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Abstract: Squashed toric sigma models are a class of sigma models whose target space

is a toric manifold in which the torus fibration is squashed away from the fixed points so as

to produce a neck-like region. The elliptic genera of squashed toric-Calabi-Yau manifolds

are known to obey the modular transformation property of holomorphic Jacobi forms,

but have an explicit non-holomorphic dependence on the modular parameter. The elliptic

genus of the simplest one-dimensional example is known to be a mixed mock Jacobi form,

but the precise automorphic nature for the general case remained to be understood. We

show that these elliptic genera fall precisely into a class of functions called higher-depth

mock modular forms that have been formulated recently in terms of indefinite theta series.

We also compute a generalization of the elliptic genera of these models corresponding to

an additional set of charges corresponding to the toric symmetries. Finally we speculate

on some relations of the elliptic genera of squashed toric models with the Vafa-Witten

partition functions of N = 4 SYM theory on CP2.
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1 Introduction and Summary

The context underlying this paper is a three-way relation that was established in the 1980s

between compact Calabi-Yau (CY) manifolds, two-dimensional N = (2, 2) superconformal

field theories (SCFTs), and modular and Jacobi forms [1–7]. A central object in this story

is the elliptic genus, which is a generating function of a sequence of Dirac indices associated

to the manifold in question. The relation between geometry and automorphic forms arises

because the elliptic genus of a compact CY manifold of complex dimension d is a Jacobi

form of weight 0 and index d/2. The relation with physics arises by thinking of this CY

manifold as the target space of two-dimensional N = (2, 2) SCFTs of central charge c = 3d.

The elliptic genus encodes the information about BPS states of this SCFT, and it can be

computed as a functional integral using various physics techniques.
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The paper [8] began a systematic study of similar ideas for a class of theories which

generalized the above story. On the geometric side, one now considered a class of SCFTs

corresponding to squashed toric-Calabi-Yau manifolds, a certain deformation of toric CY

manifolds, introduced in [9], which we explain below. The resulting elliptic genera, which

were computed in [8] as a torus functional integral using the gauged linear sigma model

(GLSM) description of the theory, obey the modular transformation properties of a Jacobi

form as expected. The interesting feature is that they explicitly depend on τ , the complex

conjugate of the modular parameter τ of the torus. The dependence on τ is intuitively

understood by the fact that these target spaces are necessarily non-compact and that the

density of bosonic and fermionic states in the corresponding continuum are not necessarily

equal.

This behavior is characteristic of a class of automorphic functions called mock modular

forms [10, 11], which, along with the closely related mock Jacobi forms, have been discussed

with great interest in recent years in diverse contexts [12–14]. However, the details of the

modular transformation properties of the elliptic genera of squashed toric models do not

quite match the basic definitions of mock modular and mock Jacobi forms and suggest some

sort of a generalization. The precise nature of their modular transformation properties,

beyond the general properties obeyed by the partition function of a SCFT, was left open

in [8]. This is the question that we address and answer in the current paper. The answer

is related to a class of functions, called higher-depth mock modular forms, that have been

formulated recently in terms of indefinite theta functions [15, 16], and further developed

in [17–20]. We show here that the elliptic genera of squashed toric sigma models belong

precisely to this class. In the rest of this introduction we explain some of the details of this

correspondence.

Squashed toric manifolds are an interesting subclass of toric manifolds. Their con-

struction begins by considering a (real) 2d-dimensional toric manifold Mtor, which has the

structure of a d-dimensional torus fibered on a d-dimensional base. The size of this torus

fiber varies along the base and at distinguished fixed points it shrinks to zero size. The

corresponding squashed toric manifold M̃tor looks the same as the unsquashed Mtor near

the fixed points, but the torus now has a constant size in the deep interior parts of the

manifold. In this paper we study situations in which the initial toric manifold Mtor obeys

the CY condition. Such manifolds are necessarily non-compact and have an asymptotic

cone-like structure. The squashing deformation reaches the asymptotic region and deforms

it into a cylindrical shape. Although the SCFT corresponding to the squashed model is

anomaly-free, the target space geometry is not Ricci flat, and the sigma model is expected

to be supported by a non-trivial dilaton profile. The simplest example corresponds to a

two-dimensional manifold where we begin with a toric space that is asymptotically of the

form C/Z2, and the corresponding squashed deformation has a cigar-like shape.

Such deformations were studied in [9] using an N = (2, 2) GLSM description [21]. The

GLSM for the undeformed situation has n chiral superfields and n−d gauge superfields, and

its 2d-dimensional vacuum manifold is the toric manifold Mtor. The squashing deformation

adds d compensator-chiral superfields and gauges the d-dimensional flavor symmetry of the
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original model which now also acts on the compensator fields as a shift symmetry. The

resulting 2d-dimensional vacuum manifold is a squashed toric manifold. The data that

define the squashed toric model are the original data of the toric model plus the strengths

of the couplings k`, ` = 1, · · · , d, of the compensators. The squashed models are not

Ricci-flat even if we begin with a toric CY. However, the original CY condition in the

GLSM description ensures the presence of non-anomalous chiral U(1) R-symmetries even

in the squashed models, so that they can flow to N = (2, 2) SCFTs. In the simplest

two-dimensional example mentioned above, the squashed model C̃/Z2 is conjectured to

flow to the SL(2,R)k/U(1) cigar coset, where the level k is the effective coupling of the

compensator superfield.

The elliptic genus of these models was computed in [8] using the technique of supersym-

metric localization applied to the GLSM description. The resulting expression χell(M̃tor; τ, z)

transforms like a holomorphic Jacobi form, but it explicitly depends on τ . Its τ -derivative

equals an integral of a function that has both holomorphic and anti-holomorphic depen-

dence on τ over a (d−1)-dimensional torus. For the squashed C̃/Z2 model discussed above,

the holomorphic anomaly equation is precisely the one obeyed by mixed mock Jacobi forms.

Moreover, the τ -derivative can be identified as coming from momentum and winding modes

of the compensator superfield about the asymptotic cylinder [22]. The elliptic genus of this

model is governed by A1,k(τ, z), the so-called Appell-Lerch sum in two variables [10, 13],

and is equal to the elliptic genus of the cigar theory in accordance with the conjecture. In

the current paper we generalize the above calculation to that of the flavored elliptic genus,

which is the torus partition function with an additional set of chemical potentials {β`},
` = 1, · · · , d coupled to the toric symmetries. In the C̃/Z2 model, we find that these are

governed by the three-variable functions A1,k(τ, u, v) introduced by Zwegers in [23], thus

confirming the results of [24] on the flavored elliptic genus of the cigar theory using current

algebra techniques in the cigar SCFT.

The main result of this paper is that the elliptic genera of squashed toric manifolds

of dimension n are precisely modular completions of mock modular forms of depth n.

These are functions that generalize the usual notion of a mock modular form in that

they are modular but not quite holomorphic. We recall that the holomorphic completion

of mock modular forms obey a differential equation which says that their τ -derivative

is an anti-holomorphic modular form. The generalized mock modular forms at depth n

are defined recursively as follows. At depth one they are simply linear combinations of

products of holomorphic modular forms and mock modular forms so that the τ -derivative of

their holomorphic completion is a linear combination of holomorphic and anti-holomorphic

modular forms, and are called mixed mock modular forms [13]. At depth n > 1 the τ -

derivative of the holomorphic completion is a linear combination of mock modular forms

of depth (n− 1) and an anti-holomorphic modular form.

In fact one can be more specific. In the well-understood one-dimensional case, the

elliptic genus can be written in terms of the Appell-Lerch sum A1,k as mentioned above.

The functions A1,k are examples of another wider class of functions called indefinite theta

series. These are functions which are like the usual theta series, but the associated lattice
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has indefinite signature which means that the full lattice sum is divergent. When the lattice

has signature (r, 1), it was shown in [10] that one can define theta series associated to such

lattices by summing over only a cone inside the indefinite lattice. The above Appell-Lerch

sum falls in the class of (1, 1) lattices and this leads precisely to mixed mock modular

forms in the sense discussed above. The generalization of this construction to lattices

of arbitrary signature was discussed more recently [15–20] leading to examples of mock

modular forms of higher depth. We show in this paper that the (flavored) elliptic genera of

squashed toric models are precisely of this form, i.e. the elliptic genus of an n-dimensional

squashed toric manifold is built out of indefinite theta functions associated with a lattice

of signature (n, n). In the asymptotic region, this lattice can be thought of as the lattice

of left and right-moving momenta around the n-dimensional torus of the squashed toric

model.

The plan of the paper is as follows. In Section 2 we review the computation of the

elliptic genus of squashed toric GLSMs and generalize it to include chemical potentials for

flavor symmetries. We give an expression for the elliptic genus as an integral of a meromor-

phic function on a d-dimensional torus, and discuss its modular properties. In Section 3

we review the notion of mock modular forms of higher depth, and their construction in

terms of indefinite theta functions. In Section 4 we evaluate the integral expressions for the

elliptic genera and show that they can be written in terms of completions of indefinite theta

functions. In Section 5 we comment on possible relations between Vafa-Witten partition

functions on CP2 and the elliptic genera of squashed toric models.

2 Squashed Toric Manifolds and Their Elliptic Genera

In this section we briefly review the notion of squashed toric manifolds and the computation

of their elliptic genera using the GLSM construction [8]. We then present some new results,

generalizing the calculations of [8], on the flavored elliptic genera of these manifolds. These

functions are the result of supersymmetric functional integrals with fields twisted by the

R-symmetry (as in the elliptic genus), as well as by the global toric symmetries of the

manifold. We show that these functions transform like holomorphic multi-variable Jacobi

forms of weight zero. As the first two subsections are purely a review of [8], we will be

very brief and refer the reader to the original paper for a more detailed explanation of the

relevant concepts.

2.1 A Brief Review of Squashed Toric Models

Our starting point is the N = (2, 2) GLSM description of 2d-dimensional (unsquashed)

toric manifolds. The theory contains n− d abelian vector superfields Va, a = 1, . . . , n− d
with corresponding twisted chiral superfields Σa and n chiral superfields Φi, i = 1, . . . , n
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with charges Qia with respect to the gauge group. Its action is:

S0 =
1

2π

∫
d2x

∫
d4θ

( n∑
i=1

Φi exp
( n−d∑
a=1

Qai Va

)
Φi −

n−d∑
a=1

1

2e2
a

Σa Σa

)

+
1

4π

∫
d2x

∫
d2θ̃

n−d∑
a=1

taΣa + c.c. , (2.1)

where ta = ra − iϑa is the complexified Fayet-Iliopoulos parameter for the vector super-

field Va. The D-terms can be integrated out by setting:

Da = −e2
a µa , where µa =

n∑
i=1

Qai |φi|2 − ra , a = 1, . . . , n− d . (2.2)

The classical vacuum manifold of the theory is given by µ−1
a (0) modulo gauge transforma-

tions, which is immediately recognized to be a 2d-dimensional toric manifold, according

to the symplectic quotient construction of toric manifolds [25]. In the quantum theory

this account is modified, and the situation depends on the existence of conserved chiral

R-symmetries. The existence of such symmetries is ensured by the anomaly-cancellation

condition, namely the sum of charges for all the gauge fields vanishes, i.e.

n∑
i=1

Qai = 0, a = 1, . . . , n− d . (2.3)

In this situation the GLSM flows to a SCFT whose target space is a toric Calabi-Yau

manifold which is in the same Kähler class as the vacuum manifold (2.2). This will be the

situation for all the models that we consider in this paper.

The toric GLSM defined by the action (2.1) also has a global U(1)d flavor symmetry

under which chiral superfields Φi have charges F `i , ` = 1, . . . , d. We perform a squashing de-

formation [9] by gauging this U(1)d symmetry and adding d compensator chiral superfields

P`, ` = 1, . . . , d, on which the U(1)d flavor symmetry acts as shift symmetries. Denoting

the new vector superfields by V ′` , ` = 1, . . . , d, (and the corresponding twisted chiral su-

perfields by Σ′`) the action for the deformed theory is obtained by adding the appropriate

canonical kinetic terms:

Ssquashed =
1

2π

∫
d2x

∫
d4θ

[ n∑
i=1

Φi exp
( n−d∑
a=1

Qai Va +

d∑
`=1

F `i V
′
`

)
Φi −

n−d∑
a=1

1

2e2
a

Σa Σa

−
d∑
`=1

1

2e′2`
Σ
′
` Σ′` +

d∑
`=1

k`
4

(P` + P ` + V ′` )2

]
+

1

4π

∫
d2x

∫
d2θ̃

n−d∑
a=1

taΣa + c.c. .

(2.4)

The D-terms corresponding to the new gauge superfields can be integrated out by setting

D′` = −e′ 2` µ′` , where µ′` =
n∑
i=1

F `i |φi|2 + k` ReP` , ` = 1, ..., d . (2.5)
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The vacuum manifold of the deformed theory is then found by setting both D-terms in

(2.2) and (2.5) to zero and modding gauge symmetries out:

µ−1(0)/(U(1)n−d × U(1)d) , µ := (µa, µ
′
`) . (2.6)

This has the same symplectic quotient structure as the original toric manifold, and therefore

yields toric manifolds in their own right. The vacuum manifolds of the squashed models

are called the squashed toric manifolds [9].

For squashed models, the base of the vacuum manifold can be parametrized by ReP`
with ImP` parametrizing circle fibers over this base (with an appropriate gauge choice).

These fibers have fixed sizes of order
√
k` in the interior part of the base but can degenerate

to zero size at the boundaries. Importantly for our purposes, the squashed theory has a

U(1)d toric symmetry which acts as translations along these circle fibers.

2.2 Elliptic Genera of Squashed Toric Models

From the physics point of view, the elliptic genus is the partition function of the theory on

a two-dimensional torus with periodic boundary conditions, coupled to a constant back-

ground R-symmetry gauge field ARµ . As this is a quantity protected by supersymmetry, one

can compute the elliptic genus using the GLSM description of the previous subsection. This

was done in [8] for the squashed toric model (2.4) using the technique of supersymmetric

localization applied to GLSMs [26, 27].

Localization reduces the infinite dimensional path integral required to compute the

partition function to a finite dimensional integral over the localization manifold, i.e. the

set of solutions to the off-shell BPS equations for the right moving supercharge. For our

model (2.4), the localization manifold is parametrized by the holonomies of the gauge

fields V a, a = 1, · · · , n− d, V ′`, ` = 1, · · · , d, along the two cycles of the torus, i.e.,

ua :=

∮
A
V a − τ

∮
B
V a , u′` :=

∮
A
V ′` − τ

∮
B
V ′` , (2.7)

with all other modes set to zero. The answer also depends on the holonomy of the back-

ground R-symmetry gauge field

z :=

∮
A
AR − τ

∮
B
AR . (2.8)

Due to the large gauge transformation symmetries, the holonomies ua, u′`, and z take values

in Eτ := C/(Zτ + Z).

The final expression for the elliptic genus of the squashed model is [8]

χell(M̃tor; τ, z) =

∫
Edτ

d∏
`=1

d2u′`
τ2

H̃`(τ, z, u
′
`) χell(Mtor; τ, z, u

′) , (2.9)

where χell(Mtor; τ, z, u
′) is elliptic genus of the unsquashed toric sigma model, and

H̃`(τ, z, u) = k`
∑

m,w∈Z
e

2πib`wz−
πk`
τ2

(
wτ+m+u+

b`z

k`

)(
wτ+m+u+

b`z

k`

)
, (2.10)

– 6 –



with b` =
∑n

i=1 F
`
i . The elliptic genus χell(Mtor; τ, z, u

′) of the unsquashed toric sigma

model is obtained by picking up the residues of the one loop determinant Z1-loop(τ, z, u, u′),

calculated for all the fields, at the set of poles M∗sing

χell(Mtor; τ, z, u
′) = −

∑
u∗∈M∗sing

JK-Res
u=u∗

(Q(u∗), η)Z1-loop(τ, z, u, u′) , (2.11)

where JK-Res(Q(u∗), η) is a residue operation called the Jeffrey-Kirwan residue. Here the

one-loop determinant in question is

Z1-loop(τ, z, u, u′) =

(
i η(τ)3

ϑ1(τ, z)

)n−d n∏
i=1

ϑ1(τ,−z +Qi · u+ Fi · u′)
ϑ1(τ,Qi · u+ Fi · u′)

, (2.12)

where Qi · u =
∑n−d

a=1 Q
a
i u

a and Fi · u′ =
∑d

`=1 F
`
i u

`′ . The first factor in (2.12) comes

from (n− d) vector multiplets and the second factor comes from n chiral multiplets.

We note here that the elliptic genus of the unsquashed model χell(Mtor; τ, z, u
′) is a

meromorphic function of u′. The poles in u′ are related to the non-compactness of the

underlying toric manifold. This non-compactness leads to a divergence in the the naive

definition of the elliptic genus, and in order to regulate this divergence, we turn on a non-

zero holonomy u′ of the background flavor symmetry gauge field. Now, the integral over u′

in the squashed model (2.9) smoothens the pole of the unsquashed model, and as as result,

the elliptic genus χell(M̃tor; τ, z) is a well-defined holomorphic function of z. We refer the

reader to [8] for more details. As we will see below, we can further introduce the chemical

potentials {β`} corresponding to the global symmetries of the squashed toric manifold and

this will introduce non-holomorphicity in the chemical potential.

Modular and elliptic properties:

The modular and elliptic properties of the elliptic genus χell(M̃tor; τ, z) were discussed in [8].

In order to compute its elliptic transformation properties, it is useful to unfold the integrals

over Eτ for each ` in (2.9) to the entire complex plane:

χell(M̃tor; τ, z) = (

d∏
`=1

k`)

∫
Cd

d∏
`=1

d2u′`

τ2
e
−πk`

τ2

(
u′`+

b`z

k`

)(
u′`+

b`z

k`

)
χell(Mtor; τ, z, u

′) . (2.13)

Assuming for convenience that b`
k`

is an integer for each `,1 it is easy to see that, for λ, µ ∈ Z,

χell(M̃tor; τ, z + λτ + µ) = e
−2πi( d

2
+
∑d
`=1

b2`
k`

)(λ2τ+2λz)
χell(M̃tor; τ, z) . (2.14)

Under the modular transformations the elliptic genus transforms as

χell

(
M̃tor; τ + 1, z

)
= χell

(
M̃tor; τ, z

)
,

χell

(
M̃tor;−

1

τ
,
z

τ

)
= e

2πi
τ
z2( d

2
+
∑d
`=1

1

k̃`
)
χell(M̃tor; τ, z) ,

(2.15)

1If b`/k` is not an integer, one can change the elliptic variable z to (
∏d
`=1 k`) z

′ and consider the elliptic

transformations z′ → z′ + λτ + µ. In this case the index of χell(M̃tor; τ, z
′) is (

∏d
`=1 k

2
` )(

d
2

+
∑d
n=1

b2n
kn

).
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with 1

k̃`
=

b2`
k`

. The first equality follows trivially from (2.9). To see the second equality we

start from (2.13), change variables from u′` to u′`

τ , and then use the modular properties of

χell(Mtor; τ, z, u
′), which transforms like a Jacobi form2 of weight zero and (matrix) index

M00 =
d

2
, M`0 = M0` = −b`

2
, M``′ = 0 , `, `′ = 1, · · · , d . (2.16)

The content of Equations (2.14), (2.15) can be summarized by the statement that the

elliptic genus of the squashed model transforms like a Jacobi form of weight zero and index

m =
d

2
+

d∑
`=1

1

k̃`
. (2.17)

Holomorphic anomaly:

As is evident from Equation (2.9), the elliptic genus χell(M̃tor; τ, z) is not holomorphic in

τ . Indeed it satisfies the following holomorphic anomaly equation:

∂τ χell(M̃tor; τ, z) = −
d∑

i,j=1

∫
E

(d−1)
τ

d∏
`=1,
` 6=i

(d2u′`
τ2

H̃`(τ, z, u
′
`)
)

Res
vj(u′i)=0

(
χell(Mtor; τ, z, u

′)
)

× 1

ki
∂uiH̃i(τ, z, u

′
i) |vj(u′i)=0 . (2.18)

Here vi(u
′) are certain linear combinations of {u′`} involving the flavor charges F `i (see [8]

for more details). We will see later that the non-holomorphic behaviour captured by

Equation (2.18) is precisely that of a completed higher depth mock modular form.

Some examples:

In (2.9) and (2.13), we have given two equivalent expressions for the elliptic genus of the

squashed toric models. Below, we will illustrate these two formulas using two simple exam-

ples. We begin with the example of the squashed toric manifold C̃/Z2. This is described

by a U(1) gauge theory with two chiral multiplets of charges +1, −1, respectively. The

theory has a U(1) flavor symmetry under which the two chiral multiplets carry charges F1,

F2, respectively. The elliptic genus of this model is (with b = F1 + F2)

χell(C̃/Z2; τ, z) = k

∫
C

d2u′

τ2
e
−πk
τ2

(
u′+ b z

k

)(
u′+ b z

k

)
ϑ1(τ,−z + b u′)

ϑ1(τ, b u′)
. (2.19)

We can absorb b in the definition of k by changing the integration variable from u′ → u′

b :

χell(C̃/Z2; τ, z) = k̃

∫
C

d2u′

τ2
e
−πk̃
τ2

(
u′+ z

k̃

)(
u′+ z

k̃

)
ϑ1(τ,−z + u′)

ϑ1(τ, u′)
, (2.20)

where k̃ = k
b2

.

2We will review the basic notions of Jacobi forms in the following section.
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The next example we consider is the case of the squashed toric model Ã1. This model

is described by a U(1) gauge theory with three chiral multiplets of charges 1,−2, 1, re-

spectively. It has U(1)2 flavor symmetry under which the chiral multiplets have flavor

charges F `j , (` = 1, 2; j = 1, 2, 3). The elliptic genus is

χell(Ã1; τ, z) =
k1k2

τ2
2

∫
Eτ

d2u′1

∫
Eτ

d2u′2 χell(A1; τ, z, u′)

×
∑

m1,2,w1,2∈Z
e2πi(b1w1+b2w2)ze

−πk1
τ2

(w1τ+m1+u′1+
b1z
k1

)(w1τ+m1+u′1+
b1z
k1

)

× e−
πk2
τ2

(w2τ+m2+u′2+
b2z
k2

)(w2τ+m2+u′2+
b2z
k2

)
, (2.21)

where b` =
∑3

j=1 F
`
j and χell(A1; τ, z, u′) is the elliptic genus of the unsquashed A1 model,

whose explicit expression is

χell(A1; τ, z, u′) =

ϑ1(τ,−z + v2 − v1)

ϑ1(τ, v2 − v1)

ϑ1(τ,−z + 2v1)

ϑ1(τ, 2v1)
+
ϑ1(τ,−z + v1 − v2)

ϑ1(τ, v1 − v2)

ϑ1(τ,−z + 2v2)

ϑ1(τ, 2v2)
.

(2.22)

Here 2v1 = (2F1 + F2) · u′ and 2v2 = (2F3 + F2) · u′.

2.3 Flavored Elliptic Genera of Squashed Toric Models

As mentioned above, a squashed toric manifold of complex dimension d is itself a toric

manifold with U(1)d toric symmetries that commute with the supersymmetry. We can

therefore define a refined elliptic genus by introducing chemical potentials conjugate to d

toric symmetry charges. This can be done by coupling the toric symmetry currents j`µ to

external gauge fields B`
µ, ` = 1, · · · , d. The functional integral will now depend on the

holonomies

β` =

∮
A
B` − τ

∮
B
B` , ` = 1, · · · , d , (2.23)

in addition to the chemical potential for R-symmetry z which was defined in (2.8).

We define the flavored elliptic genus, with q = e2πiτ , ζz = e2πiz,

χflav
ell (M̃tor; τ, z, {β}) = TrHRR

[
(−1)F qL0 qL0 ζ

JR0
z

d∏
`=1

exp
(
2πiβ`

∫
j`
)]
, (2.24)

where HRR is the Ramond-Ramond Hilbert space of the theory, L0 and L0 are the left-

and right-moving Hamiltonians of the (2, 2) algebra, J0 is the left-moving R-charge, and F

is the fermion number operator. The toric charge
∫
j` is an integral over a spatial slice in

this Hamiltonian description. Note that the total charge
∫
j` is conserved, but the left and

right moving pieces of the charge are not conserved individually. The chemical potential

associated to corresponding charge β`, therefore, is a priori real. For the purpose of our

calculation, we will keep it complex, but keep in mind that it is one real degree of freedom

i.e. β cannot be varied independently of β.
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We now compute this flavored elliptic genus using the technique of supersymmetric

localization. In the GLSM picture, under the toric transformations all fields are neutral

except P`, on which they act as a shift of the imaginary part of P`, i.e. P` → P` + iα` and

P ` → P ` − iα`, with α` a real parameter. The toric symmetry currents of the squashed

model are given by j`µ = DµImP`, where Dµ is the gauge covariant derivative.

To calculate the flavoured elliptic genus we follow the steps described in [8]. All the

calculations go through as in [8] but now there will be extra contributions to the part

involving zero mode contributions of ImP`. This is due to the fact that the covariant

derivative of P` contains the background field B` in addition to the flavor symmetry gauge

field V
′`
µ , i.e.,

DµP` = ∂µP` + i(V
′`
µ +B`

µ) . (2.25)

Thus including the contribution of the holonomy of B`
µ, we find that the flavored elliptic

genus is given by

χflav
ell (M̃tor; τ, z, {β}) =

∫
Edτ

d∏
`=1

d2u′`
τ2

H`(τ, z, u
′
`, β`) χell(Mtor; τ, z, u

′) , (2.26)

where we have defined the function

H`(τ, z, u, β) = k`
∑

m,w∈Z
e

2πib`wz−
πk`
τ2

(
wτ+m+u+β+

b`z

k`

)(
wτ+m+u+β+

b`z

k`

)
. (2.27)

From the above expression one sees that the elliptic genus explicitly depends on β`.

We can easily compute its dependence on β` as follows. Firstly one can rewrite the above

integral (2.26) as follows. Using the elliptic transformations properties of H and χell(Mtor),

H`(τ, z, u+ λτ + µ, β + ητ + ν) = e−2πib`(λ+η)zH`(τ, z, u, β) , (2.28)

χell(Mtor; τ, z, u
′` + λ`τ + µ`) = e2πiz

∑d
`=1 b`λ

`
χell(Mtor; τ, z, u

′) , (2.29)

one can write (2.26) as

χflav
ell (M̃tor; τ, z, {β}) =

∫
Cd

d∏
`=1

d2u′`

τ2
k` e
−πk`

τ2

(
u′`+β`+

b`z

k`

)(
u′`+β`+

b`z

k`

)
χell(Mtor; τ, z, u

′) ,

=

∫
Cd

d∏
`=1

d2u′`

τ2
k` e
−πk`

τ2

(
u′`+

b`z

k`

)(
u′`+

b`z

k`

)
χell(Mtor; τ, z, u

′ − β) ,

=

∫
Edτ

d∏
`=1

d2u′`
τ2

H̃`(τ, z, u
′
`) χell(Mtor; τ, z, u

′ − β) , (2.30)

where H̃`(τ, z, u) is defined in (2.10).

Now in the expression (2.30) the chemical potentials β` appear only in χell(Mtor),

and this dependence is meromorphic. Therefore if we hit it with a β`-derivative, integral

receives contributions only from the poles of χell(Mtor) and in fact reduces to a residue

calculation [28].
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Modular and elliptic properties:

Using the same technique as in the unflavored case, we can show that under the modular

transformation, the flavored elliptic genus transforms as

χflav
ell (M̃tor; τ + 1, z) = χflav

ell (M̃tor; τ,z) ,

χflav
ell (M̃tor;−

1

τ
,
z

τ
) = e

2πi
τ

zT M̂ z χflav
ell (M̃tor; τ,z) .

(2.31)

Here z = (z, β1, ...., βd) and M̂ is a matrix with the following entries:

M̂00 =
d

2
+

d∑
`=1

b2`
k`
, M̂0i = M̂i0 =

bi
2
, M̂ij = 0, i = 1, ..., d . (2.32)

To derive the elliptic property of the flavored elliptic genus we use the first line of (2.30).

Using the elliptic properties of the χell(Mtor; τ, z, u
′) and assuming that { b`k` }, ` = 1, · · · , d

are integers, one finds that

χflav
ell

(
M̃tor; τ,z + λ

)
= exp

(
−2πi(λT M̂ λ τ + 2λT M̂ z)

)
χflav

ell

(
M̃tor; τ,z

)
, (2.33)

where λ = (λ, η1, ...., ηd) ∈ Zd+1 . These are precisely the transformation properties of a

Jacobi form of d+ 1 elliptic variables with weight zero and index M̂ .

2.4 The General Structure for Flavored Elliptic Genera

Now, we would like to present the general structure for the integral form of the elliptic

genus (2.26) which will be used in the Section 4.2 to evaluate it explicitly. We find that

quite generically the flavored elliptic genus of a squashed toric model can be expressed as

certain linear combinations of an integral of the following form∫
CN

d2N z′

τN2

N∏
j=1

[
k̃j
ϑ1(τ,−z + µ(j)T z′)

ϑ1(τ, µ(j)T z′)
e
−
πk̃j
τ2

(
z′j+β̃j+

z

k̃j

)(
z′j+β̃j+

z

k̃j

)]
, (2.34)

where µ(j) for j = 1, ..., N is an N -component column vector whose entries are functions

of the charges Qai and F `i only, and if we construct the N ×N matrix M whose columns

are µ(j), then it satisfies

MQN = QN , where QN := (1, . . . , 1)T ∈ RN×1 . (2.35)

As we will explain below, the above equation is a consequence of the fact that
∑n

i=1Q
a
i = 0.

Let us begin with examples. The elliptic genus of the flavored C̃/Z2 manifestly has

the above structure, as can be seen from Equation (2.20). To see that this structure also

holds in the case of flavored squashed A1 model, we unfold the integral in (2.21) to C2.

Considering only the first term in χell(A1; τ, z, u′) (one can draw the same conclusion for

the second term), we get

χflav
ell (Ã1; τ, z, {β})(1) =

k1k2

τ2
2

∫
C2

d2u′1 d2u′2 e
−πk1

τ2

(
u′1+β1+

b1z
k1

)(
u′1+β1+

b1z
k1

)
× e−

πk2
τ2

(
u′2+β2+

b2z
k2

)(
u′2+β2+

b2z
k2

)
ϑ1(τ,−z + v2 − v1)

ϑ1(τ, v2 − v1)

ϑ1(τ,−z + 2v1)

ϑ1(τ, 2v1)
. (2.36)
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Changing the integration variables as u′1 = 1
b1
z′1 and u′2 = 1

b2
z′2, we can rewrite the above

integral as

χflav
ell (Ã1; τ, z, {β})(1) =

∫
C2

d2z′1
τ2

d2z̃′2
τ2

2∏
j=1

k̃j ϑ1

(
τ,−z + µ(j)T z′

)
ϑ1(τ, µ(j)T z′)

e
−
πk̃j
τ2

(
z′j+β̃j+

z

k̃j

)
(z′j+β̃j+

z

k̃j

)
.

(2.37)

Here

z′ =

(
z′1
z′2

)
, β̃j = bjβj , µ(1) =

(
F 1
3−F 1

1
b1

F 2
3−F 2

1
b2

)
, µ(2) =

(
2F 1

1 +F 1
2

b1
2F 2

1 +F 2
2

b2

)
, (2.38)

and k̃j =
kj
b2j

. Furthermore, if we construct a matrix M whose column vectors are µ(j),

then the matrix M satisfies

M
(

1

1

)
=

(
1

1

)
. (2.39)

Thus we see that the flavored elliptic genus of Ã1 model can be brought to the form of

(2.34) and (2.35).

To see that these equations are valid more generically, let us begin with the theory

of U(1)n−d gauge theory coupled to n chiral multiplets. Then, for generic values of flavor

charges {F `i } and complex potentials {u′`}, and for the non-degenerate situation3 (i.e. the

number of chiral multiplets becoming massless at a given point u∗ in Cn−d is (n− d)), the

Jeffrey-Kirwan residue of Z1-loop(τ, z, u, u′) at u = u∗ in (2.11) is a linear combination of

terms of the following form:4

∏
î∈[n]\S

ϑ1(τ,−z +Qî · u+ Fî · u
′)

ϑ1(τ,Qî · u+ Fî · u′)

∣∣∣
u=u∗

=
∏

î∈[n]\S

ϑ1(τ,−z +Qa
î
G`au

′` + Fî · u
′)

ϑ1(τ,Qa
î
G`au

′` + Fî · u′)

=
d∏
j=1

ϑ1(τ,−z + µ(j)T z′)

ϑ1(τ, µ(j)T z′)
. (2.40)

Here u
′` = 1

b`
z′`, [n] = {1, . . . , n}, and the n− d element subset S ⊂ [n] and the (n− d)× d

matrix G determines the poles in Cn−d i.e.

u∗ = Gu′ , (2.41)

and (for generic values of u′)

n−d∑
a=1

Qai G
`
a + F `i = 0 , ∀ ` = 1, .., d , (2.42)

3In the paper we will focus only on the case of non-degenerate poles.
4Typically, the residues are evaluated at the the zeros of Qi ·u+Fi ·u′ = 0 modZτ +Z which are of the

form u = u∗(u
′) + aτ + b modZτ + Z where a, b ∈ Q. In the present case we take both a and b to be zero.
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where Qi and Fi, i ∈ S are charges for chiral multiplets which are massless at u = u∗.

Thus, we see that

d∑
j=1

µ
(j)
` =

1

b`

∑
î∈[n]\S

(Qa
î
G`a + F `

î
)

=
1

b`

∑
î∈[n]\S

(Qa
î
G`a + F `

î
) +

1

b`

∑
i∈S

(Qai G
`
a + F `i ) =

1

b`

n∑
i=1

F `i = 1 . (2.43)

In the last line, we have used the fact that
∑n

i=1Q
a
i = 0. The above equation is nothing

but the observation (2.35), i.e.

MQN = QN , with QN = (1, . . . , 1)T ∈ RN×1 . (2.44)

We also see from the above discussion that the b` dependence completely disappears

from the integrand and its effect is to redefine the variable kj to k̃j = kj/b
2
j and βj to

β̃j = bjβj . In the rest of the paper, we shall rename k̃j → kj , as the properties of the

elliptic genus, which we will describe in the following sections, do not depend on the fact

that it arose as a ratio.

2.5 A Simple Example and the First Appearance of Indefinite Theta Series

In the simplest case of d = 1, the vacuum manifold (2.6) is the squashed version of the Z2

quotient of the complex plane, denoted by C̃/Z2. We find according to Equation (2.30)

that the flavored elliptic genus of this model is

χflav
ell (C̃/Z2; τ, z, β) = k

∫
C

d2u′

τ2
e
−πk
τ2

(
u′+bβ+ z

k

)(
u′+bβ+ z

k

)
ϑ1(τ,−z + u′)

ϑ1(τ, u′)
. (2.45)

The β = 0 elliptic genus of this model was computed in [8] and it was noticed that it

coincides with the elliptic genus of the SL(2,R)k/U(1) coset theory, based on which it was

conjectured that C̃/Z2 flows to the cigar. This can be now further corroborated by the

above flavored computation—indeed it agrees with the corresponding expression for the

cigar computed in [24] (with the replacement β → −bβ).

The integral (2.45) was explicitly evaluated in [24] and it was shown that the answer

is related to the three-variable Appell-Lerch sum

A1,k(τ, u, v) := ζku
∑
n∈Z

qkn(n+1) ζnv
1− ζu qn

, ζu = e2πiu , ζv = e2πiv , (2.46)

as we now explain. Firstly, the function A1,k(τ, u, v) does not have good modular trans-

formation properties, but it can be completed5 to Â1,k(τ, u, v) which has the modular and

elliptic transformation properties of a Jacobi form of weight one and index
( −k 1/2

1/2 0

)
. It

5The precise relation of the Appell-Lerch sum to mock modular forms and mock Jacobi forms has been

spelled out in [10, 13, 23].
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was shown in [24] that the flavored elliptic genus of the Zk orbifold of the cigar is related

to this completion as follows,

χflav
ell

(SL(2,R)k
U(1)

/
Zk; τ, z, β

)
=

iθ1(τ, z)

η(τ)3
Â1,k

(
τ,
z

k
, 2z + kbβ

)
. (2.47)

Equivalently by mirror symmetry [9] the left-hand side of this equation can be read as

the elliptic genus of the N = 2 Liouville theory with coupling constant 1/k. The state-

ment (2.47) can be inverted: the flavored elliptic genus of the cigar theory is given by the

Atkin-Lehner operator Wk [29] acting on A1,k(τ, u, v).

Now we note that the Appell-Lerch sum has the following Fourier expansion,

A1,k(τ, u, v) =
1

2

∑
n,m∈Z

(
sgn(m+ ε)− sgn

(
−n− Im(u)

Im(τ)

))
qkn(n+1)+nm ζm+k

u ζnv , (2.48)

where 0 < ε < 1 is arbitrary6 and sgn(x) = +1 for x > 0 and −1 for x < 0. This can be

recognized as an indefinite theta function of a (1, 1) lattice, as we will elaborate on in the

following section. As Zwegers has explained [10], one can add a non-holomorphic correction

term to it in order to obtain a completed function that transforms as a true modular object,

thus giving an explicit construction of mock modular forms. As we will see, the elliptic

genus of the squashed models in all the cases are a generalization of this observation, i.e.,

they are modular completions of some indefinite theta functions associated with an (n, n)

lattice, which are constructions of higher-depth mock modular forms. Towards this end we

turn to a review of the notion of mock modular forms at higher depth and indefinite theta

functions for arbitrary lattices.

3 Mock Modular Forms of Higher Depth

3.1 A Quick Review of Modular Forms and Theta Functions

We start the mathematical part of our discussion with a quick review of modular forms.

The modular group SL(2,Z) is the group of integral 2× 2 matrices with unit determinant.

It is generated by the two elements

T =

(
1 1

0 1

)
and S =

(
0 1

−1 0

)
. (3.1)

Its role as the group of large diffeomorphisms for two dimensional tori explains its appear-

ance in many applications of string theory and two dimensional quantum field theory.

Modular forms are complex valued functions defined on the upper half-plane, H =

{z ∈ C : Im(z) > 0} that are symmetric under the modular group. More specifically, a

(holomorphic) modular form of weight k is a holomorphic function f : H→ C that satisfies

the following two conditions.

6The answer of course is independent of the choice of ε.
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• Covariance under modular transformations:

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), where

(
a b

c d

)
∈ SL(2,Z). (3.2)

• The Fourier expansion7 of f satisfies a growth condition, namely,

f(τ) =
∑
n≥0

anq
n, where q := e2πiτ . (3.3)

Very importantly, the set of weight k modular forms, Mk form a finite dimensional vector

space over C. At this point there are various avenues for possible generalizations. One

possibility is to relax the growth condition as f(τ) =
∑

n≥N anq
n for some constant N < 0,

giving the notion of weakly holomorphic modular forms. Another possibility is to require

the modular transformation property (3.2) not for the whole SL(2,Z) but for one of its

subgroups. Yet another possibility is to generalize the transformation as

fµ

(
aτ + b

cτ + d

)
= (cτ + d)kχ(γ) ν

µ fν(τ), for µ, ν = 1, . . . , N, (3.4)

where γ =
(
a b
c d

)
∈ SL(2,Z) and χ(γ) ν

µ is a (projective) representation of the modular

group compatible with weight k and called a multiplier system. Such objects are called

vector-valued modular forms.

A natural source of modular forms is theta series attached to integral, positive-definite

lattices. One way to characterize an integral lattice is to view it as the set Λ ≡ ZN where

N is the rank of the lattice and associate an inner product8 (n,m) 7→ n · m := nTQm

for n,m ∈ ZN and where Q is an N × N symmetric integral matrix. If we also have

n2 := nTQn ∈ 2Z for any n ∈ ZN the lattice is said to be even. We also define the dual

lattice Λ∗ ⊂ QN by

Λ∗ := {r ∈ QN : rTQm ∈ Z for any m ∈ Λ}. (3.5)

We should note that Λ ⊂ Λ∗ for integral lattices .

If the inner product is positive definite we can define the theta series ΘQ,p
µ : H → C

where µ ∈ Λ∗/Λ and p ∈ Λ is a characteristic vector9

ΘQ,p
µ (τ) :=

∑
n∈Λ+µ+ p

2

(−1)p·n q
1
2
n2
. (3.6)

The positive definiteness of Q is vital in ensuring the convergence of the series. We will

drop p as a superscript if the lattice is even and take p = 0.

It is also natural to introduce elliptic variables to a theta function, i.e., we extend the

theta series to a holomorphic function ΘQ
µ : H× CN → C defined as

ΘQ,p
µ (τ, z) :=

∑
n∈Λ+µ+ p

2

q
1
2
n2
e2πi(z+ p

2 )·n. (3.7)

This function is covariant under elliptic and modular transformations.

7The equation (3.2) in particular requires f(τ + 1) = f(τ) and hence f has a Fourier series.
8From here on, we will treat any element of QN , ZN , RN , or CN as a column vector.
9In an integral lattice, a vector p ∈ Λ is called a characteristic vector if n2 + n · p ∈ 2Z for every n ∈ Λ.

Note that if p′ is another characteristic vector then p−p′
2
∈ Λ∗.
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• Elliptic transformations:

ΘQ,p
µ (τ, z +m) = (−1)m·p ΘQ,p

µ (τ, z) for m ∈ Λ, (3.8)

ΘQ,p
µ (τ, z +mτ) = (−1)m·pq−

1
2
m2
e−2πiz·m ΘQ,p

µ (τ, z) for m ∈ Λ. (3.9)

• Modular Transformations:

ΘQ,p
µ (τ + 1, z) = eπi(µ+ p

2 )
2

ΘQ,p
µ (τ, z), (3.10)

ΘQ,p
µ

(
−1

τ
,
z

τ

)
=

(−iτ)N/2√
|Λ∗/Λ|

eπiz
2/τe−πip

2/2
∑

ν∈Λ∗/Λ

e−2πiµ·νΘQ,p
ν (τ, z) . (3.11)

The equations (3.8), (3.9), and (3.10) quickly follow from the definition (3.7) and one can

prove Equation (3.11) using Poisson resummation. These transformation properties are

the defining properties of (vector valued) Jacobi forms (with a lattice index). The theory

of scalar valued Jacobi forms with scalar index is developed in [30], where a holomorphic

function φ : H×C→ C (with suitable growth conditions) is called a Jacobi form of weight

k and index m if it satisfies

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k e2πim cz2

cτ+d φ(τ, z), where

(
a b

c d

)
∈ SL(2;Z), (3.12)

and

φ(τ, z + ντ + µ) = e−2πim(ν2τ+2νz) φ(τ, z), where ν, µ ∈ Z. (3.13)

In particular, the theta function of a rank 2k, even, unimodular lattice Λ whose elliptic

variable is restricted as z = λz for some λ ∈ Λ with λ2 = 2m gives a scalar Jacobi form

of weight k and index m. Moreover, thanks to the elliptic transformation property (3.13),

Jacobi forms can be decomposed as

φ(τ, z) =
∑

` (mod 2m)

h`(τ)ϑm,`(τ, z), (3.14)

where level m theta functions, ϑm,`(τ, z), are defined in equation (A.4) and h`(τ) form a

vector valued modular form of weight k − 1
2 and with multiplier system dual to that of

ϑm,`(τ, z). The decomposition in (3.14) is called a theta expansion and gives an isomor-

phism between Jacobi forms of weight k and vector valued modular forms of weight k − 1
2

(whose multiplier system is fixed by the index m of the Jacobi form).

3.2 Mock Modular Forms (of Higher Depth)

In many contexts in physics, holomorphic modular forms appear as supersymmetric par-

tition functions. This fact puts quite powerful restrictions on supersymmetric partition

functions because holomorphic modular forms of fixed weight form finite dimensional vec-

tor spaces over C. In the absence of a restriction such as supersymmetry, even if modular

covariance is physically expected, that may only restrict the relevant physical quantities

to be real analytic modular forms. The space of real analytic modular forms is however
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very large compared to holomorphic modular forms and there is not as much mathematical

control over such functions.

A situation between these two extremes happen when the physical theory is super-

symmetric and yet has a continuum in its spectrum which contributes to supersymmetric

partition functions. In certain special examples of such theories, the relevant functions are

in a class of real analytic modular forms called mock modular forms [10, 11] (see [12, 14] for

further details) or a slight generalization called mixed mock modular forms [13]. Examples

include elliptic genus of supersymmetric SL(2;R)/U(1) model [31–33], certain partition

functions of topologically twisted N = 2 and N = 4 super Yang-Mills theories [34–36],

and counting function of quarter-BPS states in N = 4 string theory [13]. Mathematically,

a mixed mock modular form, h(τ), of weight k is the holomorphic part of a real analytic

modular form, ĥ(τ, τ), of weight k whose τ -derivative satisfies

∂

∂τ
ĥ(τ, τ) ∈

⊕
j

(
τ
rj
2 Mk+rj ⊗M2+rj

)
, (3.15)

where Mkj is the space of weight kj holomorphic modular forms (possibly with a multiplier

system and/or on a subgroup of SL(2;Z)). When τk2
∂
∂τ ĥ(τ, τ) ∈ M2−k, the function h(τ)

is called a pure mock modular form.

As we will find out, the flavored supersymmetric partition functions of squashed toric

sigma models lie in a more general space of mock modular forms with depth. These spaces

are defined recursively as follows [15]. Denoting the space of mock modular forms of depth

d and weight k by Md
k and the space of their completions by M̂d

k , we define M0
k and M̂0

k to

be Mk, so depth zero modular forms are holomorphic modular forms. Then a holomorphic

function h : H → C is a mock modular form of depth d and weight k if it has modular

completion ĥ whose τ -derivative satisfies

∂

∂τ
ĥ(τ, τ) ∈

⊕
j

(
τ
rj
2 M̂

d−1
k+rj

⊗M2+rj

)
(3.16)

and if d is the smallest number consistent with this property. This definition identifies

depth one mock modular forms with mixed mock modular forms. We can also define

mock Jacobi forms (of any depth) as functions mapped to vector-valued mock modular

forms of appropriate depth under the isomorphism induced by a theta expansion (3.14).

Besides their relevance for supersymmetric partition functions of two dimensional field

theories discussed here, these objects have appeared in various other contexts in physics

and mathematics [37–41].

3.3 Indefinite Theta Series

In Section 3.1, we introduced theta series as a rich source of modular forms. However, the

series as defined in equation (3.7) does not immediately extend to lattices with indefinite

signature. That is because of the exponential growth of the summand for lattice points

along negative directions (or non-decaying behavior along null directions) which renders
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the series divergent. A convergent series can be obtained by restricting the sum (asymptot-

ically) to lattice points along positive directions. One way to accomplish this is to restrict

the series to lattice points in a positive rectangular cone, that is we construct the series

ΘQ,p
µ

(
C,C ′; τ

)
:=

∑
n∈Λ+µ+ p

2

 1

2N−

N−∏
j=1

(
sgn (cj · n)− sgn

(
c′j · n

)) (−1)p·nq
1
2
n2
, (3.17)

where the signature of the rank N lattice Λ is (N+, N−) with N+ and N− denoting the

number of positive and negative eigenvalues of the matrix Q, respectively and

sgn(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

(3.18)

Here, cj and c′j are vectors (forming the columns of N×N− matrices C and C ′) that ensure

convergence by projecting out negative directions.10

Generically, however, the series in (3.17) fails to be modular invariant. As found out

by Zwegers [10], in the case N− = 1 (Lorentzian lattices) such theta functions have a

non-holomorphic modular completion and give concrete examples of mock modular forms

as defined in Section 3.2.11 Non-holomorphic completions in the case N− > 1 has been

developed [15–20] and yield explicit examples of mock modular forms of higher depth.

Before discussing technical details, let us give some intuition for both the failure of

modular invariance and for the associated non-holomorphic completions of (3.17). As

alluded earlier, the main tool to prove the S-invariance (3.11) of theta series is the Poisson

resummation formula. In the case of definite signature lattices, the S-transformation law

follows from the well known self-duality of Gaussian function. However, in forming a

convergent indefinite theta series in (3.17), we restricted to a proper subset of lattice

points and essentially imposed a hard wall in our setup. When we Fourier transform, this

hard wall is no longer strictly localized. This is why the self-duality property is lost and

the indefinite theta series generically fail to be modular invariant. If we smoothen the hard

walls with Gaussian factors we can recover self-duality and hence S-invariance, provided

the penetration of the lattice sum to the dangerous negative-definite regions is not strong

enough to ruin convergence.

To be more concrete let us get back to technical details and rewrite equation (3.17) as

ΘQ,p
µ

(
C,C ′; τ

)
:=

∑
n∈Λ+µ+ p

2

 1

2N−

∑
P⊆[N−]

(−1)|P | sgn
(
−CP · n

) (−1)p·nq
1
2
n2
, (3.19)

10Both for this function and for the modular completion we will discuss next, conditions for convergence

when N− = 1 are developed in [10]. A set of sufficient conditions for convergence with rectangular cones is

given in [16] for N− = 2 case, which is then generalized in [19] for arbitrary N−. More general conditions

for convergence (also allowing different types of positive cones) can be understood and studied through the

geometric picture of [17, 20]. Further discussions and generalization to tetrahedral cones for generic N−
can be found in [15, 18].

11For specific lattices and specific choices of cones, these indefinite theta series are modular and do not

require a non-holomorphic completion. The construction in [10] also makes clear when this happens.
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where [n] := {1, . . . , n}, CP is an N × N− matrix whose columns are the elements of

{cj : j ∈ P} ∪ {c′j : j ∈ [N−] \ P}. For matrices F =
(
f (1) · · · f (r)

)
and G =

(
g(1) · · · g(s)

)
whose columns are vectors in Λ⊗R we use the notation F ·G := FTQG, i.e. the r×s matrix

whose (i, j)th entry is f (i) · g(j). Moreover, for a column matrix f = (f1, . . . , fr)
T ∈ Rr×1

we define

sgn (f) :=
r∏
j=1

sgn (fj) . (3.20)

The modular completion is then accomplished by replacing

sgn
(
−CP · n

)
→ EQ

(
CP ;
√

2τ2n
)
, (3.21)

where we introduce the boosted generalized error function EQ as follows (we will follow

the conventions of [19] except for inverting the signature of the bilinear form). For a

set of r vectors f (1), . . . , f (r) that span a negative definite subspace with respect to the

inner product defined by Q we define the boosted generalized error function EQ (F ;x) for

F =
(
f (1) · · · f (r)

)
as:

EQ (F ;x) := Er (B · F ;B · x) (3.22)

where B is an orthonormal basis for the subspace spanned by F , i.e. we have BTQB = −Ir
and F = −BBTQF . The generalized error functions Er are defined as

Er(M;u) :=

∫
Rr

dru′ e−π(u−u′)T (u−u′)sgn
(
MTu′

)
, (3.23)

where M ∈ Rr×r is a nondegenerate matrix and u ∈ Rr. Although we chose a basis B in

equation (3.22), the symmetries of r-tuple error functions ensure that the right hand side

gives the same result for any possible basis choice. Properties of generalized error functions

are reviewed in Appendix B.

At this point let us reintroduce the elliptic variable z and summarize the modular

completion to indefinite theta series with rectangular cones. We define

Θ̂Q,p
µ

(
C,C ′; τ, z

)
:=

∑
n∈Λ+µ+ p

2

 1

2N−

∑
P⊆[N−]

(−1)|P |EQ
(
CP ;
√

2τ2

(
n+

Im z

τ2

)) q 1
2
n2
e2πi(z+ p

2 )·n. (3.24)

Provided the vectors in C and C ′ are chosen in a way that ensures convergence, this function

is covariant under elliptic and modular transformations.

• Elliptic transformations:

Θ̂Q,p
µ (C,C ′; τ, z +m) = (−1)m·p Θ̂Q,p

µ (C,C ′; τ, z) for m ∈ Λ, (3.25)

Θ̂Q,p
µ (C,C ′; τ, z+mτ) = (−1)m·pq−

1
2
m2
e−2πiz·m Θ̂Q,p

µ (C,C ′; τ, z) for m ∈ Λ. (3.26)
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• Modular Transformations:

Θ̂Q,p
µ (C,C ′; τ + 1, z) = eπi(µ+ p

2 )
2

Θ̂Q,p
µ (C,C ′; τ, z), (3.27)

Θ̂Q,p
µ

(
C,C ′;−1

τ
,
z

τ

)
=

iN−(−iτ)N/2√
|Λ∗/Λ|

eπiz
2/τe−πip

2/2
∑

ν∈Λ∗/Λ

e−2πiµ·νΘ̂Q,p
ν

(
C,C ′; τ, z

)
.

(3.28)

In this work we will also need a slight generalization where some of the vectors in C

and C ′ defining the cone are null (viewing them as limits of appropriate negative vectors).

In Appendix B, the definition of generalized error functions is extended to the case where

some of the vectors in its first argument are null. It is still required that these vectors

define a negative semi-definite subspace which in turn implies any null vector in this set is

orthogonal to all the others in that generalized error function. We will assume that this is

the case for each matrix CP in the definition (3.24). In particular, if N is a matrix of null

vectors which together with negative vectors in a matrix F spans a negative semidefinite

subspace, then we view the corresponding generalized error function as

EQ ((N,F );x) := EQ (F ;x) sgn (−N · x) . (3.29)

We define indefinite theta functions in this case using (3.29) with x =
√

2τ2

(
n+ Im z

τ2

)
.

Since the definition of generalized error functions in this case follows from null limits of

negative vectors, the associated indefinite theta functions satisfy all the elliptic and modular

properties given in Equations (3.25)–(3.28)12.

We next get back to the definition of the holomorphic part of indefinite theta functions

given in (3.17) and extend it to the case in which elliptic variables are turned on. If the

elliptic variable is of the form z = z′ + aτ + b with a, b ∈ QN fixed but z′ ∈ CN allowed

to vary then by the holomorphic part ΘQ,p
µ (C,C ′; τ, z′ + aτ + b) we mean Equation (3.24)

with its factors as in (3.29) replaced by

EQ
(
F ;
√

2τ2

(
n+ a+

Im z′

τ2

))
sgn

(
−N ·

(
n+ a+

Im z′

τ2

))
→ sgn (−F · (n+ a)) sgn

(
−N ·

(
n+ a+

Im z′

τ2

))
. (3.30)

As an example let us now quickly review the fact that the µ-function defined in [10],

µ(u, v; τ) :=
ζ

1/2
u

ϑ1(τ, v)

∑
n∈Z

(−1)n q
1
2

(n2+n) ζnv
1− qn ζu

, (3.31)

12The convergence of theta series is a delicate issue when null vectors are involved in the construction

of its cone. The N− = 1 case is treated in [10] and N− = 2 case with rectangular cones is treated in [16].

Although more generic results are not available in the literature, one can proceed case by case. In our

work we will not be dealing with generic choices of cones, indeed all indefinite theta functions involving null

vectors appearing in the following arise from generalized Appell sums [45] (see Equation (3.36)) for which

convergence is immediate.
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as well as its modular completion can be understood in terms of indefinite theta functions

we have been discussing. For this purpose let us expand the denominator of the summand

in (3.31) and rewrite it as

ϑ1(τ, v)µ(u, v; τ) =
∑
n,k∈Z

(−1)n q
1
2

(n2+2nk+n) ζnv ζ
k+ 1

2
u

1

2

[
sgn (k + ε)− sgn

(
−n− Imu

τ2

)]
,

(3.32)

where we are free to choose 0 < ε < 1. In particular, choosing ε = 1
2 lets us write the right

hand side of equation (3.32) as an indefinite theta function,

ϑ1(τ, v)µ(u, v; τ) = ΘQ,p
(
c, c′; τ, z

)
, (3.33)

where

Q =

(
1 1

1 0

)
, p =

(
0

1

)
, c =

(
1

−1

)
, c′ =

(
0

−1

)
, z =

(
u

v − u

)
. (3.34)

Here we remember the definition of the modular completion in (3.24), the replacement

in (3.30) used to get its holomorphic part, and also note that the lattice is unimodular

having only one conjugacy class in Λ∗/Λ. This form also immediately yields the modular

completion, Θ̂Q,p (c, c′; τ, z), to be∑
n,k∈Z

(−1)nq
1
2

(n2+2nk+n)ζnv ζ
k+ 1

2
u

1

2

[
erf

(√
2πτ2

(
k +

1

2
+

Im (v − u)

τ2

))
+ sgn

(
n+

Imu

τ2

)]
.

(3.35)

The difference, Θ̂Q,p (c, c′; τ, z) − ΘQ,p (c, c′; τ, z), can be brought in to the form found in

[10] by explicitly performing the sum over n. Before moving on, let us note a few points

that will generalize to other setups relevant for this work.

• Let us first reemphasize the qualitative difference between negative vectors and null

vectors forming the cone. As can be seen in Equation (3.29), to obtain a modular

completion, sign functions associated with negative vectors (denoted by F in (3.29))

should be replaced by generalized error functions whereas sign functions associated

with null vectors (denoted by N in (3.29)) remain unchanged in the completion. This

is exemplified in µ-function, for which the cone of the associated indefinite theta

function is formed by one negative vector, c, and one null vector, c′ given in (3.34).

We see that in the modular completion (3.35), the sign function for c is replaced with

an error function whereas the sign function for c′ remains unchanged. The functions

A1,m(τ, z) defined in [13] are similarly holomorphic parts of signature (1, 1) indefinite

theta functions whose cones are formed by one negative vector and one null vector.

• Expanding on this difference for the case of negative vectors, the holomorphic part

obtained by the replacement (3.30) does not have good elliptic transformations be-

cause of the dropped Im (v−u)
τ2

factor. The elliptic transformation equations (3.25) and

(3.26) are obeyed by ΘQ,p (c, c′; τ, z) only for those transformations that leave v − u
constant. Instead of defining the holomorphic part by (3.30), one could make a dif-

ferent choice of splitting the completed function into two pieces, in which the analog
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of the holomorphic part retains the F · Im z′ factor in the sign function on the right

hand side of (3.30). In the case of µ-function this would replace the sgn (k + ε) term

with sgn(k + 1
2 + Im (v−u)

τ2
). This restores the elliptic transformation property at the

expense of holomorphicity in u− v. Moreover, it produces an apparent wall-crossing

behavior in the u− v variable—which is canceled by an equal contribution from the

remaining terms in the modular completion.13

• In the case of null vectors, on the other hand, the factor N · Im z′ that remains in

the holomorphic part after the replacement in (3.30) (which is −Imu in the example)

plays an important role in performing the sum over k in (3.32) to get the denominator

in the summand of (3.31). Note that the absence of a quadratic term in k in the

exponents of (3.32) was the key point in this resummation which in turn was ensured

by the nullity of c′. The appearance of N · Im z′ factors is also related to the fact that

in such cases the ‘holomorphic part’ is in fact meromorphic in the elliptic variable z′.

• When the elliptic variable v−u is restricted to an element of Qτ+Q, the τ -derivative

of Θ̂Q,p (c, c′; τ, z) is of the form (3.15) with k = 1 and only one term that has r1 = −1
2 .

Here the relevant element of M 3
2

is a weight 3
2 unary theta function (stemming from

lattice points in the span of negative vector c) and the relevant element of M 1
2

is a

weight 1
2 Jacobi form (a holomorphic theta function in the orthogonal complement

of c).

This construction works also for generalized Appell functions defined by [45] and ap-

pearing in partition functions of topological N = 4 super Yang-Mills theory. Let Λ be a

rank-m lattice with a positive definite quadratic form Q (k · n := kTQn for k, n ∈ Λ), and

let mj ∈ Λ∗, j = 1, . . . , n. Then for v ∈ Cm and u ∈ Cn, these generalized Appell functions

are schematically defined as

AQ,mj (τ, u, v) := e2πi`(u)
∑
k∈Λ

q
1
2
k2+Re2πiv·k∏n

j=1

(
1− qmj ·ke2πiuj

) (3.36)

for an appropriate constant R and linear function `(u). As in our discussion of the µ-

function, the denominator of the summand can be expanded in a way similar to (3.32). This

identifies the generalized Appell function AQ,mj as the holomorphic part of an indefinite

theta series on a lattice with N+ = m and N− = n. This fact in turn yields a modular

completion as in Equation (3.24). This special class of indefinite theta functions will

appear in Section 4 as a building block for the flavored elliptic genera of squashed toric

sigma models discussed in this work.

Finally, let us discuss why indefinite theta functions introduced in this section give ex-

amples of higher depth mock modular forms as introduced in Section 3.2. The τ -derivative

of the modular completion (3.24) can be computed using equation (B.12).14 We will as-

sume that the projection of the elliptic variable z to the subspace spanned by the timelike

13This kind of restoration of smoothness in u−v, by canceling contributions in the holomorphic part and

the remaining part, is also observed in physical setups of [42–44].
14The τ -derivative acting on the sign functions in (3.24) due to the null vectors in C and C′ give vanishing

contributions as long as the elliptic variable is so that the arguments of sign functions are not zero.
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vectors in C and C ′ is zero (or is of the form aτ + b for fixed a, b ∈ RN ). In this case we

use (B.12) to find

∂

∂τ
EQ

(
F ;
√

2τ2x
)

=
−i√
2τ2

r∑
j=1

f (j) · x√
−f (j) · f (j)

e2πτ2(f (j)·x)
2
/f (j)·f (j)EQ

(
F[r]/{j}⊥{j};

√
2τ2x

)
.

(3.37)

As f (j) runs over the negative vectors in C and C ′, the contribution from the

(f (j) · x) e2πτ2(f (j)·x)
2
/f (j)·f (j) term can be summed to the complex conjugate of a weight

3
2 unary theta function whereas the contribution from the EQ

(
F[r]/{j}⊥{j};

√
2τ2x

)
term

yields an indefinite theta function in the orthogonal complement of f (j) with signature

(N+, N− − 1). Therefore, comparing with (3.16), indefinite theta series for signature

(N+, N−) lattices generically15 yield depth N− mock modular forms16.

4 Elliptic Genera of Squashed Toric Models as Mock Modular Forms of

Higher Depth

Having reviewed the relevant mathematical background, in this section we show that the

(flavored) elliptic genera of the squashed toric models [8] discussed in Section 2 are built out

of indefinite theta series of generic signature and yield higher depth mock modular forms.

It is worth emphasizing that our physical expression derives the completions of these mock

modular forms and hence include both the holomorphic part from discrete states and the

non-holomorphic part due to continuum.

4.1 A Warm-up Example: Squashed C/Z2 Model

Before studying the general case, let us review the squashed C/Z2 model whose elliptic

genus is known to be a mixed mock modular form (i.e. a depth one mock modular form).

This will illustrate our computation in an easier setting, which in its early stages follows

[46]. We start with the following expression for the elliptic genus:

χell

(
C̃/Z2; τ, z

)
= k

∫
Eτ

d2z

τ2

ϑ1(τ,−z + z)

ϑ1(τ, z)

∑
m,w∈Z

e2πiwz e
−πk
τ2

(z+wτ+m+ z
k )(z+wτ+m+ z

k ).

(4.1)

15Special symmetries of the lattice and the positive cone may lead to mock modular forms with lower

depth.
16 Note that even without the restrictions we imposed on the elliptic variable, the modular completion of

the theta function will transform like a Jacobi form. However, it will not be strictly speaking a mock Jacobi

form (with some depth) because it will depend non-holomorphically on components of the elliptic variable

that have nonzero inner product with positive vectors in C and C′. On components that have nonzero

inner product with null vectors in C and C′, on the other hand, the theta function has a meromorphic

dependence. This meromorphic dependence may then be cancelled if multiplied with a holomorphic Jacobi

form that vanishes on the location of these poles. In our physical setup we will in fact encounter both

behaviors. The elliptic genus is holomorphic in the elliptic variable z for R-symmetry whereas it will

depend non-holomorphically on the chemical potentials βj for toric flavor symmetries as can be deduced

from the building block integral given in (2.34).
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• Let us first perform Poisson resummation over m in the above sum. Writing z = sτ + t

where s, t ∈ R, we have∑
m,w∈Z

e2πiwz e
−πk
τ2

((w+s)τ+m+t+ z
k )((w+s)τ+m+t+ z

k )

=

√
τ2

k

∑
n,w∈Z

ζ
w+n

k
z e2πitn q

k
4 (w+s+n

k )
2

q
k
4 (w+s−n

k )
2

. (4.2)

So at this stage we find χell

(
C̃/Z2; τ, z

)
to be

√
kτ2

1∫
0

ds

1∫
0

dt
ϑ1(τ,−z + sτ + t)

ϑ1(τ, sτ + t)

∑
n,w∈Z

ζ
w+n

k
z e2πitn q

k
4 (w+s+n

k )
2

q
k
4 (w+s−n

k )
2

. (4.3)

• Now let us expand both theta functions. For the theta function in the numerator we are

simply going to use

ϑ1(τ, z) = i
∑
m∈Z

(−1)mq
1
2(m+ 1

2)
2

ζ
m+ 1

2
z , (4.4)

and for the theta function in the denominator we are going to employ the identity (see for

example [46] for its proof)

1

ϑ1(τ, z)
=

i

η(τ)3

∑
r∈Z

ζ
r+ 1

2
z Sr(τ) for |q| < |ζz| < 1, (4.5)

where

Sr(τ) :=
∞∑
m=0

(−1)m qm(m+2r+1)/2. (4.6)

Note that for z = sτ + t we have |ζz| = |q|s and therefore the identity holds for 0 < s < 1.

Thus we now have χell

(
C̃/Z2; τ, z

)
as

χell

(
C̃/Z2; τ, z

)
=
√
kτ2

(−1)

η(τ)3

1∫
0

ds

1∫
0

dt
∑

r,m,n,w∈Z
(−1)m q

1
2(m+ 1

2)
2

ζ
−m− 1

2
z qs(m+ 1

2) e2πit(m+ 1
2)

× Sr(τ) qs(r+
1
2) e2πit(r+ 1

2) ζ
w+n

k
z e2πitn q(w+s)n (qq)

k
4 (w+s−n

k )
2

. (4.7)

• Now we are perform the integral over t. This imposes m+ r+ n+ 1 = 0 using which we

can perform the sum over r and write χell

(
C̃/Z2; τ, z

)
as

−
√
kτ2

η(τ)3

1∫
0

ds
∑

m,n,w∈Z
(−1)m q

1
2(m+ 1

2)
2

ζ
−m− 1

2
z S−m−n−1(τ) ζ

w+n
k

z qnw (qq)
k
4 (w+s−n

k )
2

. (4.8)

• Our next step is to perform the sum over m. We will do this using the following identity

(again see [46] for its proof):

i ϑ1(τ, z)

1− ζ−1
z q−p

=
∑
m∈Z

(−1)m q
1
2(m+ 1

2)
2

ζ
−m− 1

2
z S−m−p−1(τ), (4.9)
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which holds for any p ∈ Z. This then gives us

χell

(
C̃/Z2; τ, z

)
=
√
kτ2

(
−i ϑ1(τ, z)

η(τ)3

) ∑
n,w∈Z

qnw ζ
w+n

k
z

1− ζ−1
z q−n

1∫
0

ds (qq)
k
4 (w+s−n

k )
2

. (4.10)

• Finally, the integral over s can be taken using error functions:

√
kτ2

1∫
0

ds (qq)
k
4 (w+s−n

k )
2

=

√
kτ2

2

∞∫
−∞

ds [sgn(s)− sgn(s− 1)] e−πkτ2(w+s−n
k )

2

=
1

2

[
erf
(√

kπτ2

(n
k
− w

))
− erf

(√
kπτ2

(n
k
− w − 1

))]
. (4.11)

This yields the final result:

χell

(
C̃/Z2; τ, z

)
=
−iϑ1(τ, z)

η(τ)3

∑
n,w∈Z

qnw ζ
w+n

k
z

1− ζ−1
z q−n

× 1

2

[
erf
(√

kπτ2

(n
k
− w

))
− erf

(√
kπτ2

(n
k
− w − 1

))]
. (4.12)

The Holomorphic (Discrete) Part of the Squashed C/Z2 Elliptic Genus

As τ2 → ∞ we have erf
(√
kπτ2x

)
→ sgn(x), so the holomorphic part of χell

(
C̃/Z2; τ, z

)
is given by

χhol
ell

(
C̃/Z2; τ, z

)
=
−i ϑ1(τ, z)

η(τ)3

∑
n,w∈Z

qnw ζ
w+n

k
z

1− ζ−1
z q−n

1

2

[
sgn

(n
k
− w

)
− sgn

(n
k
− w − 1

)]
.

(4.13)

Multiplying the numerator and the denominator of the summand by ζz q
n, shifting w →

w − 1, plugging in n = kw − γ where γ ∈ Z, and defining

aγ,k :=


1/2 if γ = 0, k,

1 if 0 < γ < k,

0 otherwise,

(4.14)

we can get this to a more familiar form17

χhol
ell

(
C̃/Z2; τ, z

)
=

i ϑ1(τ, z)

η(τ)3

k∑
γ=0

aγ,k
∑
w∈Z

qkw
2−γw ζ

2w− γ
k

z

1− ζz qkw−γ
, (4.15)

which is nothing but the Atkin-Lehner operator Wk [29] acting on A1,k(τ, u, v), as men-

tioned below Equation (2.46).

17This is slightly different from the Equation 3.9 of [33] due to the ambiguity in defining the contribution

of discrete states that are touching the continuum (equivalently, defining sgn(0) to be −1 would produce

their result). Note that this ambiguity also appears in [33] in the choice of integration contours due to the

poles that are that are touching those contours.
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4.2 The General Case

Our expression for the flavored elliptic genera of squashed toric sigma models leads us to

the following integral (see Section 2.4 for details):

fk(M; τ, z, u) =

∫
CN

d2N z′

τN2

N∏
j=1

[
kj
ϑ1(τ,−z + µ(j)T z′)

ϑ1(τ, µ(j)T z′)
e
−
πkj
τ2

(
z′j+β̃j(u)+ z

kj

)(
z′j+β̃j(u)+ z

kj

)]
,

(4.16)

where τ ∈ H, z ∈ C and u ∈ CN , k := (k1, . . . , kN ) and z′ is understood to be a column

vector whose entries are z′1, . . . , z
′
N ∈ C. Here, M is a real N ×N non-degenerate matrix

whose columns are µ(j) and which we assume to satisfy

MQN = QN , where QN := (1, . . . , 1)T ∈ RN×1 . (4.17)

Finally, β̃(u) := M−Tu corresponds to the chemical potentials conjugate to the toric

symmetries18.

Before attempting the integral, it will be convenient to introduce some notation.

K := diag

(
1√
2k1

, . . . ,
1√
2kN

)
, E := K−1M−T , g := ETE =M−1K−2M−T . (4.18)

Using this notation and introducing a new variable z :=MT z′ we can write

N∏
j=1

e
−
πkj
τ2

(
z′j+βj(u)+ z

kj

)(
z′j+βj(u)+ z

kj

)

= exp

(
− π

2τ2

(
z′TK−1 + β(u)TK−1 + 2zQTNK

) (
K−1z′ +K−1β(u) + 2KQNz

))
= exp

(
− π

2τ2

(
zTET + uTET + 2zQTNK

)
(Ez + Eu+ 2KQNz)

)
. (4.19)

Noting that

N∏
j=1

kj =
1

2N (detK)2
and changing variables z′ 7→ z =MT z′ in the integral, we

obtain

fk(M; τ, z, u) =

(det E)2

2N

∫
CN

d2N z

τN2

N∏
j=1

[
ϑ1(τ,−z + zj)

ϑ1(τ, zj)

]
e
− π

2τ2
(zT ET+uT ET+2zQTNK)(Ez+Eu+2KQNz). (4.20)

Using equation (A.7) we have

ϑ1(τ,−z + zj + wjτ +mj)

ϑ1(τ, zj + wjτ +mj)
= ζ

wj
z
ϑ1(τ,−z + zj)

ϑ1(τ, zj)
, (4.21)

18 In this section, the variable u is used to denote certain convenient linear combinations of chemical

potentials β for toric flavor symmetries and should not be confused with chemical potentials for gauge

symmetries defined in Equation (2.7).
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and hence

fk(M; τ, z, u) =
(det E)2

2N

∫
ENτ

d2N z

τN2

N∏
j=1

[
ϑ1(τ,−z + zj)

ϑ1(τ, zj)

] ∑
m,w∈ZN

ζ
QTNw
z (4.22)

× exp

(
− π

2τ2

[
(z + u+ τw +m)TET + 2zQTNK

]
[E(z + u+ wτ +m) + 2KQNz]

)
.

Writing z = sτ + t where s, t ∈ [0, 1]N we have

fk(M; τ, z, u) =
(det E)2

2N

∫
[0,1]N

dNs

∫
[0,1]N

dN t
N∏
j=1

[
ϑ1(τ,−z + sjτ + tj)

ϑ1(τ, sjτ + tj)

] ∑
m,w∈ZN

ζ
QTNw
z (4.23)

× exp

(
− π

2τ2

[
(u+ τ(w + s) +m+ t)TET + 2zQTNK

]
[E(u+ (w + s)τ +m+ t) + 2KQNz]

)
.

Using Poisson summation (A.11) for the sum over m with

A =
1

2τ2
ETE and B =

1

2iτ2
ET [E(Re(u) + (w + s)τ1 + t) + 2KQNz] , (4.24)

we obtain

fk(M; τ, z, u) =
(τ2

2

)N
2 | det E|

∫
[0,1]N

dNs

∫
[0,1]N

dN t
N∏
j=1

[
ϑ1(τ,−z + sjτ + tj)

ϑ1(τ, sjτ + tj)

] ∑
n,w∈ZN

ζ
2QTNg

−1pL
z

× e2πinT (t+
Im(uτ)
τ2

)
q

1
2
pL(s+

Im(u)
τ2

)T g−1pL(s+
Im(u)
τ2

)
q

1
2
pR(s+

Im(u)
τ2

)T g−1pR(s+
Im(u)
τ2

)
, (4.25)

where we defined ‘twisted’ left and right moving momenta that depends on n and w im-

plicitly as in toroidal compactifications of string theory (on a torus with metric g = ETE):

pL(s) := n+
1

2
g(w + s), pR(s) := n− 1

2
g(w + s), and pL := pL(0). (4.26)

At this point we note that

1

2
pL(s)T g−1pL(s)− 1

2
pR(s)T g−1pR(s) = nT (w + s). (4.27)

Therefore, the sum over n,w ∈ ZN in (4.25) basically defines a Siegel-Narain theta function

over the even, unimodular, signature (N,N) lattice U⊕N , for which the projections to the

positive and negative definite subspaces are defined by the matrix E . The lattice U is

defined through its Gram matrix

(
0 1

1 0

)
.

Next we are going to expand the theta functions in the denominator using the identity

1

ϑ1(τ, z)
=

i

η(τ)3

∑
r∈Z

ζ
r+ 1

2
z Sr(τ) for |q| < |ζz| < 1, (4.28)

– 27 –



where Sr(τ) :=
∑∞

m=0(−1)m qm(m+2r+1)/2. Note that for z = sτ + t with 0 < s, t < 1 we

have |ζz| = |q|s and the expansion is valid. We will also expand the theta functions in the

numerators as

ϑ1(τ, z) = i
∑
m∈Z

(−1)m q
1
2(m+ 1

2)
2

ζ
m+ 1

2
z . (4.29)

This produces the following expression for fk(M; τ, z, u):

(τ2

2

)N
2 |det E|

(
−1

η(τ)3

)N∫
[0,1]N

dNs

∫
[0,1]N

dN t
∑

r,m,n,w∈ZN
(−1)

∑N
j=1mjq

1
2

∑N
j=1(mj+

1
2

)2ζ
−
∑N
j=1(mj+

1
2

)
z

× q
∑N
j=1 sj(mj+

1
2

)e2πi
∑N
j=1 tj(mj+

1
2

)

 N∏
j=1

Srj (τ)

 q
∑N
j=1 sj(rj+

1
2

)e2πi
∑N
j=1 tj(rj+

1
2

)

× ζ2QTNg
−1pL

z e
2πinT (t+

Im(uτ)
τ2

)
q
nT (w+s+

Im(u)
τ2

)
(qq)

1
2
pR(s+

Im(u)
τ2

)T g−1pR(s+
Im(u)
τ2

)
. (4.30)

Performing the integrals over the variables tj imposes mj +rj +nj +1 = 0 using which

we can take the sum over r and get

fk(M; τ, z, u) =(τ2

2

)N
2 |det E|

(
−1

η(τ)3

)N ∑
n,w∈ZN

N∏
j=1

∑
mj∈Z

(−1)mjq
1
2(mj+ 1

2)
2

ζ
−(mj+ 1

2)
z S−mj−nj−1(τ)


× ζ2QTNg

−1pL
z e

2πinT
Im(uτ)
τ2 q

nT (w+
Im(u)
τ2

)
∫

[0,1]N

dNs (qq)
1
2
pR(s+

Im(u)
τ2

)T g−1pR(s+
Im(u)
τ2

)
. (4.31)

Next we are going to use the identity

iϑ1(τ, z)

1− ζ−1
z q−p

=
∑
m∈Z

(−1)mq
1
2(m+ 1

2)
2

ζ
−(m+ 1

2)
z S−m−p−1(τ), p ∈ Z, (4.32)

and also note that τnT Im(u)
τ2

+ nT Im(uτ)
τ2

= nTu. Moreover, we are going to insert

1

2N

∑
c∈{0,1}N

(−1)
∑N
j=1 cj sgn (s− c) (4.33)

in the integral, this factor gives unity inside [0, 1]N and is zero on the rest of RN . So we

can extend the sj integrals to the whole R using this factor and get

fk(M; τ, z, u) =
(τ2

2

)N
2 |det E|

(
−iϑ1(τ, z)

η(τ)3

)N ∑
n,w∈ZN

qn
Tw ζ

2QTNg
−1pL

z e2πinTu∏N
j=1

(
1− ζ−1

z q−nj
) (4.34)

× 1

2N

∑
c∈{0,1}N

(−1)
∑N
j=1 cj

∫
RN

dNs sgn (s− c) e−2πτ2pR(s+
Im(u)
τ2

)T g−1pR(s+
Im(u)
τ2

)
.
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Lastly, we will perform the integral over s:∫
RN

dNs sgn (s) e
−2πτ2pR(s+c+

Im(u)
τ2

)T g−1pR(s+c+
Im(u)
τ2

)
. (4.35)

Looking at the definitions (4.18), (4.26) and defining λ :=
√

2τ2

[
E−Tn− 1

2E
(
w + c+ Im(u)

τ2

)]
and λ′ :=

√
τ2
2 Es, the integral becomes(

2

τ2

)N
2 1

|det E|

∫
RN

dNλ′ sgn
(
E−1λ′

)
e−π(λ−λ′)T (λ−λ′). (4.36)

This integral then yields a generalized error function [16, 19] (see the definition in (B.1))

and we get (
2

τ2

)N
2 1

| det E|
EN (E−T ;λ). (4.37)

So our final answer is

fk(M; τ, z, u) =

(
−iϑ1(τ, z)

η(τ)3

)N ∑
n,w∈ZN

qn
Tw ζ

2QTNg
−1pL

z e2πinTu∏N
j=1

(
1− ζ−1

z q−nj
)

× 1

2N

∑
c∈{0,1}N

(−1)
∑N
j=1 cjEN

(
E−T ;

√
2τ2

[
E−Tn− 1

2
E
(
w + c+

Im(u)

τ2

)])
. (4.38)

In fact, it is easy to see that the holomorphic limit of the series, obtained by taking the

τ2 →∞ limit in the generalized error functions, yields holomorphic parts of indefinite theta

series. That is because in this limit, the error functions reduce to sign functions as in (B.2)

and the second line of equation (4.38) is nonzero only for finitely many w for fixed n (or

vice versa). In the example of squashed A1 model we will also check that the completions

of these indefinite theta series agree with the completion given in equation (4.38).

4.3 Details for the Squashed A1 Model

In the preceding sections we showed that the computation of (flavored) elliptic genera of

squashed toric sigma models reduces to the evaluation of integrals fk(M; τ, z, u) defined in

(4.16). Our final result in (4.38) then yields the answer for the class of theories considered in

this paper and shows that they are built out of indefinite theta series (of generic signature).

In this section, we will elaborate on the example of squashed A1 model to illustrate our

result in a concrete setting.

To simplify matters we will focus on a particular choice of gauged flavor charges given in

Table 1 and also considered in [8] as an example, and further restrict to the case k1 = k2 = k.

With these choices and setting fugacities for global symmetries to zero we have

χell(Ã1, k; τ, z) = 2k2

∫
C

d2z′1
τ2

∫
C

d2z′2
τ2

ϑ1

(
τ,−z − 1

2z
′
1 + 1

2z
′
2

)
ϑ1

(
τ,−1

2z
′
1 + 1

2z
′
2

) ϑ1

(
τ,−z + 3

2z
′
1 + 1

2z
′
2

)
ϑ1

(
τ, 3

2z
′
1 + 1

2z
′
2

)
× e−

πk
τ2

(z′1+ z
k )(z′1+ z

k ) e
−πk
τ2

(z′2+ z
k )(z′2+ z

k ). (4.39)
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Field U(1)1 U(1)2

φ1 1 0

φ2 1 1

φ3 0 1

Table 1

Comparing to equation (4.16) we find19 N = 2 and

χell(Ã1, k; τ, z) = 2fk (M; τ, z, 0) , where k = (k, k) and M =

(
−1

2
3
2

1
2

1
2

)
. (4.40)

For the values of k and M here and with respect to the notation introduced in (4.17),

(4.18), and (4.26) we have

K =
1√
2k
I2, E =

√
2k

(
−1

2
1
2

3
2

1
2

)
, g = k

(
5 1

1 1

)
, 2QT2 g

−1pL = w1 +w2 +
2n2

k
. (4.41)

Then, according to our result in (4.38) we find

χell(Ã1, k; τ, z) = 2

(
−iϑ1(τ, z)

η(τ)3

)2 ∑
n,w∈Z2

qn1w1+n2w2 ζ
w1+w2+

2n2
k

z(
1− ζ−1

z q−n1
) (

1− ζ−1
z q−n2

) (4.42)

× 1

4

∑
c1,c2∈{0,1}

(−1)c1+c2E2

(
E−T ;

1

2k

√
τ2

2
E

(
n1 − n2 − 2k(w1 + c1)

5n2 − n1 − 2k(w2 + c2)

))
.

To isolate the holomorphic (discrete) part of this elliptic genus we will use the fact that,

according to (B.2) we have E2(F ;
√

2τ2 x) → sgn(FT x) as τ2 → ∞ with sign functions

defined as in equation 3.18. We will give the details for the special case of k = 2.

χhol
ell (Ã1, 2; τ, z) = 2

(
−iϑ1(τ, z)

η(τ)3

)2 ∑
n,w∈Z2

qn1w1+n2w2 ζw1+w2+n2
z(

1− ζ−1
z q−n1

) (
1− ζ−1

z q−n2
)

× 1

4

∑
c1,c2∈{0,1}

(−1)c1+c2 sgn

(
n1 − n2 − 4(w1 + c1)

5n2 − n1 − 4(w2 + c2)

)
. (4.43)

The second line gives nonzero contributions only when

4w1 ≤ n1 − n2 ≤ 4w1 + 4 and 4w2 ≤ −n1 + 5n2 ≤ 4w2 + 4. (4.44)

Writing n1 = 5w1 + w2 + p1 and n2 = w1 + w2 + p2 (where we decomposed n as 1
2gw + p)

the inequalities reduce to

0 ≤ p1 − p2 ≤ 4, and 0 ≤ −p1 + 5p2 ≤ 4. (4.45)

19Note that dummy integration variables are scaled so that equation (4.17) is satisfied.
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There are seven points in p ∈ Z2 that satisfy these conditions. Four of those seven points,(
p1

p2

)
=

(
0

0

)
,

(
1

1

)
,

(
5

1

)
,

(
6

2

)
, (4.46)

are on the vertices of the parallelogram shaped region in (4.45) and yield 1
4 for the second

line of (4.43). The remaining three points, on the other hand, yield unity:(
p1

p2

)
=

(
2

1

)
,

(
3

1

)
,

(
4

1

)
. (4.47)

Therefore, defining

g(p1, p2; τ, z) := 2

(
−i ϑ1(τ, z)

η(τ)3

)2 ∑
w∈Z2

q5w2
1+2w1w2+w2

2 ζ2w1+2w2
z

× qp1w1+p2w2 ζp2z(
1− ζ−1

z q−5w1−w2−p1
) (

1− ζ−1
z q−w1−w2−p2

) , (4.48)

we find the discrete part of χell(Ã1, 2; τ, z) to be

χhol
ell (Ã1, 2; τ, z) =

1

4
[g(0, 0; τ, z) + g(1, 1; τ, z) + g(5, 1; τ, z) + g(6, 2; τ, z)]

+ g(2, 1; τ, z) + g(3, 1; τ, z) + g(4, 1; τ, z). (4.49)

The sum in (4.48) can be brought into the form of a signature (2, 2) indefinite theta

function by expanding the factors in the denominator as

g(p1, p2; τ, z) = 2

(
−i ϑ1(τ, z)

η(τ)3

)2 ∑
w,r∈Z2

1

4

[
sgn (−r1 + ε1)− sgn

(
5w1 + w2 + p1 +

Im(z)

τ2

)]

×
[
sgn (−r2 + ε2)− sgn

(
w1 + w2 + p2 +

Im(z)

τ2

)]
ζ2w1+2w2+r1+r2+p2
z

× q5w2
1+2w1w2+w2

2+r1(5w1+w2)+r2(w1+w2) qp1(w1+r1)+p2(w2+r2), (4.50)

where ε1, ε2 ∈ (0, 1) are arbitrary. In fact, it will be convenient to define

h(p1, p2; τ, z) :=

2

(
−i ϑ1(τ, z)

η(τ)3

)2 ∑
w,r∈Z2

1

4

[
sgn (−4r1 + p1 − p2)− sgn

(
5w1 + w2 + p1 +

Im(z)

τ2

)]

×
[
sgn (−4r2 − p1 + 5p2)− sgn

(
w1 + w2 + p2 +

Im(z)

τ2

)]
ζ2w1+2w2+r1+r2+p2
z

× q5w2
1+2w1w2+w2

2+r1(5w1+w2)+r2(w1+w2) qp1(w1+r1)+p2(w2+r2), (4.51)

which is essentially (4.50) with ε1 = p1−p2
4 and ε2 = 5p2−p1

4 . The upshot is that h(p1, p2; τ, z) =

g(p1, p2; τ, z) for p1 and p2 chosen as in (4.47), while the points on the boundary combine
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to20

h(0, 0; τ, z) =
1

4
[g(0, 0; τ, z) + g(1, 1; τ, z) + g(5, 1; τ, z) + g(6, 2; τ, z)] , (4.52)

so that

χhol
ell (Ã1, 2; τ, z) = h(0, 0; τ, z) + h(2, 1; τ, z) + h(3, 1; τ, z) + h(4, 1; τ, z) . (4.53)

More importantly, the series in h(p1, p2; τ, z) can be realized as the holomorphic part

of an indefinite theta function. For this purpose, let us introduce the lattice Λ̃ ' Z4 and

let us define

ñ :=


w1

w2

r1

r2

 , Q̃ :=


10 2 5 1

2 2 1 1

5 1 0 0

1 1 0 0

 , z :=


0

z

0

0

 , and µ(p) :=
1

4


p1 − p2

−p1 + 5p2

−p1 + p2

p1 − 5p2

 .

(4.54)

Then taking Q̃ to define the quadratic form on Λ̃, we have

1

2
ñ2 :=

1

2
ñT Q̃ ñ = 5w2

1 + 2w1w2 +w2
2 + r1(5w1 +w2) + r2(w1 +w2), µ(p)2 = 0, (4.55)

µ(p)·z = p2z, ñ·[z + µ(p)τ ] = (2w1+2w2+r1+r2)z+[p1(w1 + r1) + p2(w2 + r2)] τ. (4.56)

In particular, note that µ(p) ∈ Λ̃∗. We will define an indefinite theta function on Λ̃ via a

rectangular cone defined by vectors

c̃1 :=


−1

1

2

−2

 , c̃2 :=


1

−5

−2

10

 , c̃′1 :=


0

0

1

0

 , c̃′2 :=


0

0

0

1

 . (4.57)

These vectors satisfy

c̃2
1 = −8, c̃2

2 = −40, c̃′21 = 0, c̃′22 = 0, (4.58)

c̃1 · c̃2 = 8, c̃′1 · c̃′2 = c̃1 · c̃′2 = c̃2 · c̃′1 = 0, c̃1 · c̃′1 = c̃2 · c̃′2 = −4. (4.59)

Note that null vectors c̃′1 and c̃′2 are orthogonal to every vector in this set except for c̃1 and

c̃2, respectively, as was required in Section 3.3.21 Finally noting that

c̃1 ·
(
ñ+ µ(p) +

Im(z)

τ2

)
= −4r1 + p1 − p2,

c̃′1 ·
(
ñ+ µ(p) +

Im(z)

τ2

)
= 5w1 + w2 + p1 +

Im(z)

τ2
,

c̃2 ·
(
ñ+ µ(p) +

Im(z)

τ2

)
= −4r2 − p1 + 5p2,

c̃′2 ·
(
ñ+ µ(p) +

Im(z)

τ2

)
= w1 + w2 + p2 +

Im(z)

τ2
, (4.60)

20For example, the expression for g(5, 1; τ, z) can be made similar to that of g(0, 0; τ, z) by shifting

w1 7→ w1 − 1 and r1 7→ r1 + 1 after which which we essentially have g(0, 0; τ, z) but with ε1 7→ ε1 − 1.

Repeating this for (p1, p2) ∈ {(1, 1), (6, 2)} and noting that sgn (x+ ε) + sgn (x+ ε− 1) = 2sgn (x) for

ε ∈ (0, 1) yields equation (4.52).
21These vectors also obey the convergence conditions stated in Section 4.3 of [16].
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we write h(p1, p2; τ, z) as

2

(
−i ϑ1(τ, z)

η(τ)3

)2 ∑
ñ∈Λ̃

1

4

[
sgn (c̃1 · [ñ+ µ(p)])− sgn

(
c̃′1 ·

(
ñ+ µ(p) +

Im(z)

τ2

))]

×
[
sgn (c̃2 · [ñ+ µ(p)])− sgn

(
c̃′2 ·

(
ñ+ µ(p) +

Im(z)

τ2

))]
e2πiz·(ñ+µ(p)) q

1
2

(ñ+µ(p))2 .

(4.61)

We can use this representation to obtain the modular completion ĥ(p1, p2; τ, z) for

h(p1, p2; τ, z), using the replacement given in (3.21):

ĥ(p1, p2; τ, z) = 2

(
−i ϑ1(τ, z)

η(τ)3

)2 ∑
w,r∈Z2

1

4

[
E2

((
−1 3

1 1

)
;

√
τ2

8

(
2r1 − 2r2 − p1 + 3p2

−6r1 − 2r2 + p1 + p2

))

− sgn

(
w1 + w2 + p2 +

Im(z)

τ2

)
erf

(√
4πτ2

(
−r1 +

p1 − p2

4

))
− sgn

(
5w1 + w2 + p1 +

Im(z)

τ2

)
erf

(√
4πτ2

5

(
−r2 +

5p2 − p1

4

))

+ sgn

(
w1 + w2 + p2 +

Im(z)

τ2

)
sgn

(
5w1 + w2 + p1 +

Im(z)

τ2

)]
× ζ2w1+2w2+r1+r2+p2

z q5w2
1+2w1w2+w2

2+r1(5w1+w2)+r2(w1+w2) qp1(w1+r1)+p2(w2+r2) . (4.62)

Since in Equation (4.53) we have written χhol
ell (Ã1, 2; τ, z) in terms of h(p1, p2; τ, z) the

modular completions should also satisfy the same relation, i.e. we should have

χell(Ã1, 2; τ, z) = ĥ(0, 0; τ, z) + ĥ(2, 1; τ, z) + ĥ(3, 1; τ, z) + ĥ(4, 1; τ, z) . (4.63)

A direct proof of this equality is also possible starting with the expression of χell(Ã1, 2; τ, z)

given in (4.42).22

Before concluding this section, let us give an alternative expression for χell(Ã1, 2; τ, z)

by noticing that we can combine the sum over Λ̃ and the sum over p as a sum over a new

lattice Λ generated by Λ̃ and µ(2, 1).23 In particular, we pick the following basis for Λ:

λ1 =


−1/4

1/4

−3/4

−1/4

 , λ2 =


0

1

0

0

 , λ3 =


−1/4

1/4

1/4

−1/4

 , λ4 =


0

0

0

1

 ∈ Λ̃∗, (4.64)

22A quick sketch of this proof is as follows: One starts by rewriting the sum over n,w ∈ Z2 in (4.42) as a

sum over r, w′ ∈ Z2 where n = 1
2
gw′ + p, w = w′ + r and with p running over the set ( 0

0 ) , ( 2
1 ) , ( 3

1 ) , ( 4
1 ).

Then let us use χell(Ã1, 2, p1, p2; τ, z) to denote the contribution to χell(Ã1, 2; τ, z) from a certain p. Now

we note that χhol
ell (Ã1, 2, p1, p2; τ, z) = h(p1, p2; τ, z) and hence try to prove

χell(Ã1, 2, p1, p2; τ, z)− χhol
ell (Ã1, 2, p1, p2; τ, z) = ĥ(p1, p2; τ, z)− h(p1, p2; τ, z).

Now note that in equation (4.42), the shift w 7→ w−c would allow us to cancel the factor in the denominator.

This replacement however is not legal because the sum over c can not switch places with the sum over w

due to divergence issues. In the new equation we are trying to prove we can however generate factors free

from this divergence issue by using equation (B.9).
23We have 2µ(2, 1) ≡ µ(3, 1) (mod Λ̃), 3µ(2, 1) ≡ µ(4, 1) (mod Λ̃), and 4µ(2, 1) ≡ 0 (mod Λ̃).
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so that an element of Λ is written in the form
∑4

j=1 njλj where nj ∈ Z for j = 1, 2, 3, 4

specifying an identification of Λ with Z4. Mapping the information in (4.54) and (4.57)

(and removing tildes to denote the component vectors in this basis) we find

Q :=


2 −1 1 0

−1 2 0 1

1 0 0 0

0 1 0 0

 , z(z) :=


0

z

0

0

 , n :=


n1

n2

n3

n4

 where


w1 = −n1+n3

4 ,

w2 = n1+n3
4 + n2,

r1 = −3n1+n3
4 ,

w1 = −n1+n3
4 + n4,

(4.65)

c1 :=


−1

0

5

−1

 , c2 :=


1

−4

−5

9

 , c′1 :=


−1

0

1

0

 , c′2 :=


0

0

0

1

 . (4.66)

With these definitions we can finally state the discrete part of the elliptic genus as

χhol
ell (Ã1, 2; τ, z) = 2

(
−i ϑ1(τ, z)

η(τ)3

)2

ΘQ
(
C,C ′; τ, z(z)

)
. (4.67)

Note that the lattice Λ with Q as its quadratic form is even and unimodular. The completed

elliptic genus is similarly

χell(Ã1, 2; τ, z) = 2

(
−i ϑ1(τ, z)

η(τ)3

)2

Θ̂Q
(
C,C ′; τ, z(z)

)
. (4.68)

The fact that Λ is rank four and z(z)2 = 2z2 implies the completed theta function trans-

forms like a weight 2, index 1 Jacobi form. Combined with the prefactor
(
−i ϑ1(τ,z)
η(τ)3

)2
which

is a weight −2, index 1 Jacobi form,24 the representation in equation (4.68) tells us that the

elliptic genus χell(Ã1, 2; τ, z) is the completion of a depth two mock Jacobi form of weight

0 and index 2, consistent with our general discussion.

In conclusion, in this section we have given several equivalent expressions for the elliptic

genus of squashed A1 model (at k1 = k2 = 2 and for the charge configuration given in

Table 1) in (4.42), (4.63), and (4.68). We have also given expressions for its holomorphic

(discrete) part in (4.49), (4.53), and (4.67). In particular, we can compute its leading

Fourier coefficients using these expressions:

χhol
ell (Ã1, 2; τ, z) =

(
1 +

1

2
ζ±1
z

)
+

(
6− 3

2
ζ±1
z − 2ζ±2

z +
1

2
ζ±3
z

)
q +O(q2). (4.69)

The function χhol
ell (Ã1, 2; τ, z) has a theta decomposition

χhol
ell (Ã1, 2; τ, z) =

2∑
µ=−1

hµ(τ)ϑ2,µ(τ, z) , (4.70)

24Note that the zeros of ϑ1(τ, z)2 cancel the double poles of ΘQ (C,C′; τ, z(z)) on Zτ + Z. These double

poles stem from the two null vectors c′1 and c′2 defining the theta function.
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with

h−1(τ) = h1(τ) (4.71)

h0(τ) = 1 + 6q + 34q2 + 144q3 + 534q4 + 1776q5 + . . . (4.72)

h1(τ) = q−1/8

(
1

2
− 3

2
q − 25

2
q2 − 78q3 − 683

2
q4 − 1270q5 + . . .

)
(4.73)

h2(τ) = q1/2
(
−2− 4q + 12q2 + 120q3 + 594q4 + . . .

)
. (4.74)

Finally, at z = 0 we expect to recover the Witten index, which should be q-independent.

Indeed we have checked that χhol
ell (Ã1, 2; τ, z = 0) = 2 to O(q14) precision. (In fact one can

deduce that this is the correct value of the Witten index directly from the expression (4.39),

which reduces to a Gaussian integral at z = 0.) We note that this is also in agreement with

the Witten index of the unsquashed A1. The squashing deformation thus does not change

the Witten index even for this non-compact model, in spite of quite drastically changing

the boundary conditions, similar to the observation in [8] for the compact case.

5 A Possible Relation with Vafa-Witten Partition Functions on CP2

In this paper we discussed a class of two-dimensional GLSMs whose target space is a

squashed toric CY of complex dimension n. We found that the elliptic genus of these

models are built out of the modular completions of indefinite theta functions associated

to lattices of signature (n, n). In this manner every squashed toric CY is associated to a

particular mock modular form of depth n, thus generalizing the classic relation between

CY manifolds and modular forms discussed in the introduction.

In fact, mock modular forms of higher depth also arise in another interesting physical

context, namely in the discussion [40, 45] of partition functions of twisted N = 4 super

Yang-Mills theory (Vafa-Witten (VW) theory [34]) on CP2. The twisted super Yang-Mills

theory has different topological sectors which are labelled by the value of magnetic ’t Hooft

flux. For gauge group U(N), the ’t Hooft flux on CP2 takes values in ZN . The partition

function contains, as a factor, the generating function of χ(Mj,m) which is the Euler

characteristic (or rather a related rational invariant) of the moduli space of instantons

with instanton number m and ’t Hooft flux j.

In this section we comment on a potential relation between these two apparently dif-

ferent physical phenomena. For N = 2 we have a precise mathematical relation between

the two functions described above. For generic N , the main new point is an observation

about the similarity of the modular structure of the elliptic genera computed in this paper

and the U(N) VW partition functions on CP2.

We begin with the Vafa-Witten partition function on CP2 for the U(2) gauge group.

Based on the work of Yoshioka and Klyachko [47, 48], the relevant partition functions Zj(τ),

j = 0, 1, are [34]

Z0(τ) =
3

η(τ)6

∞∑
n=0

H(4n) qn and Z1(τ) =
3

η(τ)6

∞∑
n=1

H(4n− 1) qn−
1
4 , (5.1)
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where H(n) for n > 0 are Hurwitz-Kronecker class numbers, i.e. the number of SL(2,Z)-

equivalence classes of positive integral binary quadratic forms of discriminant −n, weighted

by the reciprocal of the number of their automorphisms, and H(0) = −1/12. It was then

shown in [49] that these generating functions25 are given in terms of derivatives of the

Zwegers µ-function [10] defined as

µ(u, v; τ) =
eπiu

ϑ1(τ, v)

∑
n∈Z

(−1)neπi(n
2+n)τ+2πinv

1− e2πinτ+2πiu
, u, v ∈ C . (5.2)

The relation is as follows

Z0(τ) = − 1

η(τ)6

1

2πi

d

dz

(
q−1/4 ζ3/2

z µ
(

2z − τ, 1

2
− z; 2τ

))∣∣∣∣
z=0

,

Z1(τ) = − 1

η(τ)6

1

2πi

d

dz
µ
(

2z − τ, 1

2
− τ − z; 2τ

)∣∣∣∣
z=0

. (5.3)

Now we note that the µ-function can be written in terms of the Appell-Lerch sum (2.46)

for k = 1
2 as

µ(u, v; τ) =
1

ϑ1(τ, v)
A1, 1

2

(
τ, u, v +

1

2

)
. (5.4)

In Section 2.5 we explained the relation between the Appell-Lerch sum A1,k and the elliptic

genus of the squashed C̃/Z2 manifold, or equivalently, that of the SL(2,R) 1
2
/U(1) cigar

coset theory (or its mirror N = 2 Liouville theory). Putting these two relations together,

we can recast the observation (5.3) as a relation between the elliptic genus of the squashed

C̃/Z2/cigar/N = 2 Liouville and the U(2) VW partition function.

From a physical point of view, the VW theory can be thought of as arising from a

fivebrane in string theory wrapped on CP2 × T 2 [50]. The VW theory appears as the

effective theory when the T 2 is small, and the VW partition function is supposed to equal

the modified elliptic genus of the (0, 4) supersymmetric effective 2d theory on the T 2.

The details of this effective 2d theory are not currently understood (beyond calculations

protected by anomalies). Our above observation suggests that the 2d theory is closely

related to the C̃/Z2/cigar/N = 2 Liouville theory with k = 1
2 . (There are additional ϑ1

and η factors in Equations (2.47) and (5.4) which point to additional degrees of freedom

apart from those captured by the cigar.)

From the geometric point of view, it is tempting to conjecture that the Euler charac-

teristic of the moduli space of instantons of U(2) theory are related to certain topological

invariants of the C̃/Z2/cigar/N = 2 Liouville theory for some deeper reason. A geometric

relation may begin with the fact that instanton moduli spaces are toric manifolds, and per-

haps a certain regularization of these manifolds required to define the Euler characteristic

effectively squashes the manifold. Some support for this comes from the fact that the rela-

tion (5.3) can be refined further. The work of [49] shows that the generating function of the

25In [49], there is an extra term in the expression for Z0(τ) compared to Equation (5.1), which reflects the

ambiguity in defining the Euler characteristic of the moduli space of instantons when the ’t Hooft flux and

the rank are not relatively prime [40]. This extra term breaks the covariance of the vector-valued partition

function Zj(τ) in (5.1) under the full SL(2,Z).
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Poincare polynomial P (t) of the instanton moduli space is given in terms of the µ-function.

Equation (5.3) is the limit of this relation as t = −1 for which the Poincare polynomial

reduces to the Euler characteristic.

Another, more speculative, idea is that of a holographic relation in the context of NS

fivebranes in string theory [51–53]. The cigar/N = 2 Liouville theory is known to capture

the near-horizon geometry of wrapped NS fivebranes. The VW theory would then be

viewed as a boundary theory and some twisted version of the cigar theory as the spacetime

hologram. In this regard, we note that at k = 1
2 , the central charge of the cigar/N = 2

Liouville theory is

c = 3
(
1 +

2

k

)
= 15 , (5.5)

which is the central charge for the critical superstring theory with the two-dimensional

target space being the cigar coset [54]. It would be really interesting if all these field theory

phenomena has some holographic interpretation in terms of a string theory observable on

this pure cigar target space.

Finally, we note that for generic N , Vafa-Witten partition functions on CP2 are ex-

pressed in terms of generalized Appell functions [45] (see Equation (3.36)). These are

specific indefinite theta series for which a subset of the vectors determining its rectangular

cone are null vectors. In Section 4.2 we found a similar structure for the elliptic gen-

era of squashed toric models. Given that these generalized Appell functions are the key

parts determining the (mock) modular behavior of both the VW partition function and the

squashed toric model elliptic genus, it would be interesting to look for a GLSM description

of the 2d, N = (0, 4) effective theory of wrapped branes using ingredients similar to the

ones used in squashed toric models.
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A Definitions and Conventions

For τ ∈ H we will use τ1 := Re(τ), τ2 := Im (τ) and q := e2πiτ . For an elliptic variable

z we use the notation ζz := e2πiz. We are also use the fundamental parallelogram Eτ :=

{sτ + t : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1}. For a column vector u ∈ RN×1 we define

sgn (u) :=
N∏
j=1

sgn (uj) and
∏

u :=

N∏
j=1

uj . (A.1)

We now list some of the basic modular objects we need in our exposition.
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(i) The Dedekind eta function is defined as

η(τ) := q1/24
∞∏
n=1

(1− qn) = q1/24
∑
n∈Z

(−1)n qn(3n−1)/2. (A.2)

It satisfies

η(τ + 1) = eπi/12η(τ) and η(−1/τ) = e−πi/4 τ1/2 η(τ). (A.3)

(ii) The level m theta functions are defined as

ϑm,r(τ, z) :=
∑

n∈Z+r/2m

qmn
2
ζ2mn
z . (A.4)

(iii) The Jacobi theta function ϑ1(τ, z) is defined as

ϑ1(τ, z) := i q1/8ζ1/2
z

∞∏
n=1

(1− qn)(1− ζz qn)(1− ζ−1
z qn−1) (A.5)

= i
∑
m∈Z

(−1)mq
1
2(m+ 1

2)
2

ζ
m+ 1

2
z . (A.6)

The Jacobi theta function is an odd function of its elliptic variable, ϑ1(τ,−z) =

−ϑ1(τ, z), and transforms under elliptic transformations as

ϑ1(τ, z + ατ + β) = (−1)α+β q−α
2/2 ζ−αz ϑ1(τ, z) for any α, β ∈ Z. (A.7)

Under modular transformations we have

ϑ1(τ + 1, z) = eπi/4 ϑ1(τ, z) (A.8)

and

ϑ1 (−1/τ, z/τ) = e−3πi/4 τ1/2 eπiz
2/τ ϑ1(τ, z). (A.9)

One final property that will be useful for us is

1

2πi
ϑ′1(τ, 0) :=

1

2πi

∂

∂z
ϑ1(τ, z)

∣∣∣∣
z=0

= i η(τ)3. (A.10)

We also use Poisson summation in our discussion. For convenience we give its statement

for Gaussian functions:∑
m∈ZN

exp
(
−πmTAm− 2πiBTm

)
=

1√
detA

∑
n∈ZN

exp
(
−π(B + n)TA−1(B + n)

)
,

(A.11)

where A is an N ×N positive definite matrix and B is an N component column vector.
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B Generalized Error Functions

Generalized error functions, first introduced in [16], are important ingredients in the con-

struction of indefinite theta series. In this section we introduce their definitions and review

some of their properties following the conventions of [19] (except for changing the sign of

the bilinear form for boosted error functions).

Let M ∈ Rr×r be a nondegenerate matrix and let v ∈ Rr×1. The ‘r-tuple error

function’ Er(M; v) is then defined as

Er(M; v) :=

∫
Rr

drv′ e−π(v−v′)T (v−v′)sgn
(
MT v′

)
. (B.1)

For generic v, we have

Er(M; v) → sgn
(
MT v

)
as |v| → ∞. (B.2)

We also define the ‘complementary r-tuple error function’ (which is piecewise smooth) as

Mr(M; v) :=

(
i

π

)r
|detM|−1

∫
Rr−iv

drz
e−πz

T z−2πizT v∏
(M−1z)

. (B.3)

When r = 1 we have E1(1; v) = erf(v
√
π) and M1(1; v) = −sgn (v) erfc(|v|

√
π), which in

particular satisfy E1(1; v) = sgn (v) +M1(1; v). For r = 2, the generalized error functions

E2

((
1 −α
0 1

)−T
; ( v1v2 )

)
and M2

((
1 −α
0 1

)−T
; ( v1v2 )

)
reduce to E2 (α; v1, v2) and M2 (α; v1, v2)

as defined in [16], respectively.

Orthogonal transformations leave these functions invariant, i.e. for Λ ∈ O(r;R) we

have

Er(ΛM; Λv) = Er(M; v) and Mr(ΛM; Λv) = Mr(M; v). (B.4)

We also define boosted generalized error functions for a quadratic form (x, y) 7→ x · y :=

xTQy, where x, y ∈ Rn, by

EQ (F ;x) := Er (B · F ;B · x) and MQ (F ;x) := Mr (B · F ;B · x) , (B.5)

where the columns of F =
(
f (1) · · · f (r)

)
∈ Rn×r span a negative definite subspace with

respect to the quadratic form defined by Q and B ∈ Rn×r is a matrix whose columns form

an orthonormal basis for the subspace spanned by the columns of F , i.e. BTQB = −Ir and

F = −BBTQF . As in the main text, we use the notation F · G := FTQG ∈ Rr×s for any

F ∈ Rn×r and G ∈ Rn×s. Moreover, we call a vector f ∈ Rn positive, negative, or null if

f2 > 0, f2 < 0, or f2 = 0, respectively. Note that thanks to equation (B.4), the right hand

sides of definitions in (B.5) are independent of the choice of basis B.26

We also introduce the following notation:

• F̃ =
(
f̃ (1) · · · f̃ (r)

)
∈ Rn×r is a matrix whose columns form a dual basis to those of

F in the subspace they span. In other words, F̃ · F = −Ir and F̃ = −BBTQF̃ . We

have F̃ = −B(BTQF )−T .

26We will take EQ and MQ to be unity when the set F is empty.
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• For S ⊆ [r] := {1, . . . , r} we define FS to be the n×|S| matrix whose columns are f (j)

with j ∈ S and ordered in increasing j order. We similarly define F̃S as the matrix

whose columns are f̃ (j) with j ∈ S.

• FS⊥S′ is defined by orthogonally projecting the columns of FS to the subspace orthog-

onal to that spanned by FS′ . The columns of FS⊥S′ are f (j)−FS′(FS′ ·FS′)−1FS′ ·f (j)

with j ∈ S.

With this notation at hand, the generalized error functions satisfy the following prop-

erties (see [19] for the proofs of these facts).

i) EQ (F ;x) and MQ (F ;x) are invariant under permutations and positive scalings of the

columns of F . Also they are odd under sign flips of these columns.

ii) If F is the disjoint union of two sets of columns, F1 and F2, which span orthogonal

subspaces with respect to Q, we have

EQ (F ;x) = EQ (F1;x) EQ (F2;x) and MQ (F ;x) = MQ (F1;x) MQ (F2;x) . (B.6)

iii) The complementary error function MQ (F ;x) is exponentially suppressed (uniformly)

along the directions spanned by F :∣∣MQ (F ;x)
∣∣ ≤ r! e−π(B·x)T (B·x). (B.7)

iv) We have the following decompositions (generalizing E1(1; v) = sgn (v) +M1(1; v)):

MQ (F ;x) =
∑
S⊆[r]

sgn
(
F̃[r]/S · x

)
EQ (FS ;x) (B.8)

and

EQ (F ;x) =
∑
S⊆[r]

sgn
(
−F[r]/S⊥S · x

)
MQ (FS ;x) . (B.9)

The decomposition in (B.9) together with equation (B.7) implies generically (that is except

on some lower dimensional subspaces)

EQ (F ;λx) → sgn (−F · x) as λ→∞. (B.10)

v) The generalized error function EQ satisfies a second order differential equation called

Vignéras equation: [
2πxT∂x − ∂TxQ−1∂x

]
EQ (F ;x) = 0, (B.11)

where ∂x = (∂x1 , . . . , ∂xn)T . This differential equation ensures a self-duality property for

EQ (F ;x) under Fourier transform [55]. This is precisely the point that allows the replace-

ment of sign functions by generalized error functions in (3.21) yield a modular invariant

object. Another key property that ensures convergence after this replacement (subject to

some conditions on the vectors forming the positive cone) is the decomposition in (B.9)

together with the inequality (B.7), which implies that the difference between the sign func-

tion product and the generalized error function consists of exponentially suppressed pieces

along negative directions.
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vi) In computing the anti-holomorphic dependence of the completed indefinite theta func-

tion it will be useful to note

xT∂xE
Q (F ;x) = −2

r∑
j=1

f (j) · x√
−f (j) · f (j)

eπ(f
(j)·x)

2
/f (j)·f (j)EQ

(
F[r]/{j}⊥{j};x

)
. (B.12)

Let us finally relax the definition of boosted generalized error functions by allowing

null vectors in F (as limits of negative vectors). We will still require that the subspace

spanned by the vectors in F to be negative semi-definite. That constrains each null vector

to be orthogonal to any other vector in F . So using the factorization property (B.6) and

remembering that for a negative vector n, EQ (n;x) = erf
(
−
√
π n · x/

√
−n · n

)
becomes

sgn (−n · x) in the limit n · n→ 0 we define

EQ ((N,F );x) = EQ (F ;x) sgn (−N · x) , (B.13)

where N is a set of null vectors which together with negative vectors in F span a negative

semidefinite subspace with respect to the inner product defined by Q.
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