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ABSTRACT. Theta functions for definite signature lattices constitute a rich source of mod-
ular forms. A natural question is then their generalization to indefinite signature lattices.
One way to ensure a convergent theta series while keeping the holomorphicity property of
definite signature theta series is to restrict the sum over lattice points to a proper subset.
Although such series do not generally have the modular properties that a definite signature
theta function has, as shown by Zwegers [[L1] for signature (1,n — 1) lattices, they can be
completed to a function that has these modular properties by compromising on the holo-
morphicity property in a certain way. This construction has recently been generalized to
signature (2,n — 2) lattices by Alexandrov, Banerjee, Manschot, and Pioline [l]. A crucial
ingredient in this work is the notion of double error functions which naturally lends itself
to generalizations. In this work we study the properties of such error functions which we
will call r-tuple error functions. We then construct an indefinite theta series for signature
(r,n—r) lattices and show they can be completed to modular forms by using these r-tuple
error functions.
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1. INTRODUCTION

In his seminal work on mock theta functions, Zwegers [11] gives three closely related
constructions for mock modular forms. One of these constructions involves theta series for
lattices of signature (1,n — 1) extending an earlier work on such lattices by Gottsche and
Zagier [5]. A natural problem then is to construct similar modular objects out_of signature
(r,n — r) lattices. Recently, Alexandrov, Banerjee, Manschot, and Pioline [l] gave such
an extension and investigated its properties in detail for the case r = 2 while suggesting a
natural generalization for r» > 2. Further work along these lines after the groundbreaking
work of [[L] includes [2] by Bringmann, Kaszian and Rolen which uses and extends the results
of [1] (in particular for r = 3 case) to work out the modularity properties of a function that
arises in the context of Gromov-Witten theory and [] by Kudla which among other things
display a relation between indefinite theta functions here and Kudla-Milson theta series [[7].

The main problem for indefinite signature lattices is that the usual g-series one constructs
for definite signature lattices is no longer a convergent series. One can construct a convergent
series by restricting the sum over lattice points to a proper subset of them, however then
generically one does not get the modular properties one would get from definite signature
lattices. In [11] holomorphicity properties of such g-series are compromised in a specific
way to get a modular object. Error functions used in this context are replaced in [L]
by generalized error functions. One of our goals in this paper is to study the properties
of generalized error functions which we call r-tuple error functions in this work, closely
following the methods of [} in their study of double error functions.

A crucial ingredient in the analysis of [[l] is a result by Vignéras [9] that shows conditions
under which one can deform a theta series for an indefinite signature lattice and obtain a
modular object. The deformation is accomplished through a kernel function satisfying a
differential equation which we will call Vignéras equation. Ordinary error functions used by
[11] and generalized error functions introduced by [l| and studied here satisfy this equation
and hence can be used in the construction of indefinite theta functions. Mere existence of
these functions still does not solve the problem entirely though as one should still prove the
convergence of the theta series built as such. This is a nontrivial problem and we will give
a sufficient set of conditions for convergence again expanding on the methods of [11] and
[].

The outline of this paper is as follows. In Section P we review the results of [9] and set
up some notation. Then in Section f we study r-tuple error functions proving properties we
need for the discussion of indefinite theta functions. This allows us to set up a particular
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form of indefinite theta series in Section H and give a sufficient set of conditions for its
convergence. Finally, in Section ff we discuss our results and future prospects.

Note: During the course of this study the author heard of an upcoming paper by Zagier
and Zwegers on indefinite theta functions of generic signature. Also after this work was
completed, a preprint by Westerholt-Raum [10] has appeared discussing indefinite theta
functions over tetrahedral cones. It employs a geometrical approach to discussing asymp-
totic properties of the kernel E,(M;u) we will define below. Our work instead bases its
discussion over generalized complementary error functions as defined in [l] and proves its
properties for general case through their integral definitions. In particular, the decomposi-
tion of the kernel E,.(M;u) in terms of generalized complementary error functions M, (M;u)
(see Proposition and @) is what is used to establish convergence properties for theta
functions.

2. VIGNERAS’® THEOREM AND THETA SERIES FOR INDEFINITE SIGNATURE LATTICES

The main technical tool we will use for establishing modularity properties is Vignéras’
theorem which we are going to review here. First we set up some notation mainly following
that of [[Ij. Let A be an n-dimensional lattice (n € N) endowed with an integral bilinear
form B(m,k) = mT Ak for m,k € A (and an associated quadratic form Q(k) = kT Ak)
which we also linearly extend to R” =2 A ® R. Assume that the bilinear form has signature
(r,n —r) where n > r and r € N denotes the number of positive eigenvalues. We will also
use the notation 0, f(z) = (0, f, .- -, Omsf)T for x = (z1,...,25)". Lastly, we define theta
series with kernel ¢ by (for A € Z, u € A*/A where A* is the dual lattice, 7 := 71 + im0 € H
form € R, 7 € RT, g := 2™, b,c € R" and p € A which is a characteristic vector satisfying
Q(k) + B(k,p) € 2Z for all k € A)

eu 6, A (7, b, ¢) = 7_2—,\/2 Z emiB(k.p) gb(\/%(k‘ +b)) q—Q(k+b)/2 o2miB(ck+b/2) (1)
keA+p+p/2

If ¢(x)e™@®)/2 ¢ L1(R™) the absolute convergence of the sum is ensured. Now we can state
Vignéras’s theorem:

Theorem 2.1 (Vignéras [9]). If for any degree < 2 polynomial R(x) and order < 2 differ-
ential operator D(z), the functions ¢(z)e™@®)/2, D(z) [gb(x)e’rQ(x)/?] and R(x)¢(z)e™@®)/2
are in LY(R™) N L2(R™) and if the kernel ¢(x) satisfies the Vignéras equation

[B™1( 0y, 05) + Py O] ¢(x) = 2 Ao (x) (2)

where B~ (z,y) = xT A7y, the theta function 0, [, N (7,b,c) transforms like a Jacobi
form of weight (A +n/2,0). That is we have:
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An/2
0 16,0 (<17, ) = M+ T2 iz S~ mistug, 16, (7,8, ),
VIA/A| veAT/A
0, [0, N (T + 1,b,c + b) = e ™ QWHP/2)g, 4, ] (1,b,¢),
e 0, [0, N (1,b+ K, c) = (—1)Bkpe ””B(Ck 0, [0, A] (1, b,¢) for any k € A,
0, [0, N (1,b,c + k) = (—1)BEr)emiBOk)g [qﬁ, A (1,b,¢) for any k € A.
When we state holomorphicity in T and z = bt — ¢, we mean holomorphicity of the function

0, [0, N (1, 2) == B2 6, ] (7,b, ¢).

When the kernel asymptotes to a locally polynomial and homogeneous function of degree
A one can recover it from its shadow ) = 7 (x 9, — A\)¢ and its asymptotic behavior. See [l]
for further details.

3. GENERALIZED ERROR FUNCTIONS

In this section we will study a natural generalization of double error functions as suggested
by [l] and prove the properties we need to define indefinite theta functions out of them. In
this section and in the rest of this paper we will use the following notation: For an s x ¢
matrix G, Ggr where S C [s] and T C [t] will mean the matrix G restricted to rows and
columns corresponding to subsets S and T', respectively. If G is a column vector we will
drop T from this notation if 7 = {1}. Also for a column matrix = (z1,...,zs)" we will

use [[z = [[}_, #; and sign (z) = [[}_; sign (z;).
3.1. r-tuple Error Functions.

Definition 3.1. Let m(®), ..., m() e R™*! be a collection of r non-degenerate column
vectors and wM ... w € R™! be the corresponding dual basis (with respect to the
Euclidean norm so that they satisfy w0V mU2) = §5172) Let us also define M € R™ " by
M = (mb . m) and W € R by W = (w® .. .w) so that M~T = W. Finally
let u € R™!, where u = (uy,...,u,)T is such that v’ w@) # 0 for all j = 1,...7. Then
we define ‘complementary r-tuple error function’ M, (M;u) using the following absolutely
convergent integral:

SN\ T —7mzTz—27mizTu
) _ r_ €
M,(M;u) = <7T> |det M|! / d ZW, (3)

R"™—iu
where the integration variable is represented as a column matrix z = (z1,...,2,.)%.
Definition 3.2. Let m®,... ., m() e R"™*! be a collection_of r non-degenerate column

vectors (where we use M = (m(l) e m(r)) as in Definition @) and let u = (uy,...,u,)’ €



r-TUPLE ERROR FUNCTIONS AND INDEFINITE THETA SERIES OF HIGHER-DEPTH 5

R™1, We then define ‘r-tuple error function’ E,.(M;u) as

E,(M;u) = /d’“u'e’r(““l)T(““/) sign (MTu’) . (4)
R"

Note that E,(M;u) is a C* function of u for any non-degenerate ./\/lE

Proposition 3.3.

7

(a) M, and E, are invariant under permutations of mU) s, In other words, for any
r X r permutation matrix P we have M,(MP;u) = M,(M;u) and E,(MP;u) =
E.(M;u). Moreover, M, and E, do not change under independent positive scalings
of mY’s and change their sign whenever one of mU)’s changes its sign; in other
words, for any diagonal rxr diagonal matrix D all of whose diagonal entries are non-
zero real numbers we have M,(MD;u) = sign (det D) M,.(M;u) and E,(MD;u) =
sign (det D) E,(M;u).

(b) M, and E, are invariant under orthogonal transformations, that is, for any A €
O(r;R) we have

M, (AM; Au) = M, (M;u) and E.(AM;Au) = E.(M;u). (5)
Mo . .
(c) If M = o m® | of block diagonal form then
M, (M7 U) = M; (Mgl), u[l,s]) Mrfs(Mf?—)s; u[s—‘,—l,’r‘]) (6)
and
E, (M7 U) = Fj (Mg1)7 u[l,s]) ET—S(M£223§ u[s+1,r]) (7)
where ug;, j,) = (s - ,ujQ)T. Note that whenever mU)’s split into two sets span-

ning orthogonal subspaces we have a similar factorization property using parts (a)
and (b) of this proposition since then M can be brought into a block diagonal form
using O(r; R) transformations and permutations.

Proof. All of the statements trivially follow from Definitions @ and @ [

Before proceeding any further let us introduce some notation.

11t is useful to compare our definitions to those of [lll. Mi(1;u) here is simply equal to M (u) =
—sign (u) erfe (Ju|y/7) there, M, ((é - ) (e )) here is equal to the double error function Ma(c;u1,us2)

of [l] and M> (( s )_T i (s )) here is equal to —M> (o, B;u1, u2) sign (o — ) there.
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e For each S C [r] consider the subspace spanned by {m() : j € S} and pick

55) yees ,b‘(‘;‘), where we will use the standard basis

b1 = (1,0,...,0)T, by = (0,1,0,...,007, ..., b. = (0,0,...,0,1)T for S = [r].
Now for any S C S’ C [r], form matrices Qg € RISXIS'T whose rows are the

components of bgs), cee b|(§|) in the basis bgs/), . b(sl), in other words (QS,S') =

Y Jij2
bg-f)Tbg-f). We also will use Qs = Qg,]- Essentially, these matrices will form

the projectors to subspaces <m(j) : 7 € S). Choosing different orthonormal bases
correspond to transforming Qg g — A|S|QS,S'A\%/| for S" # [r] and Qs — Ag)Qs
where A, € O(n; R).

Let us state now a couple of properties for future reference:

an orthonormal basis for it, b

(1) Qs Q§ g = I for any S C 8" C [r].
(2) Qgng(j) =m\ for j e S.
(3) Qsw) =0 for j € [r]/S.
(4) Qs,5:Qsr 57 = Qsn for any S C 5" C §" C [r].
e Similarly, for each S C [r] consider the subspace spanned by {w) : j € S} and
pick an orthonormal basis for it, CES)’ ceey c‘(g‘), where again we will use the standard

basis ¢; = (1,0,...,0)7, ¢ = (0,1,0,...,0)7, ..., ¢, = (0,0,...,0,1)T for S = [r].
For any S C S’ C [r] we form matrices Pgg € RISl whose rows are the com-

ponents of cgs), e ,cl(:g') in the basis cgsl), . ,c|(§,l|), or in other words (PS’S/)jle =
cgflg)Tcg/). We also will use Ps := Pg ;. Choosing different orthonormal bases cor-
respond to transforming Pg g — A|g P, 51A|7;9,| for S’ # [r] and Ps — A|s|Ps where
A, € O(n; R).

These matrices satisfy:

(1) Psg Pg*jsf = I for any S C S" C [r].

(2) PIPsw) =wl) for j € S.

(3) PsmW) =0 for j € [r] /S.

(4) PS,S’PS’,S” = PS,S” for any S - S/ - SH - [7’]
(5) (Pc[f;s> € O(r,R) for any S C [r].

e Let Mg denote the matrix Mg = <m(j1) mU2) ..m(jls\)> where j1,j2,...,7)5) €
S Cr]and j1 < j2 < ... < jig- We will also use Wg for similarly constructed
matrices out of w(¥)’s. Note that Wg Mg = I|S| and moreover since QEQSMS =
Mg and PgPSWS = Ws we have (Qs./\/lg)_l = Wg g and (PS./\/IS)_1 = ng
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Proposition 3.4. For any nonsingular M € R™" and u € R™! away from the loci

wWTy = 0, the function M, (M;u) is a real valued C* function. Its discontinuity as
w9y, — 0 for all j € [r] /S is given by
M, (Miu) = (~1) 719 sign (W], /Su> Mg (QsMs; Qsu) . 8)
Proof. We start by defining variables v; = 1“1))((;));5 + i. The Jacobian factor associated with
vwMTy
—1
this change of variables is %! = HLCMT%' Defining v(v, u, M) = : we can
= vrw(’")Tu

rewrite M, (M;u) as
—70(v,u, M)T MT M5 (v,u,M)

1: " : : —TTuU" U ‘s €
(77) sign (W[{}/su) sign (Wgu) e’ /d v T
RT

j:l(”j — i)

9)

As wTy, — 0 for j € [r] /S, the components of ¥(v,u, M) corresponding to j € [r] /S go
to zero and Mv(v,u, M) — > ;g mWyw Ty and hence

(v, u, MY MT M0, u, M) — g (v, u, M)T MEM s Ts (v, u, M), (10)
where we should also note that Mg/\/lg = MEQEQSMS. Also for W[?}/S“ =0 we
have QLQsu = w which in turn gives Wiu = WIQLQsu = (QsMs)'Qsu, ulu =
uTQngu and implies vg(v,u, M) = v(vg, Qsu, @sMs). Then we can combine the factor
(%) 5] sign (Wgu) e~ with integrals over vg to obtain the Mg (QsMg; Qsu) part. Fi-
nally, in the limit W[Z] st = 0, remaining v|,},s integrals give (iﬂ')’""s | and we obtain the

discontinuity described in (E) [

Remark. For large u, E,(M;u) is locally constant as E,(M;u) ~ sign (MTu) whereas
1) —muTu

M, (M;u) is exponentially suppressed as M,(M;u) ~ ( r) |det M| 6(7 The
7r

WTu)
asymptotic behavior of F,(M;u) is obvious from its definition in equationl_(ﬁ) whereas the
asymptotic behavior of M, (M;u) can be deduced from a saddle point approximation. We
will make the asymptotic behavior of both functions more precise in our discussion.
Lemma 3.5. First derivatives of M,(M;u) and E.(M;u) with respect to u are given by:

2
lm @]

2
Im @]

. —7ruT T. U
w7 9, M, (M; u) = e ™ RO M,y (P (y My Prygpw)s (1)

—muT QT Qriu .
e COEOE (P gy Mgy Prpayw)- - (12)

wDT 9, B (M;u) =
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Proof. We start with M, (M;u) and its definition in terms of the integral M, (M;u) =

i 7" 1 e—ﬂZTZ—QTFiZTU
— | |det M|~ d"z ——=—-———_ The derivative 0, acting on the integral limits
(7) e [ o= prairy w acting ;
R™ —iu
gives vanishing contribution because of the exponential suppression, then we simply act it
on the integrand to find

e—ﬂsz—ZwizTu

.\ r—1
w(j)TauMT(M;u):<Z> 2|det M|~ / d'z (13)
7

.
ol TOV07)
- Qg o
Since <P[T]{/]{};.} € O(r,R) and P[Z]/{j}ﬂr]/{j}W[ﬂ/{j} = W),)/(j} We can rewrite this as
_”ZTP[f]/{j}P[r]/{J'}Z_Q“ZTP[Z]/{]'}P[r]/{j}“

.\ r—1
wDT 9, M, (M;u) = <Z> 2 |det M|~ / drz & - =
T
R i I (W[rl/{j}P /i WU}Z)

% e_ﬂ-uTQ’{j}Q{j}ue_ﬂ-(z—’—iu)TQ,{j}Q{j}(Z+iu)' (14>

Performing a change of variables 2 = Py, /¢j32 and 20 = Qy;}(2 +iu) and taking the integral
over zp we get

- . QT @y |96t P/ (pMirl /53| .
w7 9y My (M u) = 2e 0 Qw |de1j:M| 2 Mr—1 (P iy M3y Pl gy o)

(15)

Now note that

. . . om0
|det M| = ‘(pQ{]}. ) M‘ = ’<PQ{J}"A7\/[7{”]/{]}' PQ{J}'m w)‘, (16)
i)/ (5 My Priaym

Since Py /{j}m(j) = 0 this simply reduces to
[det M| = |Qym| [det Py My ] = [m || [det Py M| (17)
finally proving our assertion for M, (M;u).
Now let us study E,.(M;u) = /d’”u’ o) (u—) o (M)
RT
wDT 9, By (M)
— / ar’ {_me 8u/e,,,(u,u/)T(u,u/)} sign ( M {j}u/> sign (mU)Tu’) . (18)
R"
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Noting that w7 9, <M§V{j}u’> = 0 and w7 9§, [sign (m(j)Tu’)] = 20 (m(j)Tu’) =

W ) (Q{j}u’) and integrating by parts we get

( )T 8 E (M 'LL) L /drul eiﬂl(uiu/)T(uiu/) Sign (M,[I;]/{]}U/> (; (Q{J}U/) (19)

] J
B H 2()‘ /dru,e_ﬂ(u_u,)T(P[z]/{j}P[r]/{j}+Q{Tj}Q{j}>(u_u/)
m\J
RT

. T T T
< sign (M) (PIoyPosy + Q@) w) 3 Q) - (20)
Performing a change of variables o/ = Py/yu, uo = Qgjyu and performing the integral
over uy we can rewrite w7 9, E,(M;u) as

r=13 =Pl 5y =) (P gjyu—a') =7 QT Quiyu T T
Rr—1
(21)
which finally can be written as
2 —muT QT Qriu
e BBy My By (22)
lm @]
proving our assertion for E,(M;u).
[

Proposition 3.6. The shadows of E,. and M, are given by

mT
T U —TruTQT- Qiru )
—u DM (M) E Hm(J H YR My 1 (P iy My Pryyw), (23)
and

])Tu 77|"U, Q

Q J .
WO B (Pyyyy My Prgyw)- - (24)

Proof. Using the fact that WTM = MWT = I, we have

u® 9, M, (M;u) = ul MW 9, M, (M;u) = Z (m(j)Tu) wDT 9, M, (M; ). (25)

j=1
Using Lemma @ then proves our statement for M,. The proof for E, is exactly the
same. |
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Proposition 3 7. M,(M;u) and E,(M;u) solve Vignéras equation with X = 0 for quadratic
form Q(u) = uTu on their domain of definition. In other words,

T

XT: (agj + 27u; 8uj) M,(M;u) =0 and Z <8,L2Lj + 27u; 8uj> E.(M;u)=0. (26)

j=1 j=1

Proof. We start with the case for M, (M;u). Since

(853 + 27ruj au7) e*TI'ZT2727T’L'ZTU — 27sz azjeffrszfQM'zTu (27)
we get
T
Z (8&_ + 2mu; &uj) M, (M;u)
j=1
A 2 T T
Y det M -1 / d"y — 2= L z—2miz u 28
(5) fema™ ] ZH(WTz);ZJ 2%)
R"—iu J
Integrating by parts and noting that Z’f = 0 proves the statement for M,..

For E,(M;u) we first note that by Prop031t10n We have

m(j quQ%;.}Q{j}uE

2mu 0, By (Miu) = 4 Z r1 (P (3 Miy 33 Prsye)- (29)

7 [m@ H

Next we note that by Lemma @ we have

Z&u] Ou; Br(M; u) Zm 79, ( )TGUET(.M;U)> (30)

7=1

j —muTQT.,Q U .
:ZmWau (Hmmue o Er1(P[r}/{j}M[r1/{j}vP[r]/{j}“)>- (31)

Since P[T]/{j}m(j) = 0 we only need
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to find

> Ou, Ou, Er(M;u)

j=1
= —47TZ

canceling the contribution from equation (@) and proving Z ( -+ 2mu; 8%) E.(M;u)

vanishes. Note that the same proof can also be used for M, (/\/l,u) giving a second proof
for the statement for M, (M;u). [ |

m(]) WUTQ?]}Q{]}U ET

[ Moy Poye) - (33)

Proposition 3.8. M, (M;u) is uniformly bounded as |M.(M;u)| < (r!) e ™",

Proof. We will use induction to prove the statement. For r = 1 we have |M;(M;u)| =
lerfc (Ju| \/7)| < e=™ establishing the base case. Now we assume the hypothesis holds for

M, _1 to prove the inductive step. By Proposition we have
d mT —mt2uT QT A
TR Z < [[m@]] H YOO My (P iy My gy P jgye)- (34)

Integrating from ¢ = 1 to oo and noting that M, (M;tu) — 0 as t — oo we have
])T 77r 2,TQT, U
M) =2 Z < [m@] / SO B My (P 5y M 153 PPy (35)

By the induction hypothesis

|M (M u | < 2 Z | Hm(J —ﬂtQUTQ?j}Q{j}u —mt2u P[ ]/{]}P[T]/{j}u (36)

|Quiyul T
=(r—1)! ; % erfc ( 7ruTu) . (37)

Using % < 1 and erfc (\/ ﬁuTu> < e ™" U then gives the result. |

Proposition 3.9. On its domain of definition (which is H(WTU) # 0) the function
M, (M;u) can be decomposed as

My(Miu) = 37 (=1) S sign (W gu) Bl) (QsMs: Qsu) . (38)
SC[r]
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Proof. We start with a change of variables v; = w7z (so that ‘%‘ = |det W| = |det M| 1)
in the integral defining M, (M;u) (see equation (E)) to get

i T e—WUTMTMU—27FiuTMU
M,(M;u) = () / d"v : (39)

™ H§=1 Uj

R —iWTy
Now we deform the integration contours without crossing any poles:

—mvT MT Mv—2riu® Mv

M (M ) = <Z (40)

" (&
1' d/r. . .
7T> 6j1—>n&)1+ v H;':l ('U] — ZEJ Sign (UJ(])T'LL))
R

1
vj—i€j sign(wU)Tu)

Under the integral and in the limit €; — 07 we can replace factors with

PV (%) +imsign (wTu) §(v;) and rewrite M, (M;u) as

SN\ T
<Z> /drv e—vaMTMv—QwiuTMU
T

Rr
X Z HPV <1}1]> | [iﬁsign (w(j)Tu) 5(1@)} . (41)

SClr] \Jes jElr]/S

Taking the integrals over v|,)/g using the delta functions we then have

-\ 1S
Z =S| o T K Kl H v 1Y) —rTMEMgvs—2miu” Mo
( ].) s1gn (W[T}/Su> (ﬂ-) / d vg P (U]> e 3 S SvUs S S‘

SCr] RIS| jes
‘ (42)
Using the fact that ~PV (%) is the Fourier transform of sign () and that Q:‘QQSMS = Mg

-\ IS
) 1 .

we can rewrite the integral <> / dSlug H PV <> e~ mvs M Msvs—2miul Msvs g
T .

icS Ui
RIS J

/ d|S|x / d‘s‘?)s Sign (.T) ezﬂixTUS e—ﬁnggQngMsvs—27T’iuTQngMs’vs. (43)
RISI RISI

Performing a change of variables g = QsMgvs and Z = (QsMg) Tz (for which the
Jacobian is unity) we obtain

/ d|S|% / dISI:JS Sign (MEQEE) eQﬂiCETES e*ﬂ'ﬁis 6727riuTQ£55. (44)

RISI RISI
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Finally performing the Gaussian integral over vg we find

/ A% sign (MEQET) e ™@su= D75 = Figy (QsMs; Qsu) (45)
RISI
finishing the proof. |

The decomposition given in Proposition @ implies that one can conversely decompose
E.(M;u) in terms of M, functions. Before giving this result we state a lemma that we will
need in establishing that decomposition.

Lemma 3.10. For any n x n real positive definite matriz G and any v € R™¥! such that

_GETS‘ 0 < vs >
G- # 0 we have
slg_[In] <H (‘G[n}/S,S Gy InS|> Vln)/s
1 _Gng 0 < vs >
sign S _0 (46)
SCZ[n] ((‘G[n}/S,SGsfs In—|S|> Uln)/S

Proof. See Appendix @ for the proof. [ |
Taking Ggr = WEWT and vg = Wgu in Lemma and noting that

MEPT Pou = (WEWs) ™ W, (47)
and
W 5@ Qs = Wiysu — (WiysWs ) (WEWs) ™ Whu (48)
we find
Z (—1)|S| sign (MngPgu) sign (W]:\F//SQE‘C]/sQ[r]/SU> =0 (49)

S:SCN

for all non-empty subsets N of [r] and for all u such that the arguments of sign functions
are NON-zero.

Proposition 3.11. For any u such that H [H ( TWg%ngu )] # 0 we have
SCpl M[r]/SF)[r]/SP[T]/Su
. _ : T T .
E(Miu)= 3 sign (MM 1sPY 5Py /Su) Ms| (QsMs; Qsu) . (50)

SClr]

Before going into the proof note that M functions have discontinuities

Ms) (QsMs: Qsu) = (-1 19 sign (WE QEQsu) Mis) (QsMs:Qs)  (51)
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as WST/ S,QEQSU — 0 where S" C S C [r] by Proposition @ So these discontinuities cancel
if
Z (=)= 1N gign (Wg/NQngu) sign (M%»]/Sﬂ%/sp[r]/su) =0 (52)
S:NCSCJr]

for all proper subsets N of [r]. This in turn is ensured by Lemma and equation (@)
We now turn to the proof of Proposition B.11] to show the decomposition precisely:

Proof. Using Proposition @ we find Z sign (M%;,]/SP[Z}/SP[T]/SU) Mg (QsMs; Qsu) is

SClr]
equal to:
SN (—ns-Vlsign (Wg/NQEqu) sign (M[j;]/SP[z:]/SP[T]/Su)
S:SC[r] N:NCS
X BN (QNMN; @nu) - (53)

Changing the order of sums gives

> En (QvMy; Quu)

N:NCJr]

x Y (—1)SIN gign (WST/NQ?;QSU) sign (M[{j] /5P /SP[T]/SU>. (54)
S:NCSC|r]

Then the sum over S is zero by Lemma and equation (@) except for the case N = [r]
where it is unity. This then simply leaves E,.(M;u). [ |

3.2. Boosted Error Functions. We can now use the functions Es(M;u) and Mg(M;u)
we defined for Fuclidean bilinear form in the previous section to spaces with arbitrary
non-degenerate bilinear forms. In particular let x € R™ and let us define a signature
(r,n — r) bilinear form on this space by B(z,y) = 27 Ay (or by the associated quadratic
form Q(z) = zT Az). Here r denotes the number of positive definite directions. We will
define E, and M, functions using vectors c; € R" for j = 1,...,s < r (represented as
column vectors) which span a positive-definite subspace, in other words CTAC > 0 where
C:=(c1...cr).

Let us introduce some notation before proceeding any further. Let E € R**™ be a matrix
whose rows form an orthonormal basis for the plane spanned by c;’s so that EAET =1,
and C = ETEAC. The projection of x to the plane spanned by c¢;’s will be denoted as
2§ = ETEAz = C(CTAC)'C Ax.

Definition 3.12. Let A be a signature (r,n — r) bilinear form and C = (¢1...¢s) be an
n X s matrix whose columns form a positive definite subspace according to this bilinear
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form. Further define a matrix £ € R**"™ whose rows define an orthonormal basis for the
subspace spanned by ¢;’s. Then we define EA(C;x) and MA(C;x) as

EAC;x) = E{(EAC; EAz) and MZ2(C;z) = My(EAC; EAz). (55)

We will drop the superscript A whenever the bilinear form is implied from the context and
will drop the subscript s when the number of vectors in C' can be inferred.

Note that these functions do not depend on the choice of E since different choices cor-
respond to a transformation E — QF where Q@ € O(s,R) and that leaves EZ(C;x) and
MA(C; x) invariant by Proposition

We also define D = (dy...ds) € R whose columns form a dual basis to C' for the
subspace ¢;’s span. That is DT AC = I, and D = ETEAD which can be easily verified for

D = ET(EAC)~T. We also use Cg for S C [s] to denote the matrix Cg = (cj1 Cjy - - - Cj|5\>
where j1,j2,..., s € S and j1 < j2 < ... <jg- The matrix Dg for the dual basis vectors

is similarly defined. One last notation we will use is C's | s» dengting the projection of vectors
in Cg to the subspace orthogonal to the one spanned by Cs,.H More concretely Cg, g will
be formed by vectors ¢; — Cgr (Cg:,ACS/)_l C’g,A ¢; for j € S in increasing j order though
this choice will not be important. Now we can state the following propositions following
from our work in Section

Proposition 3.13.

(a) E(C;x) is a C* function of x € R™ for C € R"** spanning a timelike subspace
as described above. It is invariant under permutations of c;j, independent positive
scalings of ¢; and is odd under independent sign flips of c;’s

(b) If C splits into two sets Cy and Co which span orthogonal subspaces, then

E(C;z) = E(Ci;z) E(Cy;z). (56)

(¢) As |B(cj,x)| = oo for all j we have E(C;x) — sign (B(C,x)).
(d) The function E(C;x) satisfies the Vignéras equation for bilinear form B(x,y) with
A=0:

[B71(0s, 0:) + 272’ 9,] E(C;2) =0 (57)
where B~! denotes B~1(x,y) = 2T A~Yy. The shadow of E(C;x) is

facT(‘) E(C

c],
4 Z \/TJ

2In Section H we use the same notation also when the columns of C's span an indefinite signature subspace.
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(e) The function E(C;x) has an integral representation:

E(C;z) = / A e ™REE—2") sign (B(C, w’)) (59)
(&)

where the measure is normalized so that / dsg’ e~ ™RE) — 1,
(©)
Proposition 3.14.

(a) M(C;x) is a C* function of x € R" away from the loci B(d;j,z) =0 for C € R"**
spanning a timelike subspace. It is invariant under permutations of cj, independent
positive scalings of c¢; and is odd under independent sign flips of c;’s.

(b) If C splits into two sets C1 and Co which span orthogonal subspaces, then

M(C;z) = M(Cr;2) M(Cy; ). (60)
(c) |M(C;z)| < (s!) e ™ES),
(d) The function M(C;x) satisfies the Vignéras equation for bilinear form B(x,y) with

A=0.
(e) The function M(C;x) has an integral representation.:

M(C;x)z(;y(detcmc)‘% / &2

<C>7iz£

e—ﬂQ(z)—Qm'B(z,z)

[1[B(D;2)]

where the measure is normalized so that / dsz’ e ™) = 1,
(©)

Proposition 3.15. On its domain of definition (that is [[[B(D,z)] # 0) we have the
decomposition

M(Ciz) = Y (-1)* Plsign (B(Dyy;s, 7)) E(Cs; ). (62)
SCls]

Similarly we have

E(C;x) =) sign (B(CyysLs, 7)) M(Cs;x) (63)
SCls]

for any x such that the M function is well defined and the arguments of sign functions are
nonzero.
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4. INDEFINITE THETA FUNCTIONS OF HIGHER DEPTH

In this section we will construct a certain indefinite theta series and give sufficient condi-
tions for its convergence. The holomorphic part of these series will be given by restricting
the sum over lattice points through the function

T
onlw) = 5 [] [sigm (Bles, ) — sign (B(¢), )] (64)
j=1

Before stating our result let us introduce some notation. By C'gr we will mean the matrix
whose columns are taken from the set {c; : j € SNP}U{c}: j € S/P} in, say, increasing j
order (we will also use C’ for C’[r]@ and CF for C[T]P). We also form the matrix C'qp | 7o by
which we mean the matrix formed by vectors in C'gr projected to the subspace orthogonal to
the one spanned by the vectors in C'rq. Next we will use A(zy,...,xs) for the determinant
of the Gram matrix for the vectors z1,...,zs and Dj, ;, for the cofactor at (ji, j2) position
for the Gram matrix constructed from {ci,¢},..., ¢, .} where we will use primes in the
subscript to denote positions corresponding to vectors c;-’s. Finally form the matrix M from
the cofactor matrix of the Gram matrix for (c1,¢}, ..., ¢, ¢,.) and by removing cofactors D; ;v
and Dy j; forall j =1,...,7r.

Theorem 4.1. Let C and C' as described above be 2r wvectors in R™ endowed with an
integral bilinear form B(x,y) of signature (r,n—r). Assume that each C* for P C [r] spans a
signature (r,0) (i.e. positive-definite) subspace. Further assume that A = A(C,C") satisfies
A(=1)" > 0 (signifying that C U C" forms a linearly independent set and spans a signature
(r,r) subspace by our assumption above) and that D; j(=1)" > 0 forallj = 1,...,r. Finally
assume that the matriz (—1)"M as defined above is negative definite.
Then 6,[¢r,0] is a convergent series and it is holomorphic in T and z away from the loci
where B(k +b,¢j) =0 or B(k +b,¢;) =0 for some j € [r] and k € A+ pu+p/2.
Moreover, assume that analogous conditions for vectors in C and C' we stated above also
holds for Cyy/s1gp and C[’T]/Slsp forany S C [r] and P C S. Then 6, [y, 0] with the kernel
@) =5 3 C)PE(CT) (65)
PC[r]
is a convergent series and forms a modular completion for 0,[(¢,,0] transforming like a
(vector-valued) Jacobi form of weight (n/2,0).

Proof. We follow and generalize the proofs in [11] and [L]. The first thing to note is that
for any x € R™ we have

T D B(ci,z)B(c:, x
Az, c1,¢), .. e cl) = A Q(x)—QZJ*l 7 (A] )Bl¢2)

T

- XTMmx (66)
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where X7 = (B(c1,z) B(cy,z)...B(c,x) B(c.,x)). We define the part in brackets as
Q- (2):
> j=1DjjB(cj, ) B(c}, x)

Q_(2) = Qlz) —2 x (67)
Now we note that if z is linearly independent from C'UC"’ the subspace (z,c1,c}, ..., ¢, cl)
has signature (r,7 4+ 1) and hence

(I A e dhy . end) = (<17 AQ_(2) - XT[(-1yM]X <0, (68)

Using the negative definiteness of (—1)" M and positivity of (—1)"A we conclude Q_(x) < 0.
On the other hand, if z is in the plane spanned by C'U C’ we have A(x,cy,...,c.) =0 and
hence Q_(z) < 0 unless z = 0 again arguing through negative definiteness of (—1)"M and
positivity of (=1)"A. Now, ¢,(z) # 0 only when sign (B(c;,x)) sign (B(c},:n)) < 0 for all
j=1,...,r. The assumptions D; (—1)" > 0 and A(—1)" > 0 implies Q_(z) > Q(z), i.e.
on the support of ¢,(z) the negative definite bilinear form @_(z) dominates Q(z). Using
this we can conclude that ¢, (x)e™@@)/2 < ¢™@-(#)/2 proving the absolute convergence of

Oulor, 0].
For the second part of the theorem we use the decomposition in Proposition to

rewrite the kernel gr(a:) as

r 33 2‘5‘ Z Z ‘P‘M CsP 1‘) 2 1‘5‘ Z (—1)|Q| Sign (B(C[T]/SQJ_SP):E)) .

SClr] PCS QClr]/S
(69)
Let us focus on each S € [r] and P C S contribution
1 .
bsr(2) = M(Cgria) | 5 D (=)@ sign (B(Cpyysa157.)) (70)

QClr]/S

separately. We start by decomposing each z € R™ as x = x1 + x2 where x; is in the linear
span of Cgp and x5 is in its orthogonal complement so that Q(z) = Q(z1) + Q(x2). That
divides ¢gr () e™@@)/2 into a factor along (Cgp )t

1 . i X
or—I9] > (-1)“lsign (B(C[T]/SQJ_SP7$2)> e (=2)/2 (71)
QC[r]/S

and a factor along (Cgr):
M(Cgp;x1) e™@@1/2, (72)
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By our argument in the first part and by the hypothesis given for Cj,y/g, gr U C[’r] /SLSP the
factor

1 3 T x
s O (1) “sien (B(Cpysase.a) | 702/ (73)
QC[r]/S

: ' L Q5" (22)/2 SPL . . o
is dominated along (Cgr)— by €™<- ¥2//“ where ~ = is a negative definite bilinear form
on (Cgr)™* and correspondingly by Proposition

|M(Cgp; )| e™@(@1)/2 < S|l e~ R@1)/2 (74)
and this contribution is exponentially suppressed along (Cgr). That shows the series in
0,.[¢r,0] is convergent and that ¢, (z)e™@()/2 satisfies the conditions given in theorem @
Moreover, since E(C?; x) functions each satisfies Vignéras equation with A = 0 (see Propo-
sition @) by Vignéras’ theorem @, 6,.[¢r, 0] transforms like a (vector-valued) Jacobi form
of weight (n/2,0). [
Remark. It is desirable to further relax and simplify the conditions we put on C. See [6]

and [10] for further discussion.

Aside from the obvious factorizable solutions to the hypothesis we put for C' and C’ we
will exhibit a non-factorizable example for r = 4 case.
Example. Consider signature (4,4) integral bilinear form

s (G(A4) —14) (75)

-1 0
where G(A4) denotes the Gram matrix for the A4 root lattice:
2 -1 0 O
-1 2 -1 0
GAd=1¢ 5 2 (76)
0O 0 -1 2
Then the vectors
1 0 0 0
0 1 0 0
0 0 1 0
C1 = 8 , C2 = 8) y €3 = 8 , C4 = (1) (77>
0 0 0 0
0 0 0 0
0 0 0 0
and
1 0 0 0
0 1 0 0
/ 0 / 0 / 0 / i
a=lo | @=10o | a=|0o ]| @a=|= (78)
~1 0 0 0
0 -1 0 0
0 0 -1 0
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satisfy the hypotheses of theorem @

5. DISCUSSION

In this work we studied the properties of r-tuple error functions and introduced indefinite
theta series using these functions. Omne obvious question is to relax the conditions we
imposed on ¢;’s and c;-’s that determine the subset of lattice points used in the holomorphic
part of the associated theta series and ensure its convergence. Specifically, one would want
to allow null vectors and allow linear dependencies, which is essential to extend the range of
applications for indefinite theta functions. The other two constructions for mock modular
forms given by [11], namely using Appell-Lerch sums [12] and meromorphic Jacobi forms
[4], are closely related to signature (1,n—1) indefinite theta series. It is then natural to look
for similar corresponding constructions for signature (r,n — r) indefinite theta functions.
On the side of Appell-Lerch sums one such generalization is already available in literature
under the name ‘generalized Appell functions’ [3,8]. Indeed, [1] initiated the study of their
modular properties for the r = 2 case. To study the complete story it is then desirable to
study the null limits of the construction we have given for higher r cases.

APPENDIX A.

In this section we are going to prove the Lemma which we restate here for reference.

Lemma A.1. For any n x n real positive definite matriz G and any v € R™¥! such that

H H _Gg’ls 1 0 ( vs > # 0 we have
] —Gy/s,s G§,s L5 Uln)/S

SCln
“Gss 0 <”S > =0. (79)
—GlyssGss In-js)) \Vny/s

Proof. We will use induction on n. The base hypothesis easily follows from the positivity
of G1,1. For the inductive step let us note the following facts first. There are 2" n sign
functions in our sum. We are going to show that there are generically 2"~!n independent
ones that each appear twice and that discontinuities cancel among each pair. In particular,
we consider the contribution to the sum above from subsets S and S U {j} for some j € [n]
and S C [n]/{j} and single out the contribution from the row corresponding to v;.

Z sign

SC[n]
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e The contribution from § reads (using S for [n]/(S U {j})):

~Ggs 0 0 Vs
Sign G] SGSS 1 0 Uy
G G_S 0 I’S’ U§

(ot ) ()] o

e For the contribution from S U {j} first note that

= sign (vj - Gjs G;SUS> sign

1 L |
(Gs,s Gs,j> (Gss aGs;iGj ) —3Gs55Gs. (81)
Gjs Gjj G s Gk %
where k = Gj; — G5 G5y Gsj and
<G5,5 e —Gs; Gy ) = Gg}s + gGE,ls Gs;Gjs Gg,}g. (82)
J,J

By the assumption that G is positive definite we have k£ > 0. We can rewrite the
S U{j} contribution

-Gt 0
. Su{j}, SU{]} Vsu{j
sign | | _ o G-l I U;{J} (83)
S,50{j} T sufit.sufiy TS| S
as
-1
(GSS c - Gs.4Gi, S) +G5Cs,; 0 vg
sign iGJ,SGE,s —% 0 U =
1 T —1 1 —1 1 Vg
_G§,S(GSvS_Gj’j Gs,jGj,S> +505,;Gi5Gss 105,505 50si—%Cs,; 13 S

—1
7(GS,57#GS,]‘G]',S> 0 (’6S>
-1 ~
1

(Gs s—a;;05,;G S) (Gs,s—@Gs,ijS) 13
~ V4
where we defined vg = vg — G—J“GSJ.

3,

Next we are going to show that possible discontinuities due to sign (vj - Gjs Gg}gv5> terms

— sign (vj — Gjyngg’Us) sign

do cancel between these two contributions. For this we note that at v; = G g GE}SUS we
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have
1 —1
- (Gs,s — OGS,jGj,S> Ug
J:d
RTINS 1 1 —1
=—(Ggs+ EGS,S Gs,jGisGgg) | vs — @GSJGJ}S Gggvs
= —Gggvs (85)
and
1 1 -t
— GS‘\,S — @G@jGj,S GS,S — @GSJG]‘7S vg + Vg
1 _ 1 _
= — <G§,S — ijG@jGj,S) GS}S” vg + <U§ — @Gé\,jijs GS}S‘ ’l)s)
= —Gg4Ggsvs + g (86)

So atH

# 0 (ensured by the hypothesis) the sum

—GE,El 0 <vs
—G55Gss 1ig) \vg

- —G3s 0 < vs )
sign w (87)
s%%] ((‘GM/&SQ@}S In—S|> Uln)/s

is equal on both sides of v; — G g Ggls vg = 0. The argument generalizes for all the sign
functions in the sum. R
Let us now specialize to j = n (the choice of j = n is not important), use S = [n —1]/S

and rewrite the sum in (87) as
:égis ) 0 <5s>
—G5sGss 15) \vs

Z sign _G;}g 1 0 <v5> — sign
| ~G55Gss 1|5 ) \vg

SCln—1
X sign (vn — Gn,s GEIS ’Us> (88)

Un

where vg = vg — o= Gs,n and Gisa positive definite matrix defined by

- 1
Gn-1),n-1 = Gn-1],jn-1] — KG[nfl],nGn,[nfl}’ (89)

)

Now for any v satisfying the hypothesis, we start increasing v, while keeping vy, 1] fixed

until v, — G 5 Ggg vg > 0 for all S C [n — 1] and v satisfies the hypothesis of the lemma.
The value of our sum does not change across any of the possible discontinuities by our
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argument above. The fact that the sum over S C [n— 1] is zero by the induction hypothesis
then proves the statement of the lemma.
[
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