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Abstract. Theta functions for definite signature lattices constitute a rich source of mod-
ular forms. A natural question is then their generalization to indefinite signature lattices.
One way to ensure a convergent theta series while keeping the holomorphicity property of
definite signature theta series is to restrict the sum over lattice points to a proper subset.
Although such series do not generally have the modular properties that a definite signature
theta function has, as shown by Zwegers [11] for signature (1, n− 1) lattices, they can be
completed to a function that has these modular properties by compromising on the holo-
morphicity property in a certain way. This construction has recently been generalized to
signature (2, n− 2) lattices by Alexandrov, Banerjee, Manschot, and Pioline [1]. A crucial
ingredient in this work is the notion of double error functions which naturally lends itself
to generalizations. In this work we study the properties of such error functions which we
will call r-tuple error functions. We then construct an indefinite theta series for signature
(r, n−r) lattices and show they can be completed to modular forms by using these r-tuple
error functions.
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1. Introduction

In his seminal work on mock theta functions, Zwegers [11] gives three closely related
constructions for mock modular forms. One of these constructions involves theta series for
lattices of signature (1, n − 1) extending an earlier work on such lattices by Göttsche and
Zagier [5]. A natural problem then is to construct similar modular objects out of signature
(r, n − r) lattices. Recently, Alexandrov, Banerjee, Manschot, and Pioline [1] gave such
an extension and investigated its properties in detail for the case r = 2 while suggesting a
natural generalization for r > 2. Further work along these lines after the groundbreaking
work of [1] includes [2] by Bringmann, Kaszian and Rolen which uses and extends the results
of [1] (in particular for r = 3 case) to work out the modularity properties of a function that
arises in the context of Gromov-Witten theory and [6] by Kudla which among other things
display a relation between indefinite theta functions here and Kudla-Milson theta series [7].

The main problem for indefinite signature lattices is that the usual q-series one constructs
for definite signature lattices is no longer a convergent series. One can construct a convergent
series by restricting the sum over lattice points to a proper subset of them, however then
generically one does not get the modular properties one would get from definite signature
lattices. In [11] holomorphicity properties of such q-series are compromised in a specific
way to get a modular object. Error functions used in this context are replaced in [1]
by generalized error functions. One of our goals in this paper is to study the properties
of generalized error functions which we call r-tuple error functions in this work, closely
following the methods of [1] in their study of double error functions.

A crucial ingredient in the analysis of [1] is a result by Vignéras [9] that shows conditions
under which one can deform a theta series for an indefinite signature lattice and obtain a
modular object. The deformation is accomplished through a kernel function satisfying a
differential equation which we will call Vignéras equation. Ordinary error functions used by
[11] and generalized error functions introduced by [1] and studied here satisfy this equation
and hence can be used in the construction of indefinite theta functions. Mere existence of
these functions still does not solve the problem entirely though as one should still prove the
convergence of the theta series built as such. This is a nontrivial problem and we will give
a sufficient set of conditions for convergence again expanding on the methods of [11] and
[1].

The outline of this paper is as follows. In Section 2 we review the results of [9] and set
up some notation. Then in Section 3 we study r-tuple error functions proving properties we
need for the discussion of indefinite theta functions. This allows us to set up a particular



r-TUPLE ERROR FUNCTIONS AND INDEFINITE THETA SERIES OF HIGHER-DEPTH 3

form of indefinite theta series in Section 4 and give a sufficient set of conditions for its
convergence. Finally, in Section 5 we discuss our results and future prospects.

Note: During the course of this study the author heard of an upcoming paper by Zagier
and Zwegers on indefinite theta functions of generic signature. Also after this work was
completed, a preprint by Westerholt-Raum [10] has appeared discussing indefinite theta
functions over tetrahedral cones. It employs a geometrical approach to discussing asymp-
totic properties of the kernel Er(M;u) we will define below. Our work instead bases its
discussion over generalized complementary error functions as defined in [1] and proves its
properties for general case through their integral definitions. In particular, the decomposi-
tion of the kernel Er(M;u) in terms of generalized complementary error functions Mr(M;u)
(see Proposition 3.11 and 3.15) is what is used to establish convergence properties for theta
functions.

2. Vignéras’ Theorem and Theta Series for Indefinite Signature Lattices

The main technical tool we will use for establishing modularity properties is Vignéras’
theorem which we are going to review here. First we set up some notation mainly following
that of [1]. Let Λ be an n-dimensional lattice (n ∈ N) endowed with an integral bilinear
form B(m, k) = mTAk for m, k ∈ Λ (and an associated quadratic form Q(k) = kTAk)
which we also linearly extend to Rn ∼= Λ⊗R. Assume that the bilinear form has signature
(r, n − r) where n ≥ r and r ∈ N denotes the number of positive eigenvalues. We will also
use the notation ∂xf(x) := ( ∂x1f, . . . , ∂xsf)

T for x = (x1, . . . , xs)
T . Lastly, we define theta

series with kernel ϕ by (for λ ∈ Z, µ ∈ Λ∗/Λ where Λ∗ is the dual lattice, τ := τ1 + iτ2 ∈ H
for τ1 ∈ R, τ2 ∈ R+, q := e2πiτ , b, c ∈ Rn and p ∈ Λ which is a characteristic vector satisfying
Q(k) +B(k, p) ∈ 2Z for all k ∈ Λ)

θµ [ϕ, λ] (τ, b, c) := τ
−λ/2
2

∑
k∈Λ+µ+p/2

eπiB(k,p) ϕ(
√
2τ2(k + b)) q−Q(k+b)/2 e2πiB(c,k+b/2). (1)

If ϕ(x)eπQ(x)/2 ∈ L1(Rn) the absolute convergence of the sum is ensured. Now we can state
Vignéras’s theorem:

Theorem 2.1 (Vignéras [9]). If for any degree ≤ 2 polynomial R(x) and order ≤ 2 differ-
ential operator D(x), the functions ϕ(x)eπQ(x)/2, D(x)

[
ϕ(x)eπQ(x)/2

]
and R(x)ϕ(x)eπQ(x)/2

are in L1(Rn) ∩ L2(Rn) and if the kernel ϕ(x) satisfies the Vignéras equation[
B−1( ∂x, ∂x) + 2πxT ∂x

]
ϕ(x) = 2πλϕ(x) (2)

where B−1(x, y) := xTA−1y, the theta function θµ [ϕ, λ] (τ, b, c) transforms like a Jacobi
form of weight (λ+ n/2, 0). That is we have:
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• θµ [ϕ, λ] (−1/τ, c,−b) = iλ+r (−iτ)λ+n/2√
|Λ∗/Λ|

eπiQ(p)/2
∑

ν∈Λ∗/Λ

e2πiB(µ,ν)θν [ϕ, λ] (τ, b, c),

• θµ [ϕ, λ] (τ + 1, b, c+ b) = e−πiQ(µ+p/2)θµ [ϕ, λ] (τ, b, c),

• θµ [ϕ, λ] (τ, b+ k, c) = (−1)B(k,p)e−πiB(c,k)θµ [ϕ, λ] (τ, b, c) for any k ∈ Λ,
• θµ [ϕ, λ] (τ, b, c+ k) = (−1)B(k,p)eπiB(b,k)θµ [ϕ, λ] (τ, b, c) for any k ∈ Λ.

When we state holomorphicity in τ and z := bτ − c, we mean holomorphicity of the function
θ̃µ [ϕ, λ] (τ, z) := eπiB(b,z)θµ [ϕ, λ] (τ, b, c).

When the kernel asymptotes to a locally polynomial and homogeneous function of degree
λ one can recover it from its shadow ψ = i

4(x ∂x − λ)ϕ and its asymptotic behavior. See [1]
for further details.

3. Generalized Error Functions

In this section we will study a natural generalization of double error functions as suggested
by [1] and prove the properties we need to define indefinite theta functions out of them. In
this section and in the rest of this paper we will use the following notation: For an s × t
matrix G, GS,T where S ⊆ [s] and T ⊆ [t] will mean the matrix G restricted to rows and
columns corresponding to subsets S and T , respectively. If G is a column vector we will
drop T from this notation if T = {1}. Also for a column matrix x = (x1, . . . , xs)

T we will
use

∏
x :=

∏s
j=1 xj and sign (x) :=

∏s
j=1 sign (xj).

3.1. r-tuple Error Functions.

Definition 3.1. Let m(1), . . . ,m(r) ∈ Rr×1 be a collection of r non-degenerate column
vectors and w(1), . . . , w(r) ∈ Rr×1 be the corresponding dual basis (with respect to the
Euclidean norm so that they satisfy w(j1)T m(j2) = δj1j2). Let us also define M ∈ Rr×r by
M =

(
m(1) . . .m(r)

)
and W ∈ Rr×r by W =

(
w(1) . . . w(r)

)
so that M−T = W. Finally

let u ∈ Rr×1, where u = (u1, . . . , ur)
T is such that uT w(j) ̸= 0 for all j = 1, . . . r. Then

we define ‘complementary r-tuple error function’ Mr(M;u) using the following absolutely
convergent integral:

Mr(M;u) :=

(
i

π

)r

|detM|−1

∫
Rr−iu

drz
e−πzT z−2πizTu∏

(M−1z)
, (3)

where the integration variable is represented as a column matrix z = (z1, . . . , zr)
T .

Definition 3.2. Let m(1), . . . ,m(r) ∈ Rr×1 be a collection of r non-degenerate column
vectors (where we use M :=

(
m(1) . . .m(r)

)
as in Definition 3.1) and let u = (u1, . . . , ur)

T ∈
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Rr×1. We then define ‘r-tuple error function’ Er(M;u) as

Er(M;u) :=

∫
Rr

dru′ e−π(u−u′)T (u−u′) sign
(
MTu′

)
. (4)

Note that Er(M;u) is a C∞ function of u for any non-degenerate M.1

Proposition 3.3.
(a) Mr and Er are invariant under permutations of m(j)’s. In other words, for any

r × r permutation matrix P we have Mr(MP ;u) = Mr(M;u) and Er(MP ;u) =
Er(M;u). Moreover, Mr and Er do not change under independent positive scalings
of m(j)’s and change their sign whenever one of m(j)’s changes its sign; in other
words, for any diagonal r×r diagonal matrix D all of whose diagonal entries are non-
zero real numbers we have Mr(MD;u) = sign (detD) Mr(M;u) and Er(MD;u) =
sign (detD) Er(M;u).

(b) Mr and Er are invariant under orthogonal transformations, that is, for any Λ ∈
O(r;R) we have

Mr(ΛM; Λu) =Mr(M;u) and Er(ΛM; Λu) = Er(M;u). (5)

(c) If M =

(
M(1)

s 0

0 M(2)
r−s

)
is of block diagonal form then

Mr(M;u) =Ms(M(1)
s ;u[1,s])Mr−s(M(2)

r−s;u[s+1,r]) (6)
and

Er(M;u) = Es(M(1)
s ;u[1,s])Er−s(M(2)

r−s;u[s+1,r]) (7)

where u[j1,j2] := (uj1 , . . . , uj2)
T . Note that whenever m(j)’s split into two sets span-

ning orthogonal subspaces we have a similar factorization property using parts (a)
and (b) of this proposition since then M can be brought into a block diagonal form
using O(r;R) transformations and permutations.

Proof. All of the statements trivially follow from Definitions 3.1 and 3.2. ■

Before proceeding any further let us introduce some notation.

1It is useful to compare our definitions to those of [1]. M1(1;u) here is simply equal to M1(u) =

−sign (u) erfc (|u|
√
π) there, M2

(
( 1 −α
0 1 )

−T
; ( u1

u2 )
)

here is equal to the double error function M2(α;u1, u2)

of [1] and M2

((
1 1

−α −β

)−T
; ( u1

u2 )
)

here is equal to −M2 (α, β;u1, u2) sign (α− β) there.
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• For each S ⊆ [r] consider the subspace spanned by {m(j) : j ∈ S} and pick
an orthonormal basis for it, b(S)1 , . . . , b

(S)
|S| , where we will use the standard basis

b1 = (1, 0, . . . , 0)T , b2 = (0, 1, 0, . . . , 0)T , . . . , br = (0, 0, . . . , 0, 1)T for S = [r].
Now for any S ⊆ S′ ⊆ [r], form matrices QS,S′ ∈ R|S|×|S′| whose rows are the

components of b(S)1 , . . . , b
(S)
|S| in the basis b(S

′)
1 , . . . , b

(S′)
|S′| , in other words

(
QS,S′

)
j1j2

=

b
(S)T
j1

b
(S′)
j2

. We also will use QS := QS,[r]. Essentially, these matrices will form
the projectors to subspaces ⟨m(j) : j ∈ S⟩. Choosing different orthonormal bases
correspond to transforming QS,S′ → Λ|S|QS,S′ΛT

|S′| for S′ ̸= [r] and QS → Λ|S|QS

where Λn ∈ O(n;R).
Let us state now a couple of properties for future reference:

(1) QS,S′ QT
S,S′ = I|S| for any S ⊆ S′ ⊆ [r].

(2) QT
SQSm

(j) = m(j) for j ∈ S.
(3) QSw

(j) = 0 for j ∈ [r] /S.
(4) QS,S′QS′,S′′ = QS,S′′ for any S ⊆ S′ ⊆ S′′ ⊆ [r].

• Similarly, for each S ⊆ [r] consider the subspace spanned by {w(j) : j ∈ S} and
pick an orthonormal basis for it, c(S)1 , . . . , c

(S)
|S| , where again we will use the standard

basis c1 = (1, 0, . . . , 0)T , c2 = (0, 1, 0, . . . , 0)T , . . ., cr = (0, 0, . . . , 0, 1)T for S = [r].
For any S ⊆ S′ ⊆ [r] we form matrices PS,S′ ∈ R|S|×|S′| whose rows are the com-

ponents of c(S)1 , . . . , c
(S)
|S| in the basis c(S

′)
1 , . . . , c

(S′)
|S′| , or in other words

(
PS,S′

)
j1j2

=

c
(S)T
j1

c
(S′)
j2

. We also will use PS := PS,[r]. Choosing different orthonormal bases cor-
respond to transforming PS,S′ → Λ|S|PS,S′ΛT

|S′| for S′ ̸= [r] and PS → Λ|S|PS where
Λn ∈ O(n;R).

These matrices satisfy:
(1) PS,S′ P T

S,S′ = I|S| for any S ⊆ S′ ⊆ [r].
(2) P T

S PSw
(j) = w(j) for j ∈ S.

(3) PSm
(j) = 0 for j ∈ [r] /S.

(4) PS,S′PS′,S′′ = PS,S′′ for any S ⊆ S′ ⊆ S′′ ⊆ [r].

(5)
(
QS

P[r]/S

)
∈ O(r,R) for any S ⊆ [r].

• Let MS denote the matrix MS =
(
m(j1) m(j2) . . .m(j|S|)

)
where j1, j2, . . . , j|S| ∈

S ⊆ [r] and j1 < j2 < . . . < j|S|. We will also use WS for similarly constructed
matrices out of w(j)’s. Note that WT

S MS = I|S| and moreover since QT
SQSMS =

MS and P T
S PSWS = WS we have (QSMS)

−1 = WT
SQ

T
S and (PSMS)

−1 = WT
S P

T
S .
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Proposition 3.4. For any nonsingular M ∈ Rr×r and u ∈ Rr×1 away from the loci
w(j)Tu = 0, the function Mr(M;u) is a real valued C∞ function. Its discontinuity as
w(j)Tu→ 0 for all j ∈ [r] /S is given by

Mr(M;u) → (−1)r−|S| sign
(
WT

[r]/Su
)
M|S| (QSMS ;QSu) . (8)

Proof. We start by defining variables vj = w(j)T z
w(j)Tu

+ i. The Jacobian factor associated with

this change of variables is
∣∣ ∂v
∂z

∣∣ = |detM|−1∏r
j=1|w(j)Tu| . Defining ṽ(v, u,M) :=

v1w
(1)Tu
...

vrw
(r)Tu

 we can

rewrite Mr(M;u) as(
i

π

)r

sign
(
WT

[r]/Su
)
sign

(
WT

S u
)
e−πuTu

∫
Rr

drv
e−πṽ(v,u,M)TMTM ṽ(v,u,M)∏r

j=1(vj − i)
. (9)

As w(j)Tu → 0 for j ∈ [r] /S, the components of ṽ(v, u,M) corresponding to j ∈ [r] /S go
to zero and M ṽ(v, u,M) →

∑
j∈Sm

(j)vjw
(j)Tu and hence

ṽ(v, u,M)TMTM ṽ(v, u,M) → ṽS(v, u,M)TMT
SMS ṽS(v, u,M), (10)

where we should also note that MT
SMS = MT

SQ
T
SQSMS . Also for WT

[r]/Su = 0 we
have QT

SQSu = u which in turn gives WT
S u = WT

SQ
T
SQSu = (QSMS)

−1QSu, uTu =
uTQT

SQSu and implies ṽS(v, u,M) = ṽ(vS , QSu,QSMS). Then we can combine the factor(
i
π

)|S|
sign

(
WT

S u
)
e−πuTu with integrals over vS to obtain the M|S| (QSMS ;QSu) part. Fi-

nally, in the limit WT
[r]/Su → 0, remaining v[r]/S integrals give (iπ)r−|S| and we obtain the

discontinuity described in (8). ■
Remark. For large u, Er(M;u) is locally constant as Er(M;u) ∼ sign

(
MTu

)
whereas

Mr(M;u) is exponentially suppressed as Mr(M;u) ∼ (−1)r

πr
|detM|−1 e−πuTu∏

(WTu)
. The

asymptotic behavior of Er(M;u) is obvious from its definition in equation (4) whereas the
asymptotic behavior of Mr(M;u) can be deduced from a saddle point approximation. We
will make the asymptotic behavior of both functions more precise in our discussion.

Lemma 3.5. First derivatives of Mr(M;u) and Er(M;u) with respect to u are given by:

w(j)T ∂uMr(M;u) =
2∥∥m(j)
∥∥e−πuTQT

{j}Q{j}uMr−1(P[r]/{j}M[r]/{j};P[r]/{j}u), (11)

w(j)T ∂uEr(M;u) =
2∥∥m(j)
∥∥e−πuTQT

{j}Q{j}uEr−1(P[r]/{j}M[r]/{j};P[r]/{j}u). (12)
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Proof. We start with Mr(M;u) and its definition in terms of the integral Mr(M;u) =(
i

π

)r

|detM|−1
∫

Rr−iu

drz
e−πzT z−2πizTu∏

(WT z)
. The derivative ∂u acting on the integral limits

gives vanishing contribution because of the exponential suppression, then we simply act it
on the integrand to find

w(j)T ∂uMr(M;u) =

(
i

π

)r−1

2 |detM|−1
∫

Rr−iu

drz
e−πzT z−2πizTu∏(

WT
[r]/{j}z

) . (13)

Since
(
Q{j}
P[r]/{j}

)
∈ O(r,R) and P T

[r]/{j}P[r]/{j}W[r]/{j} = W[r]/{j} we can rewrite this as

w(j)T ∂uMr(M;u) =

(
i

π

)r−1

2 |detM|−1
∫

Rr−iu

drz
e
−πzTPT

[r]/{j}P[r]/{j}z−2πizTPT
[r]/{j}P[r]/{j}u∏(

WT
[r]/{j}P

T
[r]/{j}P[r]/{j}z

)
× e

−πuTQT
{j}Q{j}ue

−π(z+iu)TQT
{j}Q{j}(z+iu)

. (14)

Performing a change of variables z̃ = P[r]/{j}z and z0 = Q{j}(z+ iu) and taking the integral
over z0 we get

w(j)T ∂uMr(M;u) = 2e
−πuTQT

{j}Q{j}u

∣∣detP[r]/{j}M[r]/{j}
∣∣

|detM|
Mr−1(P[r]/{j}M[r]/{j};P[r]/{j}u).

(15)
Now note that

|detM| =
∣∣∣∣( Q{j}
P[r]/{j}

)
M
∣∣∣∣ = ∣∣∣∣( Q{j}M[r]/{j} Q{j}m

(j)

P[r]/{j}M[r]/{j} P[r]/{j}m
(j)

)∣∣∣∣ . (16)

Since P[r]/{j}m
(j) = 0 this simply reduces to

|detM| =
∣∣∣Q{j}m

(j)
∣∣∣ ∣∣detP[r]/{j}M[r]/{j}

∣∣ = ∥∥∥m(j)
∥∥∥ ∣∣detP[r]/{j}M[r]/{j}

∣∣ (17)

finally proving our assertion for Mr(M;u).
Now let us study Er(M;u) =

∫
Rr

dru′ e−π(u−u′)T (u−u′) sign
(
MTu′

)
:

w(j)T ∂uEr(M;u)

=

∫
Rr

dru′
[
−w(j)T ∂u′e−π(u−u′)T (u−u′)

]
sign

(
MT

[r]/{j}u
′
)
sign

(
m(j)Tu′

)
. (18)
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Noting that w(j)T ∂u′

(
MT

[r]/{j}u
′
)

= 0 and w(j)T ∂u′
[
sign

(
m(j)Tu′

)]
= 2δ

(
m(j)Tu′

)
=

2

∥m(j)∥ δ
(
Q{j}u

′) and integrating by parts we get

w(j)T ∂uEr(M;u) =
2∥∥m(j)
∥∥ ∫
Rr

dru′ e−π(u−u′)T (u−u′) sign
(
MT

[r]/{j}u
′
)
δ
(
Q{j}u

′) (19)

=
2∥∥m(j)
∥∥ ∫
Rr

dru′ e
−π(u−u′)T

(
PT
[r]/{j}P[r]/{j}+QT

{j}Q{j}

)
(u−u′)

× sign
(
MT

[r]/{j}

(
P T
[r]/{j}P[r]/{j} +QT

{j}Q{j}

)
u′
)
δ
(
Q{j}u

′) . (20)

Performing a change of variables ũ′ = P[r]/{j}u, u0 = Q{j}u and performing the integral
over u0 we can rewrite w(j)T ∂uEr(M;u) as

2∥∥m(j)
∥∥ ∫
Rr−1

dr−1ũ′ e−π(P[r]/{j}u−ũ′)T (P[r]/{j}u−ũ′) e
−πuTQT

{j}Q{j}u sign
(
MT

[r]/{j}P
T
[r]/{j}ũ

′
)
(21)

which finally can be written as
2∥∥m(j)
∥∥ e−πuTQT

{j}Q{j}uEr−1(P[r]/{j}M[r]/{j};P[r]/{j}u) (22)

proving our assertion for Er(M;u).
■

Proposition 3.6. The shadows of Er and Mr are given by

i

4
uT ∂uMr(M;u) =

i

2

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ e−πuTQT

{j}Q{j}uMr−1(P[r]/{j}M[r]/{j};P[r]/{j}u), (23)

and
i

4
uT ∂uEr(M;u) =

i

2

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ e−πuTQT

{j}Q{j}uEr−1(P[r]/{j}M[r]/{j};P[r]/{j}u). (24)

Proof. Using the fact that WTM = MWT = Ir we have

uT ∂uMr(M;u) = uTMWT ∂uMr(M;u) =
r∑

j=1

(
m(j)Tu

)
w(j)T ∂uMr(M;u). (25)

Using Lemma 3.5 then proves our statement for Mr. The proof for Er is exactly the
same. ■
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Proposition 3.7. Mr(M;u) and Er(M;u) solve Vignéras equation with λ = 0 for quadratic
form Q(u) = uTu on their domain of definition. In other words,

r∑
j=1

(
∂2uj

+ 2πuj ∂uj

)
Mr(M;u) = 0 and

r∑
j=1

(
∂2uj

+ 2πuj ∂uj

)
Er(M;u) = 0. (26)

Proof. We start with the case for Mr(M;u). Since(
∂2uj

+ 2πuj ∂uj

)
e−πzT z−2πizTu = 2πzj ∂zje

−πzT z−2πizTu (27)

we get

r∑
j=1

(
∂2uj

+ 2πuj ∂uj

)
Mr(M;u)

=

(
i

π

)r

|detM|−1
∫

Rr−iu

drz
2π∏
(WT z)

r∑
j=1

zj ∂zje
−πzT z−2πizTu. (28)

Integrating by parts and noting that
∑r

j=1 ∂zj

(
zj∏

(WT z)

)
= 0 proves the statement for Mr.

For Er(M;u) we first note that by Proposition 3.6 we have

2πuT ∂uEr(M;u) = 4π

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ e−πuTQT

{j}Q{j}uEr−1(P[r]/{j}M[r]/{j};P[r]/{j}u). (29)

Next we note that by Lemma 3.5 we have

r∑
j=1

∂uj ∂ujEr(M;u) =
r∑

j=1

m(j)T ∂u

(
w(j)T ∂uEr(M;u)

)
(30)

=
r∑

j=1

m(j)T ∂u

(
2∥∥m(j)
∥∥e−πuTQT

{j}Q{j}uEr−1(P[r]/{j}M[r]/{j};P[r]/{j}u)

)
. (31)

Since P[r]/{j}m
(j) = 0 we only need

m(j)T ∂u

(
e
−πuTQT

{j}Q{j}u
)
= −2π

(
m(j)Tu

)
e
−πuTQT

{j}Q{j}u (32)
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to find
r∑

j=1

∂uj ∂ujEr(M;u)

= −4π

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ e−πuTQT

{j}Q{j}uEr−1(P[r]/{j}M[r]/{j};P[r]/{j}u) (33)

canceling the contribution from equation (29) and proving
∑r

j=1

(
∂2uj

+ 2πuj ∂uj

)
Er(M;u)

vanishes. Note that the same proof can also be used for Mr(M;u) giving a second proof
for the statement for Mr(M;u). ■

Proposition 3.8. Mr(M;u) is uniformly bounded as |Mr(M;u)| ≤ (r!) e−πuTu.

Proof. We will use induction to prove the statement. For r = 1 we have |M1(M;u)| =
|erfc (|u|

√
π)| ≤ e−πu2 establishing the base case. Now we assume the hypothesis holds for

Mr−1 to prove the inductive step. By Proposition 3.6 we have

d

dt
Mr(M; tu) = 2

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ e−πt2uTQT

{j}Q{j}uMr−1(P[r]/{j}M[r]/{j}; tP[r]/{j}u). (34)

Integrating from t = 1 to ∞ and noting that Mr(M; tu) → 0 as t→ ∞ we have

Mr(M;u) = 2
r∑

j=1

m(j)Tu∥∥m(j)
∥∥ ∫ ∞

1
dt e

−πt2uTQT
{j}Q{j}uMr−1(P[r]/{j}M[r]/{j}; tP[r]/{j}u). (35)

By the induction hypothesis

|Mr(M;u)| ≤ 2(r − 1)!
r∑

j=1

∣∣∣∣∣m(j)Tu∥∥m(j)
∥∥
∣∣∣∣∣
∫ ∞

1
dt e

−πt2uTQT
{j}Q{j}ue

−πt2uTPT
[r]/{j}P[r]/{j}u (36)

= (r − 1)!

r∑
j=1

∣∣Q{j}u
∣∣

√
uTu

erfc
(√

πuTu
)
. (37)

Using |Q{j}u|√
uTu

≤ 1 and erfc
(√

πuTu
)
≤ e−πuTu then gives the result. ■

Proposition 3.9. On its domain of definition (which is
∏(

WTu
)

̸= 0) the function
Mr(M;u) can be decomposed as

Mr(M;u) =
∑
S⊆[r]

(−1)r−|S| sign
(
WT

[r]/Su
)
E|S| (QSMS ;QSu) . (38)
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Proof. We start with a change of variables vj = w(j)T z (so that
∣∣ ∂v
∂z

∣∣ = |detW| = |detM|−1)
in the integral defining Mr(M;u) (see equation (3)) to get

Mr(M;u) =

(
i

π

)r ∫
Rr−iWTu

drv
e−πvTMTMv−2πiuTMv∏r

j=1 vj
. (39)

Now we deform the integration contours without crossing any poles:

Mr(M;u) =

(
i

π

)r

lim
ϵj→0+

∫
Rr

drv
e−πvTMTMv−2πiuTMv∏r

j=1

(
vj − iϵj sign

(
w(j)Tu

)) . (40)

Under the integral and in the limit ϵj → 0+ we can replace 1
vj−iϵj sign(w(j)Tu)

factors with

PV
(

1
vj

)
+ iπ sign

(
w(j)Tu

)
δ(vj) and rewrite Mr(M;u) as(

i

π

)r ∫
Rr

drv e−πvTMTMv−2πiuTMv

×
∑
S⊆[r]

∏
j∈S

PV

(
1

vj

) ∏
j∈[r]/S

[
iπ sign

(
w(j)Tu

)
δ(vj)

] . (41)

Taking the integrals over v[r]/S using the delta functions we then have∑
S⊆[r]

(−1)r−|S| sign
(
WT

[r]/Su
) ( i

π

)|S| ∫
R|S|

d|S|vS
∏
j∈S

PV

(
1

vj

)
e−πvTSMT

SMSvS−2πiuTMSvS .

(42)
Using the fact that i

πPV
(
1
k

)
is the Fourier transform of sign (x) and that QT

SQSMS = MS

we can rewrite the integral
(
i

π

)|S| ∫
R|S|

d|S|vS
∏
j∈S

PV

(
1

vj

)
e−πvTSMT

SMSvS−2πiuTMSvS as

∫
R|S|

d|S|x

∫
R|S|

d|S|vS sign (x) e2πix
T vS e−πvTSMT

SQT
SQSMSvS−2πiuTQT

SQSMSvS . (43)

Performing a change of variables ṽS = QSMSvS and x̃ = (QSMS)
−Tx (for which the

Jacobian is unity) we obtain∫
R|S|

d|S|x̃

∫
R|S|

d|S|ṽS sign
(
MT

SQ
T
S x̃
)
e2πix̃

T ṽS e−πṽTS ṽS e−2πiuTQT
S ṽS . (44)
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Finally performing the Gaussian integral over ṽS we find∫
R|S|

d|S|x̃ sign
(
MT

SQ
T
S x̃
)
e−π(QSu−x̃)T (QSu−x̃) = E|S| (QSMS ;QSu) (45)

finishing the proof. ■

The decomposition given in Proposition 3.9 implies that one can conversely decompose
Er(M;u) in terms of Mr functions. Before giving this result we state a lemma that we will
need in establishing that decomposition.

Lemma 3.10. For any n × n real positive definite matrix G and any v ∈ Rn×1 such that∏
S⊆[n]

(∏[(
−G−1

S,S 0

−G[n]/S,S G
−1
S,S In−|S|

)(
vS
v[n]/S

)])
̸= 0 we have

∑
S⊆[n]

sign

((
−G−1

S,S 0

−G[n]/S,S G
−1
S,S In−|S|

)(
vS
v[n]/S

))
= 0. (46)

Proof. See Appendix A for the proof. ■

Taking GS,T = WT
SWT and vS = WT

S u in Lemma 3.10 and noting that

MT
SP

T
S PSu =

(
WT

SWS

)−1WT
S u, (47)

and
WT

N/SQ
T
[r]/SQ[r]/Su = WT

N/Su−
(
WT

N/SWS

) (
WT

SWS

)−1WT
S u (48)

we find ∑
S:S⊆N

(−1)|S| sign
(
MT

SP
T
S PSu

)
sign

(
WT

N/SQ
T
[r]/SQ[r]/Su

)
= 0 (49)

for all non-empty subsets N of [r] and for all u such that the arguments of sign functions
are non-zero.

Proposition 3.11. For any u such that
∏
S⊆[r]

[∏(
WT

SQ
T
SQSu

MT
[r]/SP

T
[r]/SP[r]/Su

)]
̸= 0 we have

Er(M;u) =
∑
S⊆[r]

sign
(
MT

[r]/SP
T
[r]/SP[r]/Su

)
M|S| (QSMS ;QSu) . (50)

Before going into the proof note that M functions have discontinuities

M|S| (QSMS ;QSu) → (−1)|S|−|S′| sign
(
WT

S/S′QT
SQSu

)
M|S′| (QS′MS′ ;QS′u) (51)
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as WT
S/S′QT

SQSu→ 0 where S′ ⊆ S ⊆ [r] by Proposition 3.4. So these discontinuities cancel
if ∑

S:N⊆S⊆[r]

(−1)|S|−|N | sign
(
WT

S/NQ
T
SQSu

)
sign

(
MT

[r]/SP
T
[r]/SP[r]/Su

)
= 0 (52)

for all proper subsets N of [r]. This in turn is ensured by Lemma 3.10 and equation (49).
We now turn to the proof of Proposition 3.11 to show the decomposition precisely:

Proof. Using Proposition 3.9 we find
∑
S⊆[r]

sign
(
MT

[r]/SP
T
[r]/SP[r]/Su

)
M|S| (QSMS ;QSu) is

equal to: ∑
S:S⊆[r]

∑
N :N⊆S

(−1)|S|−|N | sign
(
WT

S/NQ
T
SQSu

)
sign

(
MT

[r]/SP
T
[r]/SP[r]/Su

)
× E|N | (QNMN ;QNu) . (53)

Changing the order of sums gives∑
N :N⊆[r]

E|N | (QNMN ;QNu)

×
∑

S:N⊆S⊆[r]

(−1)|S|−|N | sign
(
WT

S/NQ
T
SQSu

)
sign

(
MT

[r]/SP
T
[r]/SP[r]/Su

)
. (54)

Then the sum over S is zero by Lemma 3.10 and equation (49) except for the case N = [r]
where it is unity. This then simply leaves Er(M;u). ■

3.2. Boosted Error Functions. We can now use the functions Es(M;u) and Ms(M;u)
we defined for Euclidean bilinear form in the previous section to spaces with arbitrary
non-degenerate bilinear forms. In particular let x ∈ Rn and let us define a signature
(r, n − r) bilinear form on this space by B(x, y) = xTAy (or by the associated quadratic
form Q(x) = xTAx). Here r denotes the number of positive definite directions. We will
define Er and Mr functions using vectors cj ∈ Rn for j = 1, . . . , s ≤ r (represented as
column vectors) which span a positive-definite subspace, in other words CTAC > 0 where
C := (c1 . . . cr).

Let us introduce some notation before proceeding any further. Let E ∈ Rs×n be a matrix
whose rows form an orthonormal basis for the plane spanned by cj ’s so that EAET = Is
and C = ETEAC. The projection of x to the plane spanned by cj ’s will be denoted as
xC+ = ETEAx = C(CTAC)−1CAx.

Definition 3.12. Let A be a signature (r, n − r) bilinear form and C = (c1 . . . cs) be an
n × s matrix whose columns form a positive definite subspace according to this bilinear
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form. Further define a matrix E ∈ Rs×n whose rows define an orthonormal basis for the
subspace spanned by cj ’s. Then we define EA

s (C;x) and MA
s (C;x) as

EA
s (C;x) = Es(EAC;EAx) and MA

s (C;x) =Ms(EAC;EAx). (55)

We will drop the superscript A whenever the bilinear form is implied from the context and
will drop the subscript s when the number of vectors in C can be inferred.

Note that these functions do not depend on the choice of E since different choices cor-
respond to a transformation E → QE where Q ∈ O(s,R) and that leaves EA

s (C;x) and
MA

s (C;x) invariant by Proposition 3.3.
We also define D = (d1 . . . ds) ∈ Rn×s whose columns form a dual basis to C for the

subspace ci’s span. That is DTAC = Is and D = ETEAD which can be easily verified for
D = ET (EAC)−T . We also use CS for S ⊆ [s] to denote the matrix CS =

(
cj1 cj2 . . . cj|S|

)
where j1, j2, . . . , j|S| ∈ S and j1 < j2 < . . . < j|S|. The matrix DS for the dual basis vectors
is similarly defined. One last notation we will use is CS⊥S′ denoting the projection of vectors
in CS to the subspace orthogonal to the one spanned by CS′ .2 More concretely CS⊥S′ will
be formed by vectors cj − CS′

(
CT
S′ACS′

)−1
CT
S′Acj for j ∈ S in increasing j order though

this choice will not be important. Now we can state the following propositions following
from our work in Section 3.1.

Proposition 3.13.
(a) E(C;x) is a C∞ function of x ∈ Rn for C ∈ Rn×s spanning a timelike subspace

as described above. It is invariant under permutations of cj, independent positive
scalings of cj and is odd under independent sign flips of cj’s.

(b) If C splits into two sets C1 and C2 which span orthogonal subspaces, then

E(C;x) = E(C1;x)E(C2;x). (56)

(c) As |B(cj , x)| → ∞ for all j we have E(C;x) → sign (B(C, x)).
(d) The function E(C;x) satisfies the Vignéras equation for bilinear form B(x, y) with

λ = 0: [
B−1( ∂x, ∂x) + 2πxT ∂x

]
E(C;x) = 0 (57)

where B−1 denotes B−1(x, y) = xTA−1y. The shadow of E(C;x) is

i

4
xT ∂xE(C;x) =

i

2

s∑
j=1

B(cj , x)√
Q(cj)

e−πB(cj ,x)
2/Q(cj)E(C[s]/{j}⊥{j};x). (58)

2In Section 4 we use the same notation also when the columns of CS span an indefinite signature subspace.
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(e) The function E(C;x) has an integral representation:

E(C;x) =

∫
⟨C⟩

dsx′ e−πQ(xC
+−x′) sign

(
B(C, x′)

)
(59)

where the measure is normalized so that
∫
⟨C⟩

dsx′ e−πQ(x′) = 1.

Proposition 3.14.
(a) M(C;x) is a C∞ function of x ∈ Rn away from the loci B(dj , x) = 0 for C ∈ Rn×s

spanning a timelike subspace. It is invariant under permutations of cj, independent
positive scalings of cj and is odd under independent sign flips of cj’s.

(b) If C splits into two sets C1 and C2 which span orthogonal subspaces, then

M(C;x) =M(C1;x)M(C2;x). (60)

(c) |M(C;x)| < (s!) e−πQ(xC
+).

(d) The function M(C;x) satisfies the Vignéras equation for bilinear form B(x, y) with
λ = 0.

(e) The function M(C;x) has an integral representation:

M(C;x) =

(
i

π

)s (
detCTAC

)− 1
2

∫
⟨C⟩−ixC

+

dsz
e−πQ(z)−2πiB(x,z)∏

[B(D, z)]
(61)

where the measure is normalized so that
∫
⟨C⟩

dsx′ e−πQ(x′) = 1.

Proposition 3.15. On its domain of definition (that is
∏

[B(D, z)] ̸= 0) we have the
decomposition

M(C;x) =
∑
S⊆[s]

(−1)s−|S| sign
(
B(D[s]/S , x)

)
E(CS ;x). (62)

Similarly we have

E(C;x) =
∑
S⊆[s]

sign
(
B(C[s]/S⊥S , x)

)
M(CS ;x) (63)

for any x such that the M function is well defined and the arguments of sign functions are
nonzero.
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4. Indefinite Theta Functions of Higher Depth

In this section we will construct a certain indefinite theta series and give sufficient condi-
tions for its convergence. The holomorphic part of these series will be given by restricting
the sum over lattice points through the function

ϕr(x) =
1

2r

r∏
j=1

[
sign (B(cj , x))− sign

(
B(c′j , x)

)]
. (64)

Before stating our result let us introduce some notation. By CSP we will mean the matrix
whose columns are taken from the set {cj : j ∈ S∩P}∪{c′j : j ∈ S/P} in, say, increasing j
order (we will also use C ′ for C

[r]∅
and CP for C[r]P ). We also form the matrix CSP⊥TQ by

which we mean the matrix formed by vectors in CSP projected to the subspace orthogonal to
the one spanned by the vectors in CTQ . Next we will use ∆(x1, . . . , xs) for the determinant
of the Gram matrix for the vectors x1, . . . , xs and Dj1,j2 for the cofactor at (j1, j2) position
for the Gram matrix constructed from {c1, c′1, . . . , cr, c′r} where we will use primes in the
subscript to denote positions corresponding to vectors c′j ’s. Finally form the matrix M from
the cofactor matrix of the Gram matrix for (c1, c′1, . . . , cr, c′r) and by removing cofactors Dj,j′

and Dj′,j for all j = 1, . . . , r.
Theorem 4.1. Let C and C ′ as described above be 2r vectors in Rn endowed with an
integral bilinear form B(x, y) of signature (r, n−r). Assume that each CP for P ⊆ [r] spans a
signature (r, 0) (i.e. positive-definite) subspace. Further assume that ∆ := ∆(C,C ′) satisfies
∆(−1)r > 0 (signifying that C ∪ C ′ forms a linearly independent set and spans a signature
(r, r) subspace by our assumption above) and that Dj,j′(−1)r ≥ 0 for all j = 1, . . . , r. Finally
assume that the matrix (−1)rM as defined above is negative definite.

Then θµ[ϕr, 0] is a convergent series and it is holomorphic in τ and z away from the loci
where B(k + b, cj) = 0 or B(k + b, c′j) = 0 for some j ∈ [r] and k ∈ Λ + µ+ p/2.

Moreover, assume that analogous conditions for vectors in C and C ′ we stated above also
holds for C[r]/S⊥SP and C ′

[r]/S⊥SP for any S ⊆ [r] and P ⊆ S. Then θµ[ϕ̂r, 0] with the kernel

ϕ̂r(x) =
1

2r

∑
P⊆[r]

(−1)|P |Er(C
P ;x) (65)

is a convergent series and forms a modular completion for θµ[ϕr, 0] transforming like a
(vector-valued) Jacobi form of weight (n/2, 0).
Proof. We follow and generalize the proofs in [11] and [1]. The first thing to note is that
for any x ∈ Rn we have

∆(x, c1, c
′
1, . . . , cr, c

′
r) = ∆

[
Q(x)− 2

∑r
j=1Dj,j′B(cj , x)B(c′j , x)

∆

]
−XTMX (66)
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where XT = (B(c1, x) B(c′1, x) . . . B(cr, x) B(c′r, x)). We define the part in brackets as
Q−(x):

Q−(x) := Q(x)− 2

∑r
j=1Dj,j′B(cj , x)B(c′j , x)

∆
. (67)

Now we note that if x is linearly independent from C ∪C ′ the subspace ⟨x, c1, c′1, . . . , cr, c′r⟩
has signature (r, r + 1) and hence

(−1)r∆(x, c1, c
′
1, . . . , cr, c

′
r) = (−1)r∆Q−(x)−XT [(−1)rM ]X < 0. (68)

Using the negative definiteness of (−1)rM and positivity of (−1)r∆ we conclude Q−(x) < 0.
On the other hand, if x is in the plane spanned by C ∪C ′ we have ∆(x, c1, . . . , c

′
r) = 0 and

hence Q−(x) < 0 unless x = 0 again arguing through negative definiteness of (−1)rM and
positivity of (−1)r∆. Now, ϕr(x) ̸= 0 only when sign (B(cj , x)) sign

(
B(c′j , x)

)
≤ 0 for all

j = 1, . . . , r. The assumptions Dj,j′(−1)r ≥ 0 and ∆(−1)r > 0 implies Q−(x) ≥ Q(x), i.e.
on the support of ϕr(x) the negative definite bilinear form Q−(x) dominates Q(x). Using
this we can conclude that ϕr(x)eπQ(x)/2 ≤ eπQ−(x)/2 proving the absolute convergence of
θµ[ϕr, 0].

For the second part of the theorem we use the decomposition in Proposition 3.15 to
rewrite the kernel ϕ̂r(x) as

ϕ̂r(x) =
1

2|S|

∑
S⊆[r]

∑
P⊆S

(−1)|P |M(CSP ;x)
1

2r−|S|

∑
Q⊆[r]/S

(−1)|Q| sign
(
B(C[r]/SQ⊥SP , x)

)
.

(69)
Let us focus on each S ∈ [r] and P ⊆ S contribution

ϕSP (x) :=M(CSP ;x)

 1

2r−|S|

∑
Q⊆[r]/S

(−1)|Q| sign
(
B(C[r]/SQ⊥SP , x)

) (70)

separately. We start by decomposing each x ∈ Rn as x = x1 + x2 where x1 is in the linear
span of CSP and x2 is in its orthogonal complement so that Q(x) = Q(x1) + Q(x2). That
divides ϕSP (x) eπQ(x)/2 into a factor along ⟨CSP ⟩⊥: 1

2r−|S|

∑
Q⊆[r]/S

(−1)|Q| sign
(
B(C[r]/SQ⊥SP , x2)

) eπQ(x2)/2 (71)

and a factor along ⟨CSP ⟩:
M(CSP ;x1) e

πQ(x1)/2. (72)
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By our argument in the first part and by the hypothesis given for C[r]/S⊥SP ∪C ′
[r]/S⊥SP the

factor  1

2r−|S|

∑
Q⊆[r]/S

(−1)|Q| sign
(
B(C[r]/SQ⊥SP , x)

) eπQ(x2)/2 (73)

is dominated along ⟨CSP ⟩⊥ by eπQSP⊥
− (x2)/2 where QSP⊥

− is a negative definite bilinear form
on ⟨CSP ⟩⊥ and correspondingly by Proposition 3.14

|M(CSP ;x)| eπQ(x1)/2 ≤ |S|! e−πQ(x1)/2 (74)
and this contribution is exponentially suppressed along ⟨CSP ⟩. That shows the series in
θµ[ϕ̂r, 0] is convergent and that ϕ̂r(x)eπQ(x)/2 satisfies the conditions given in theorem 2.1.
Moreover, since E(CP ;x) functions each satisfies Vignéras equation with λ = 0 (see Propo-
sition 3.13) by Vignéras’ theorem 2.1, θµ[ϕ̂r, 0] transforms like a (vector-valued) Jacobi form
of weight (n/2, 0). ■
Remark. It is desirable to further relax and simplify the conditions we put on C. See [6]
and [10] for further discussion.

Aside from the obvious factorizable solutions to the hypothesis we put for C and C ′ we
will exhibit a non-factorizable example for r = 4 case.

Example. Consider signature (4, 4) integral bilinear form

A =

(
G(A4) −I4
−I4 0

)
(75)

where G(A4) denotes the Gram matrix for the A4 root lattice:

G(A4) =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 . (76)

Then the vectors

c1 =


1
0
0
0
0
0
0
0

 , c2 =


0
1
0
0
0
0
0
0

 , c3 =


0
0
1
0
0
0
0
0

 , c4 =


0
0
0
1
0
0
0
0

 (77)

and

c′1 =


1
0
0
0
0
−1
0
0

 , c′2 =


0
1
0
0
0
0
−1
0

 , c′3 =


0
0
1
0
0
0
0
−1

 , c′4 =


0
0
0
1
−1
0
0
0

 (78)
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satisfy the hypotheses of theorem 4.1.

5. Discussion

In this work we studied the properties of r-tuple error functions and introduced indefinite
theta series using these functions. One obvious question is to relax the conditions we
imposed on cj ’s and c′j ’s that determine the subset of lattice points used in the holomorphic
part of the associated theta series and ensure its convergence. Specifically, one would want
to allow null vectors and allow linear dependencies, which is essential to extend the range of
applications for indefinite theta functions. The other two constructions for mock modular
forms given by [11], namely using Appell-Lerch sums [12] and meromorphic Jacobi forms
[4], are closely related to signature (1, n−1) indefinite theta series. It is then natural to look
for similar corresponding constructions for signature (r, n − r) indefinite theta functions.
On the side of Appell-Lerch sums one such generalization is already available in literature
under the name ‘generalized Appell functions’ [3,8]. Indeed, [1] initiated the study of their
modular properties for the r = 2 case. To study the complete story it is then desirable to
study the null limits of the construction we have given for higher r cases.

Appendix A.

In this section we are going to prove the Lemma 3.10 which we restate here for reference.

Lemma A.1. For any n × n real positive definite matrix G and any v ∈ Rn×1 such that∏
S⊆[n]

(∏[(
−G−1

S,S 0

−G[n]/S,S G
−1
S,S In−|S|

)(
vS
v[n]/S

)])
̸= 0 we have

∑
S⊆[n]

sign

[(
−G−1

S,S 0

−G[n]/S,S G
−1
S,S In−|S|

)(
vS
v[n]/S

)]
= 0. (79)

Proof. We will use induction on n. The base hypothesis easily follows from the positivity
of G1,1. For the inductive step let us note the following facts first. There are 2n n sign
functions in our sum. We are going to show that there are generically 2n−1 n independent
ones that each appear twice and that discontinuities cancel among each pair. In particular,
we consider the contribution to the sum above from subsets S and S ∪ {j} for some j ∈ [n]
and S ⊆ [n]/{j} and single out the contribution from the row corresponding to vj .
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• The contribution from S reads (using Ŝ for [n]/(S ∪ {j})):

sign


 −G−1

S,S 0 0

−Gj,S G
−1
S,S 1 0

−G
Ŝ,S

G−1
S,S 0 I|Ŝ|


vSvj
v
Ŝ




= sign
(
vj −Gj,S G

−1
S,SvS

)
sign

[(
−G−1

S,S 0

−G
Ŝ,S

G−1
S,S I|Ŝ|

)(
vS
v
Ŝ

)]
. (80)

• For the contribution from S ∪ {j} first note that(
GS,S GS,j

Gj,S Gj,j

)−1

=

((
GS,S − 1

Gj,j
GS,j Gj,S

)−1
− 1

kG
−1
S,S GS,j

− 1
kGj,S G

−1
S,S

1
k

)
(81)

where k = Gj,j −Gj,S G
−1
S,S GS,j and(

GS,S − 1

Gj,j
GS,j Gj,S

)−1

= G−1
S,S +

1

k
G−1

S,S GS,j Gj,S G
−1
S,S . (82)

By the assumption that G is positive definite we have k > 0. We can rewrite the
S ∪ {j} contribution

sign

[(
−G−1

S∪{j},S∪{j} 0

−G
Ŝ,S∪{j}G

−1
S∪{j},S∪{j} I|Ŝ|

)(
vS∪{j}
v
Ŝ

)]
(83)

as

sign




−
(
GS,S− 1

Gj,j
GS,jGj,S

)−1
1
k
G−1

S,SGS,j 0

1
k
Gj,SG

−1
S,S − 1

k
0

−G
Ŝ,S

(
GS,S− 1

Gj,j
GS,jGj,S

)−1

+ 1
k
G

Ŝ,j
Gj,SG

−1
S,S

1
k
G

Ŝ,S
G−1

S,SGS,j− 1
k
G

Ŝ,j
I|Ŝ|


vSvj
v
Ŝ


 =

(84)

− sign
(
vj −Gj,SG

−1
S,SvS

)
sign

 −
(
GS,S− 1

Gj,j
GS,jGj,S

)−1

0

−
(
G

Ŝ,S
− 1

Gj,j
G

Ŝ,j
Gj,S

)(
GS,S− 1

Gj,j
GS,jGj,S

)−1

I|Ŝ|

(ṽS
ṽ
Ŝ

)
where we defined ṽS = vS − vj

Gj,j
GS,j .

Next we are going to show that possible discontinuities due to sign
(
vj −Gj,S G

−1
S,SvS

)
terms

do cancel between these two contributions. For this we note that at vj = Gj,S G
−1
S,SvS we
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have

−
(
GS,S − 1

Gj,j
GS,jGj,S

)−1

ṽS

= −
(
G−1

S,S +
1

k
G−1

S,S GS,jGj,S G
−1
S,S

)(
vS − 1

Gj,j
GS,jGj,S G

−1
S,S vS

)
= −G−1

S,SvS (85)

and

−
(
G

Ŝ,S
− 1

Gj,j
G

Ŝ,j
Gj,S

)(
GS,S − 1

Gj,j
GS,jGj,S

)−1

ṽS + ṽ
Ŝ

= −
(
G

Ŝ,S
− 1

Gj,j
G

Ŝ,j
Gj,S

)
G−1

S,S vS +

(
v
Ŝ
− 1

Gj,j
G

Ŝ,j
Gj,S G

−1
S,S vS

)
= −G

Ŝ,S
G−1

S,S vS + v
Ŝ
. (86)

So at
∏[(

−G−1
S,S 0

−G
Ŝ,S
G−1

S,S I|Ŝ|

)(
vS
v
Ŝ

)]
̸= 0 (ensured by the hypothesis) the sum

∑
S⊆[n]

sign

((
−G−1

S,S 0

−G[n]/S,S G
−1
S,S In−|S|

)(
vS
v[n]/S

))
(87)

is equal on both sides of vj − Gj,S G
−1
S,S vS = 0. The argument generalizes for all the sign

functions in the sum.
Let us now specialize to j = n (the choice of j = n is not important), use Ŝ = [n− 1]/S

and rewrite the sum in (87) as∑
S⊆[n−1]

[
sign

[(
−G−1

S,S 0

−G
Ŝ,S

G−1
S,S I|Ŝ|

)(
vS
v
Ŝ

)]
− sign

[(
−G̃−1

S,S 0

−G̃
Ŝ,S

G̃−1
S,S I|Ŝ|

)(
ṽS
ṽ
Ŝ

)]]

× sign
(
vn −Gn,S G

−1
S,S vS

)
(88)

where ṽS = vS − vn
Gn,n

GS,n and G̃ is a positive definite matrix defined by

G̃[n−1],[n−1] := G[n−1],[n−1] −
1

Gn,n
G[n−1],nGn,[n−1]. (89)

Now for any v satisfying the hypothesis, we start increasing vn while keeping v[n−1] fixed
until vn −Gn,S G

−1
S,S vS > 0 for all S ⊆ [n− 1] and v satisfies the hypothesis of the lemma.

The value of our sum does not change across any of the possible discontinuities by our
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argument above. The fact that the sum over S ⊆ [n−1] is zero by the induction hypothesis
then proves the statement of the lemma.

■
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