC[N] ®)

the beamformmg gain, which we upper bound mogN. where the maximization is over the joint probability dilstri
for the N-relay diamond network uniformly over all possible

channel configuration's.The beamforming gain is relatively tlr?enp%fv\;[gfcgins?;?g aI:rL)arb;e;Xe%aCn ?]‘\)](]1 ’X .;Jlfrjl\i) tsezt![ifglggr
. —_ 1 S -

small when the capacity is large, and indeed is much smaller ; . . .

than this upper bound when channel gains are significanﬂeysloondIng collection of random variables, Kg={X}:cs.

different. On the other hand, the terhBk in the gap is not

fundamental and reflects the gap between the rate achiefed™n UPper Bound on the Cut-Set Upper Bound

by the state-of-the art relaying strategies [4], [5], [6Hahe The cut-set upper bound in (8) can be upper bounded by

cutset upper bound on the capacity of the diamond netwagkchanging the order of maximization and minimization in

with & relays? (8). For each cuf\, the resulting maximization of the mutual

information can be upper bounded by the capacities of the

A key ingredient in the above results is the fact tha§imo (single input multiple output) channel betweerand

compress-and-forward type of strategies in [4], [S], [6NCanodes in[N]\ A and the MISO (multiple input single output)

achieve the cut-set upper bound on the capacity of any arBirannel between nodes inandd. We have,

trary diamond relay network within a gap that is linear in the _

number of relay nodes utilized, and independent of the ablannC < Aﬁcl%]%} sup  I(Xs, Xa; Y, Yinpa | Xpvpa)
configurations and the operating SNR. We next show that an =X v
amplify-and-forward strategy fails to provide such a unbas < Din sup I(Xs; Yinpa) +sup I(Xa; Z hiaXi + Z),
performance guarantee over the channel configurations, and CINT X, Xa i€A
its performance is approximately bounded by the capacity of < min Cgsraro(s;[N]\ A) + Curso(A;d).
the best relay alone. ACIN]

The capacities of the corresponding SIMO and MISO channels

1As can be seen from the proof of Theorem 1, théog N bound are well-known [23]. Plugging these expressions yields
can be improved tanax (3log N — log 27, 2log N'). Accordingly, as the

subsequent proof makes it obvious, t% log N term in (6) can be C < Aﬁcl%]f\l]] log (1 + SNR Z |his|2)
tightened toz2+ max (3log N — log 2, 2log N) and the3log k term in = i€[NJ\A
(7) can be also tightened taax (3log k — log 27, 2log k). 2
2For example, using improved relaying strategies from recesults in +log {1+ SNR(Z |h1d|) ) (9)

[10], [21], it can be readily sharpened from3k to 2 log k. iEA



We will further develop a simple upper bound on this expres- Among allT" C [N] with |T'| = k, consider the one that
sion by bounding each term in the above summations by thas the largest cut-set upper bou@dg. Let O} denote the
maximum of the terms that are summed. This gives us that-set upper bound on the capacity of this this sub-network

upper bound, Formally, we define
C < min (max Riqs + max Ris) +3log N, (10) Cr = reiag Cr. (14)

AC[N] \ i€A 1€[NJ\A D=k

where Ri; = log(1+SNR|hi4/?) and R;; = Combining (11) and (14), we have

log (1 + SNR|h;s|?) are the capacities of the corresponding _ .

point-to-point channel3.A detailed derivation of the upper Ck 2 max min (maX Rig + max Rz‘s) . (15
e , : ) C[NJACT \ i€A iET\A

bound in this section can be found in Appendix A. |T|=k

Let C be the capacity of the bektrelay sub-network. In the
B. A Lower Bound on the Cut-Set Upper Bound sequel, we will be interested in lower boundiff in terms
The cut-set upper boun@ above can be lower bounded®f C. the cutset upper bound on the capacity of the network.
by choosing X, {Xi}ie[N] to be independent circularly- For this, we will first relatEC’k to C} and then make use of
symmetric Gaussian random variables with variafgein the above lower bound fof’y.

which case &

V1. k RELAYS APPROXIMATELY ACHIEVE yry FRACTION

I(Xs, XA Y, Yinpa | Xiapa) OF THE CAPACITY
— log (1 + SNRZ |hid|2) +log (1 1+ SNR Z |his|2). . In this section, we prove 'I_'heorem 1. Howgvgr, before going
vy i€ N\A into the formal proof, let us illustrate the main idea foe 1.

o ) . ] Assume the capacity’ of the N-relay diamond network were
Retaining only the maximum terms in the summations, W@ven exactly by (12), while the capacity obtained by using
obtain relay i € [N] alone is given by

> i . .
C > min (max Riq + max st) (12) Cs = min(Rys, Ria).

ACIN] \ieh i€[N]\A

Note that this lower bound faf' differs from the upper bound Note that this is the capacity approximation in (12) evaddat

in (10) only by the gap term log N. This implies that within for a single relay § = 1), but in this particular case it indeed

a gap of3log N bits/s/Hz, the cut-set upper bound on th€orresponds to the exact capacity of a single relay (2-hop)
capacity of theN-relay diamond network behaves like thenetwork. Can we argue that there exists a relay[N] such
lower bound in (11). Since recent results [4], [5], [6], [10]thatC; > C'/2? This is easy. If this were not the case, it would
[21] show that the actual capacity of the network is withifmply that

a constant gap to the cutset upper bound, this also provides

. . C C
an approximation to the capacity of th¥-relay diamond vie[N],  either Ry <o or Rig <.

2
network, i.e., This would allow us to construct a cut of the netwdrkvhich
crosses only links with capacities strictly smaller th@p2,
(12) both on the source side and the destination side, Rg;,<

Thi | i binatorial structure for theaci C/2Vie AandR;; < C/2 Vi e [N]\ A. Hence the value of
IS reveals a peculiar combinatorial structure for Y this cut is strictly smaller than’ and this contradicts with our

.O.f the dmmpnd_ petwork in terms of the point-to-point capagy iy assumption that the capacity of thé-relay diamond

lties Of the '.”d""d”"’?' chal_'mels. Our main result is based Hetwork is C. Therefore, there exists at least one relag

exploiting this combinatorial structure. [N] such thatC; > C/2. To prove the converse statement in

Theorem 1, we need to create examples where each relay alone

C. The Cut-Set Upper Bound foriaRelay Sub-network only provides half the capacity of whole network: consider a
Consider a subsef C [N] of the relay nodes such thatconfiguration where?;; = C'//2 and R,y = C' for some of the

IT| = k. Let Cr be the capacity of thé-relay diamond sub- relays andR;; = C andR;; = C/2 for the rest. The capacity

network where the source nodewants to communicate to Of the whole network i€ by (12), while each relay alone can

the destination nodé by using only thesé relay nodes. The Only provide capacityC /2.

rest N — k relays are not used. The cut-set upper bound onThe formal proof of Theorem 1 is based on the following

the capacity of thig:-relay network yields two technical lemmas. _ N
Lemma 1:Let R;; and R, be arbitrary positive real num-

Cr < Cr = sup min (X, X4;Y, Yra [ Xra). (13) bers fori=1,2,---,N. Fork € [N], let

C ~ min <maxRid+ max R
AC[N] \ i€A 1€[N\A

X, Xp ACS
Note that (10) and (11) can be applied 0 to obtain max min <max R;q + max Ris)
correspondingly upper and lower bounds @p. TFQ\[:Nk] ACT\ ieA iEMA

Te= (16)
SNote that theN-relay diamond network can be equivalently characterized min | max R;y + max Rjs

in terms of these point-to-point channel capacities. AC[N] < i€EA i€E[N]\A )



On the other hand, applying (10) for ady C [k + 1] s.t
IT'| = k, we obtain

Cr < min (max R;q + max Ris) + 3logk.
ACT \ ieA i€T\A

Therefore,
C; < max min <maled—|— max RZS> +3logk. (19)
IClk+1] ACT \ ieA i€T\A
IT|=k

Combining (18) and (19), we obtain

Cy —3logk
Fig. 3. A (k+1)- relay diamond network where every subsetkofelays C + 13(/€ 4 1) S Tk
achieve approxmatel);c— of the capacity. The labels indicate the capacity
of the corresponding links. Lemma 2 demonstrates a configuration where= - + . For
such configurations, the above inequality yields
— k
Crp < ——C+1.3k+3logk.
Then, FS T + + 3log
> — . — . .
k= k+1 Since C, < (Y, this proves that there exist + 1-relay

Lemma 2:Let R;, = iR and Ryq = (k+ 2 — i) R for diamond networks such that the capacity of edchelay
i € [k+ 1] whereR is an arbitrary positive number. Le}, be subnetwork satisfies the bound (7) in Theorem 1. However,
defined as in (16) withV = k& + 1. Then, Theorem 1 claims the existence 8frelay diamond networks
where eachk-relay subnetwork satisfies (7). To extend the

rE = L proof to any N > k, simply consider augmenting the+ 1
. o k +.1 . o relay diamond network of Fig. 3 by adding relay nodes with
The configuration in Lemma 2 is depicted in Fig. 3. zero capacities. Whatever holds for ther 1-relay network
Proof of Theorem 1From (10) and (15), we have also holds for this trivially augmentely-relay network. This
. completes the proof of Theorem 1. O
_—— > Ik
C—3logN — " We will next prove Lemma 1 for the cage= 1 andk = 2.
Combining this with the result of Lemma 1, we obtain The proof of Lemma 1 fok > 2 and the proof of Lemma 2
k 3k are provided in Appendix B.

Ck_k+1C—k+110gN a7

: Proof of Lemma 1We introduce the following notation. Let
This proves that in everyNV relay diamond network, there

exists a subset of relays, such that the cut-set upper bound w(I)= min (max R;; + max st) (20)
on the capacity of the correspondikgrelay subnetwork is ACT i€D\A

lower bounded by approximately a fractigy of the cut- .

set upper bound on the capacity of the whole network. Let VTS (I?eaAXR a+ max, RZS) ’ (21)
I'* C [N] be the maximizing term in (14), i.eGr- = Cy,

andw;=maxpcy) w(I'). Note thatr; in Lemma 1 is defined

and letCr- be the actual capacity of this network. From [6], D=k

Cr- > Cr-—1.3k, for anyk-relay network, which is achieved asry, = 4,
by a noisy network coding strategy generalizing the quantiz The first thing we note is that, < 1. This follows from the
map-and-forward strategy of [4]. Lef), be the capacity of fact that every subset df is necessarily a subset @¥],i.e.,
the bestk-relay subnetwork. Sinc€’y > Cr- by definition, if A C T thenA C [N] andT'\ A C [N]\ A. Therefore, the
we have o value of each cut\ C T'in I' is smaller than or equal to the
Cr > Ck — 1.3k. value of the same cut ifiv]. The same reasoning also implies

Together with (17) this yields the result (6) in Theorem 1. that for &, > k2_we haver, = Tka- Both properties_are o
. ) be naturally satisfied by a capacity function: by using more
Next, we prove the existence of (& + 1)-relay diamond

) relays we can only increase the capacity.
network where the capacity of eadhrelay sub-network IZ E—1 th Iy lai thaz >y1 Sj
satisfies (7), i.e., for now we assumé = k + 1. To prove * 'O =1, € lemma claims 12 gw. oInce

this, we require an upper bound dr}, and a lower bound wy = max min (R;q, Ris),

on C. The lower bound orC can be obtained by combining i€[N]

(11) with the fact thatC' > C' — 1.3(k + 1) from [6] (since  this is equivalent to saying thati € [N] s.t. Ry > 4w and
N =k + 1), which yields R;s > Lw. We will prove this by contradiction. Assume

i _ L) = . 1 1
¢z min <rg1€anRm + Jax, Rls) L3(k+1). (18) Vi€ [N], Ria<gw of Ri<zw.  (22)



Let Ag = {i € [N]: Rig < 3w}. The assumption in (22)
implies thatR;, < jw, Vi € Ag. Note thatw in (21) can
be upper bounded by considering only the dyt among
all possible cuts\ C [N]. We obtain
w<maxR;g+ max R;; <w

i€No €[N\ Ao
since each of the two terms are strictly smaller t@m
This contradiction proves the lemma fbr= 1.

« At this point we definesy = 0 and starting withl = 1

we recursively prove the following steps for an increasing
integer!:
(a) There exists a nodge [I, N — 1] such that
a1 +1 k—a 1
Rys > ——— — W
T k41 k+1

because otherwise([N]) < w which is a contradic-
tion. We relabel this node as node

w and Ryq >

o Fork = 2, the lemma claims that, > %w. We can prove
this by establishing a number of properties for a network
with w.

Property: 3p € [N] s.t. Rys > 2w and Rpq > 1w.
We prove this by contradiction. Assume

(b) If Ry > 25w for this nodew([l] U{N}) > 5w
and the proof of the lemma is complete. Otherwise,
we can find a natural numbey with a¢;_; < a; < a
such that
a;+1
k+1
and reiterate steps (a) and (b) fox 1.
If we can iterate the above stepsimes, we generate a
sequence of natural numbers with

ap

Ry > ——

) . W=t 2 3T
Vie[N],Ris<§w or Rid<§w.

Consider the cuf\o = {i € [N] : Riq < tw}. ThenR;, <
%w, Vi € Ay. Considering only the cuh, we obtain

ap=0<a1<...<a;_1 <a.

w <max ;g + max R;s <w,

i€ho €[N\ Since forl = k, the sequence of inequalities
which is a contradiction.

We next proceed by investigating two separate cases:

o Case 1:R,q > %w. Then, the proof of the lemma is
complete since we have, > wy > %w.

a=0<m<...<ap1<a<k-1,

is contradictory, this implies that the above steps can be
iterated at mosk — 1 times. In other words, for some

« Case 2:R,q < Zw. Then we establish the following 1 <1< k-1, the conditionR;, > 17w in the beginning
property: of step (b) should be true and therefar€l] U {N}) >
) _k_
Property: 3m € [N], m # p s.t. Ry, > iw and T
Roa > %w.

] ) ) VIl. ALGORITHMIC COMPLEXITY
Again, we can prove this property by contradic-

tion. Assume the contrary and considey; =

{i € [N]: Rig < 2w}. Note thatp € A, since we are
in Case2 andRR;; < %w, Vi € A;. The value of the cut
A1 is strictly smaller thanv, which is a contradiction.

Given an arbitraryN-relay diamond network, character-
ized by the point-to-point capacities of the individualkiin
Ris,Riq, ¢ € [N], can we efficiently discover &-relay
subnetwork whose capacity satisfies (6)? In this section, we
. ; prove Theorem 3.

Finally, consider the-relay sub-network composed of  Note that from the proof of Theorem 1, therelay subnet-

m andp. It can be easily verified that({m.,p}) > 3w, work I'* C [N] whose capacityCr- satisfies (6) is the one

completing the proof of the lemma fdr = 2. for which w(I'*)/w > £+, wherew(I') andw are defined

The proof of the lemma for the general case follows similan (21). The proof of Lemma 1 suggests a natural algorithm

lines. The main idea is to show that given any arbitrary req discover this network.

numbersR;; and R;s for i = 1,2,---, N, we can gradually |, gorx — 1, the lemma proves that

discover ak-relay subnetworkl™ such thatCr- > kLHw' 1 1

Details for the proof in general case is given in Appendix B € [N], Rig>-w and R > -w.

and the general flow of the proof is as follows: 2 2
Assume that there is a configuration such that all subsets This n_odez’ can be discovered by makiryV. compar-

' C [N] with |T| < k satisfyw(T") < kLHw_ isons in the worst case.

. There exists a nodée [N] such that « For k =2, the lemma first proves that

2 1

i 1 T e [N], B> 2w and Ry, > .

Ris > —— and Rig> —— p y Llpd Z ps =
T =1 3 3

because otherwise([/N]) < w which is a contradiction.

We relabel this node as nodeé.
« Either R4 > 25w and we are done sinee({N'})
k

TTw or we can find a natural numbersuch thatl

a<k-1and

Then eitherR,, > 2w or

1 2
. Ime[N],m#p and R4 > 3w and R, > 3
<

We can follow this flow to discover relays and m for

which we havew({m,p}) > 2w. p can be discovered

k—a+1 k—a in at most2N comparisons. An extra comparison deter-
w > Rng > 2

Et1 Er1Y mines whetherR,, > 2w or w < R, < Zw. In the




first case, the algorithm terminates. Otherwise, we need
at most2(N — 1) additional comparisons to discover.
This yields4N — 1 comparisons in the worst case.

« For generalk < N the flow in the proof of the lemma
suggests a natural algorithm to find a subBetC [N]
with w(I'™*) > k—ilw.
(a) Find a node € [N] such that

1
R; w and R;g > ——w

. k E+177
and relabel it as nodé/.
(b) If Ryg > le terminate the algorithm and declare

I'* = {N}. Otherwise, set,y, = 0 and determine
such thatl <a <k —1 and

Fig. 4. The minimum cut on a configuration such thagts < --- < Rys.

k k—a+1 k—a
Rys> ——wand—————w > Ryg > ——w. . P ;
k+1 k+1 k+1" s necessarily of the form in Figure 4. More precisely, =
(c) Fori<r<k-1, A 2 [m+1,N] and[N]\ A* = [m] for somel < m < N.
(c-1) Find a node € [r, N — 1] such that This is easy to see: consider any eut_ [N] not necessarily
of the form in Figure 4. Letn be the node ifN]\ A with
R > ar—1+1 wandRyy > k— ar_1w’ the largest index, i.em = max{i € [N]\ A} and letA,, =
T k41 k+1 {m+1,...,N}. We have

and label it node-. R+ R.. < R+ R,
(c-2) If R,y > %w, terminate the algorithm and TeAX Hid ieﬁlvﬁ)f\m is = TR Hd ieIFJ\%)\(A e

declarel™ = [r] U{N}.
(c-3) Otherwise (ifR.s < ;{gw), determinea, such
thata,_1 < a, < a, and

The second terms are equal becafiseare sorted in increas-
ing order and the first term can be only smaller fgy, since
it is a subset ofA by construction. This reduces the number

a, +1 k—ar_1 of candidate cuts for the min cut frofi¥ to N.

w>R.s > —w andR,qg > ———w : .
k+1 k+ k+1 In other words, the mincut can be calculated by making
and then set < r + 1. N comparisons of two numbers: the maximum valiig,

[ 1\ Ay, with the maximumR,4, with i € A,,, for
[m+ 1,N], m = 0,...,N. Assume that theR;,

values are sorted as previously described - this can be done
using N log N comparisons, for example with the heap sort
) algorithm. Thus for the sgtV]\ A,,, the value we would use
Step (c-1): at mos2(N — r) comparisons is R,,.. But we can also keep a sorted heap of ihg values,

— Step (c-3): at most —1 —r comparisons that again can be created usinglog N operations. Then for
Assuming that step (c) makes the maximum number af we would use the max value, fdt, the max value after
iterationsk — 1, the total number of comparisons to b@emovingR,4, etc. That is, we can take advantage of the fact

The total number of comparisons to be made by th[g
algorithm can be upper bounded as follows:

Step (a): at mosEN comparisons
Step (b): at mosk — 1 comparisons

made by the algorithm is upper bounded by that each subset aR;4's would also be ordered, to extract
b1 the max value of the subset. Thus in total 8f+ 2log N
ON + (k—1) + Z 2N =)+ (k—1—7)] comparisons, we can compute
— This implies that with at mos{(2k + 1)N + 2N log N
(k—1)k comparisons we can compute a constant gap approximation
= 2Nk — 5 to the capacity of théV-relay diamond network, and identify

a k-relay subnetwork that approximately achieves a fraction

However, the above discussion assumes thdt given. k/(k+ 1) of w. This completes the proof of Theorem 3.

Given the set of real numberB;;,R;q, i+ = 1,...,N, a
straightforward approach to computingin (21) requires the
evaluation of2" cuts, while computing the value of each VIII. AMPLIFY-AND-FORWARD WITH N RELAYS VS.
cut requiresN comparisons. Instead, the following algorithm ROUTING OVER THEBEST RELAY

allows to computev in N'log N running time. In this section, we derive an upper bound on the rate
First, sort (rearrange) the nodes in the order of increasiaghieved by amplify-forward over the Gaussian N-relay dia-
Ris, 1.8, Ris < -+ < Rys. For this sorted configuration, mond network in terms of the capacity of the best relay. With
observe that the cut with the minimum value in (21), i.e., th@mplify-forward, the transmitted signals from the relaylas
cut A* for which are nothing but the scaled versions of the received sigrais f
the source X;[t] = 3,;Y;[t]. Here, the coefficient®; should
w = max i +Z€1[?V?<<A* Fis, be chosen such that the transmitted signals satisfy the



average power constraift, i.e.,E[||X;||?] < P. Note thatwe  This proves Theorem 2. Lastly, we prove the inequality in
allow each relay to optimize its transmit power, i.e. we &llo (24).

the average transmit power used by each node to be stricthemma 3:Let u;q, u;s be arbitrary positive real numbers
smaller thanP, which as pointed out in [20] leads to a higheand b; be a real number in the intervdD,1] for i =

achievable rate as compared to simply amplifying receivad2,--- , N. Then,
signals at full-power. This amplify-and-forward operatiat winbs bt gt

. . ; . idY7 . i UidUis
the relays induces a point-to-point link between the souroceax (1, max 1+, ) max (min (g, uis)) > max Tra.
node and destination given by, #e(N] is / €IN] el (zés)

N N Proof of Lemma 3:The expression on the left-hand side of
Yalt] = (Z hidhisﬂi> X, [t] + (Z[t] + Z hid@zﬂﬂ) . (25) can be rewritten as
=1 =1

U;idb;

= max max{ min(u;q, t;s), min(u;q, tis),

Using the familiar capacity expression for a point-to-poin K i€[N] 14 w4

AWGN channel, we get ) ujabj

min(w;q, uis) max ———}.
jeNLg#i 1+ ujs

2
[N, hiahisfi] SNR o i
Car =log [ 1+ 1 ——— (23) I wis < wig, {42 min(ug,ui) = Y444l is among the
14370 |hial?(Bil? terms to be maximized iny. If w;s > g, min(uig, wis) =

u;q 1S among the terms to be maximized+nand it satisfies
The ;’s in the above expression can be optimized to get thg; > uli+b Therefore, we can immediately conclude that
largest communication rate subject to the power constedint

the relays. Sinc&[|X;|?] < P, we can write ~ > max biuiduis'
SNR ie[N] 14+ u;s
12 — 2
Bl = 1+ |hi5|28NRlaZI ’ IX. CONCLUSIONS ANDDISCUSSION

In this paper, we showed that in aiV-relay diamond
network we can usé of the N relays and approximately
Gpaintain a fractionkiﬂ of the total capacity. In particular,
we can use a single relay and approximately achieve half
the capacity of any diamond network. Our proof was based
NN, |hid|2|his|2|ﬂi|QSNR> on reducing the network simplification to a combinatorial

N 21412 problem.
L+ 2ims [haal?lil We believe that simplification is ubiquitous in wireless
N? maxie(ny [hia|* his|*| 8] SNR) networks, fundamentally due to the broadcast nature of the

where|«;| < 1 for eachi. Next, we first upper bound the rate
in (23) and then express it in terms of the new variallgs
Applying the Cauchy-Schwarz inequality on the numerator
the fractional term inside the logarithm, we get

Car <log <1 +

<log |1+ SIVRD) . . . o
max (1, max;e(n) |hial?|8i[?) wireless medium. Note that if the network in Fig 1 were a

) o ) ) wired network withN independent paths between the source
The second inequality is obtained by upper bounding eagfy the destination, the capacity loss incurred by remoging
term of the sum in the numerator by the maximum tery|ay would be proportional to the individual capacity ofsth
and taking only the maximum element for the sum in theaih |y wireless, the received signals by different nodes a
denominator. In terms o, this last upper bound can bepqt jndependent, but being functions of the same transunitte
expressed as signals, are necessarily correlated. As a result, theretisfl

N2 max;e [hia|2[his |2 s |2 SNR? redundancy in th_e_informafcion _c_arri_ed by these signal_s _Iwhic
Cap <log [ 1+ i€N] 1+|hi2\25'\iR _ creates opportunities for simplification. However, quiyitig
max (1, max;e(y] %) this redundancy and evaluating the usefulness of eachcatay
be highly nontrivial. Note that the conclusion of this pafiet
In Lemma 3 below, we show that for any arbitrary positiv@alf the capacity of theV-relay diamond network is always
real numbersu;q, u;s and0 < b; < 1,4 =1,2,---,N, we carried by a single relay is a priori highly non-obvious. It
have does not imply that the resY — 1 relays do not carry much
Wi . bu;quis INformation, but rather the amount of fresh informationythe
max (Lg% T Uis) ng[%c] (min(uid, wis)) > ng[%c] T+u, can bring to the destination is only as much as that of this
24) single relay.
Plugginguiq = |hig|?SNR, u;s = |his|>SNR andb; = |a;|? Following our work, numerical simulations in [12] give
in this relation, we get evidence of the simplification phenomena in more general

networks: in a network of40 nodes with channel gains
Car <log (1 + N? max min(|h;q|>*SNR IhiSIQSNR)) drawn from an ii.d. Gaussian distribution, onliy nodes
i€[N] are needed on the average to approach capacity. However,
< max min(R;s, Riq) +21log N establishing theoretical simplification results for mosngral
i) networks is non-trivial due to the difficulty in capturingeth
= C1 +2log N. correlation structure of the signals received at differetdys
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APPENDIXB
A COMBINATORIAL PROBLEM
(proofs of Lemmas 1 and 2)

capacities of the corresponding SIMO and MISO channels
[23]. Therefore, (28) can be further upper bounded as

]<1og(

+log (1 +SNR(> |hid|)2)
€A

C < min
ACIN

In addition tow(T"), w, wi defined in Section VI, in the
due analysis we also use the notatiana + b] = {a,a +
1,---,a+b} fora>1andb> 0.
(29)

1+SNR Y |h1-s|2)
1€[N\A

Proof of Lemma 1:.Given any set of real numberB;,,
where SNR:NPW We will further develop a trivial upper R,;, i € [N] giving w in (21), we will prove the lemma by
bound on this expression. For simplicity of notation, let ugstablishing a number of properties for the these numbers in
introducet;s=+vSNR|;s| andt;s=v SNRh4|. Separating the terms ofw. These properties naturally suggest an algorithm
cases\ = () andA = [N], which correspond to the pure SIMOto discover a subsét € [N] such that|T'| < k andw(T) >
and pure MISO cuts respectively in (29), we have, k

=W
Ugmin{log (1+ Z tfs),log (1—|—( Z tid)z)a

Given any set of real numbefR;s, R;q, i € [N], we have

the following property

i€[N] i€[N] . Property (1)3p € [N] such thatR,,; > le andR,q >
If not, we would have the following contradictor
. 2 k+1‘“ g y
AHC%] (10g (1 + Z f?s) + log (1 + (Ztid) )) } argument: Assume for ail € [N], we either haveR;, <
|A|£0,N i€[N\A €A k_qu or Rig < joqw. LetS = {i: Ris > k_qu}- By

Note that the variables;; andt¢;; are real and positive. The
sums over the variablgg; andt;s can be increased by setting

the assumption, this means that € S, R,y < k_}rl‘“
Therefore considering the subse{C [N], we can upper

each summand to the maximum of the variables that are boundw as,

summed. For example, using also the fact thatis strictly w < max Ryy + max R
. 18
€S

increasing we can write, i€S
k
log (1 + thd ) <log (|A]* + |A|2maxt ) if |A] > 0. < k——i-lw+ A Rl

i€EA
which is a contradiction

o Case 1.R,q > le In this case, the lemma is proved
sincew({p}) = min (Rps, Rpq) > w, and therefore
W > w1 >

Using similar arguments we get the following inequality,

k+1
W

Note the proof is complete fok = 1 at this point, since
Rpq > k_qu is necessarily the case. We assume fhat 1
in the remaining discussion.

C < min { log (1 + max t?s) +log N,
€[N

log (1 + m{ax} t?d) + 2log N,
€[N

min (1og (1 + max t S) ]
AC[N] i€[N]\A o Case 2:R,y < kiﬂw. Then we have the following
Al#0.N property.
Property (2):3m € [N], m # p such thatR,,, > —~-w
+log (1+ t2,) +log (|A]?| [N]\ A . , k+1
Og( Hen ”) og (IAFI N1\ |))} and R4 > pi5w. Otherwise, we would have the
_ following contradiction: Assume for all € [N], i # p,
Let us first focus on théog(|A|2| [N] \A|) term. We have we either haveR;, < k}rlw or Ry < quw Let
[Al+[[N]\ Al = N and hence S ={i€[N]: Ris > 0qw}. By Property (1) above,

log (JA]?| [N]\ A]) = log (N]A[> — [A]®) . p € S. Moreovery: € S, Riq < k+1w' Forp this follows
. . o since we are in Case 2 and for otheg S it follows by
This term is maximized whef\| = 2¥. Hence, the assumption. Therefore we can upper bowrloly
27
2 < — —_—. < Ri + Ris
log (JAP] [N]\ A]) < 3log N —log 1 w < max ftig + max
Noting that - L =
DI e L

log (1 + maxt?,) = maxlog (1 + ¢2,), L .
g( ieA “i) ieA g( Zd) which is a contradiction.

we obtain the following upper bound, Without loss of generality we can rearrang«g [N] and

9 assume thap = N, i.e.,, Rys > k ;w and =5 w > Ryg >
C< Axgbr&[] Ilnea}xxlog (1 + tzd) + n[ﬂ]\%)\( log (1 + tis) %Hw. Equivalently,
27
+Inax<3logN—1og— 210gN>. (30) k k—a+1 k—a
’ Rnys > —— and ———— R >
4 Ns = T 1w o1 w > Itng A w
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for an integera such thatl < a < k — 1. Similarly, We can since otherwise we get the contradiction,
also assume that, = 1, i.e., Rys > wandRyg >

X | A - k‘f‘l + ' R,L Ris > R R s
We proceed by investigating two possible case Ryt. g + ie[z]gfi)z{\/}\s Na + Ity
e Case 1:R;, > +1w In this case, the lemma is proved > k—a + a
since we would have T k+1 kE+1
k
k -
W{LN}) > —=w, kr1
+ Then by the same reasoning, we also hdves S.
which meansw;, > wy > Fyw. Otherwise,
Note that the proof is complete fdér= 2 at this point, since max R;q +  max Ris > Ryq + Ris
1<a<k-—1yieldsa =1andR;, > 2w is necessarily ies €Ul NS
the case. We assume that> 2 in the remalnlng discussion. k- YoM,
c 5. E lentl ~ k+1 kE+1
« Case k+1w > Ry > + ——w. Equivalently, K
= —Ww
ay +1 aj k — ao k+1
1Y Ris > P and Riq > Er1Y Similarly for everyr € [l — 1], we should also have ¢
) S. This is because if +1 € S andr € [JU{y,N}\ S
We investigate this case, by proving the following propo-
sition max Rid + max Ris > Rr+1 d+ Rrs
: i€S i€[l)Ju{y,N}\S ’
Proposition 1: Given positive real numberg;s, R;4, ¢ € < k—a, a,
[N], assume that we can arrange them in the following form. = k+1 w+ E+1
e Rys > kiﬂw and ’“%f{lw > Ryg > Zﬁf“ for some __k w
a € Nsuch thatl <a <k -—1. k+1
« For anyr such thatl < r </, “k’:lw > Rrs > 57w ThereforeS = [I] U {y, N}. However, then we have
andRszkk‘i’llwforsomeleN 1< <k-2 k—ao
max ;g > ——uw,
andag, a1,...,a; € N such thateg =0 < a; < --- < ics E+1
a-1 < @ < a. which contradicts (31) since, = 0.
Then, there exists@ € [l + 1, N — 1] such thatR,,, > ‘};jfllw « Case 2i;5w > Rys > ‘};j_rllw Without loss of gen-
andRyq > ’jﬁfllw eral|ty we can rearrangg € [l + 1, N — 1] and assume

Before proving the proposition, we first use it to complete  that 25w > Ry > 4w and Rij1a > %0,

the proof of Lemma 1. Note that we have currently proven Equwalently,

that for any positive real numbet8;,, R;q, ¢ € [N], either aj+1+1 ai+1 k— al
rE > k+1’ or the assumptions of the proposition are satisfied ~; 11 > Rigrs 2 Er1” and Rit1.4 2 L+
for i =1. for somea;;1 € N such thatal < ajp1 < a. Therefore

Assume that the assumptions of the proposition are satisfied \ye have proven that the assumptions of the proposition
for somel < I < k — 2. Then the proposition asserts the  should indeed be satisfied with+ 1 in this case.
existence ofy € [l +1,N — 1] such thatR,, > {{Fw and  pjg implies that starting with = 1, we can apply the
Ryq > k=% for somea;;; € N such thata; < a;41 < . proposition recursively as long as< k 2. At each step of the
This leads to two possible cases for the newly discovgred recursion, either we prove that > + ~-w and the proof of the

[+1,N -1 lemma is complete dris increased by. Assume that = k—2
o« Case 1R, > % 1“’ In this case, the proof of the lemmaand applying the proposition still does not prove the lemma
is completed, because (i.e., thek-relays discovered do not satisfy(I') > le)
N Then the proposition establishes the existence of a sequenc
U N of positive numbersy, a;, as, - - - ,ax_1 such that
W(]U {5, N}) > e,

a=0<a1 < - <aps<ap1<a<k-—1,
and| [[]U{y, N}| < k. This can be observed as follows:
AssumeR,, > “5w and Ryq > k+‘”w for somey €
[+ 1,N —1]. Note that ifw([[|U{y, N}) < le there
exists at least one sét C [/] U {y, N} such that

which is a contradiction. This implies that Case 1 shouldehav
been true in one of the earlier iterations of the proposjtion
which proves the lemma.

To summarize the conclusions from Case 1 in the above
discussion, we have shown that given any positive real num-
(31) bersRi,, Ri, i € [N] and1 < k < N, they can be either
arranged as

max R;q + max Ris | < —w
i€sS ielllu{y,N}\S k+1

We argue below that such a s€tdoes not exist. Since k k
Ry, > 25w we should haveV € S. Then alsoy € S, Rys 2 577w and Ryq > i



or [k + 1] such thatl' = [k + 1] \ {j (T")}. Then, we have

e Rys > kiﬂw and ’“;f{lw > Ryg > ’;;Jr‘llw for some ,
aeNsuchthatl <a<k—1, w(T) = min { max Riq + max Ris
ar+1 ar -
. 2ndf0r1§r§l, k+1w>RT52k_+lw and R,q > < max Ry + max Rig
r+w for somel € N such thatl <1 < k — 2, i) -1 ic[j(M)+1,k+1]
andag,as,...,a; € Nsuchthatag =0<a; < --- < ={M-1)R+(k+2-(G((T)+1)R=ER.
a—1 < a <a, . . " .
a k—a Note that this reasoning holds evenjifl') = 1 or j (T")
e ANdRyy1 4> W andR,q > TITW- P
For thesel + 2 < k nodes’ = [l + 1] U {N}, we have  Therefore, we have proved that
k
Proof of Proposition 11f the proposition were not true, then wr = LY (I') = kR.
we would have the following contradictory argument: Assume IT|=k
for all i € [I+1,N —1], we either haveR;, < ‘};jllw
or Rig < %2%w. Let S = {i € I+1,N—1] : R, >
atly}. This means thati € S, Ry < %-%w and

Vie[l+1,N—-1]\S, Ris < ‘};j_rllw. Therefore considering
the subsetS U { N} C [N], we can upper bound as,

w< max R+ Ry,

id max
i€eSU{N} i€[NN\S\{N}

= max R+ max
i€ SU{N} i€ [lJU([1+1,N—-1]\S)

(k—al k—a+1 ) ar +1
< max w | + ma

E+1 k1l 2

k—aq a;+1
= w w = w
k+1 k+1 ’

which is a contradiction. O

Proof of Lemma 2We will prove that for the configuration
Rs=itRandR;=(k+2—-iRforl1 <i<k+1, we
havew; = kL_Hw.

We first show that for this particular configuration =
(k + 1)R. Let A be any subset oft + 1] and lety(A) =
max;cx Ris. Then, max;ea Rig > (K + 2)R — (y(A) + R).
Note that the last inequality holds evengifA) = (k + 1)R.
Therefore, we have

w= min (maxRid—i— max Ris)

AC[k+1] \ i€A i€[k+1]\A
> min [(k+1—y(A A)] = (k+ 1R.
_Ag[l;gl][( +1—y(A) +yA)]=(k+1)

On the other handy < (k + 1)R. Thereforew = (k + 1)R.

We now prove that for any’ C [k + 1] with |T'| = k, we
havew (I') = kR. Let A be any subset of and lety(A) =
max;er\ A Ris. Thenmax;en Rig > (k+2)R— (y(A) +2R).
Note that this inequality holds evengf{A) = (k + 1)R. The
reason that we have usedA) + 2R this time is because of
the possibility thatirg max;cr\ s Ris + 1 ¢ I'. Therefore, we
have,

w (I‘) = min <maX R;q + max Ris>

ACT \ ieA i€T\A
> mi - = kR.
> min [(kR —y(A)) +y(A)] = kR

Now, for anyI' C [k + 1] with |T'| = & there exists g (T") €
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