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Abstract. Topologically twisted N = 4 super Yang-Mills theory has a partition function that
counts Euler numbers of instanton moduli spaces. On the manifold P2 and with gauge group
U(3) this partition function has a holomorphic anomaly which makes it a mock modular form
of depth two. We employ the Circle Method to find a Rademacher expansion for the Fourier
coefficients of this partition function. This is the first example of the use of Circle Method for
a mock modular form of a higher depth.

1. Introduction and statement of results

Studying and understanding the structure of instanton moduli spaces is an interesting and
important problem for both physics and mathematics. Although such spaces are quite intricate
in general, one can go quite a long way in computing certain topological and analytic invariants.
From a physical point of view, such invariants can be probed with topological field and string
theories. This allows one to restrict attention to simpler and more tractable sectors of the
original theory for which these moduli spaces are relevant. The concept of duality in physics
then can lead to interesting mathematical relations between such invariants.

The particular example we focus on in this paper is the topological N = 4 super Yang-Mills
theory on a complex surface and with gauge group U(N) studied by Vafa and Witten [23].
We call this topologically twisted theory Vafa-Witten Theory. Separating Q-exact terms, the
action grades configurations only by their instanton number. In this way, the partition function
of Vafa-Witten theory contains a holomorphic q-series that counts (weighted) Euler numbers
for instanton moduli spaces, which we denote by fN,µ(τ), where µ is the magnetic t’Hooft
flux and τ ∈ H, the complex upper half-plane, denotes the complexified gauge coupling.1 The
S-duality of N = 4 Yang-Mills theory [18, 20, 26] then implies that such partition functions
should be modular invariant yielding a nontrivial relation between the Euler numbers. In [23],
this reasoning is applied as a test for the proposed duality by studying the partition functions
for complex surfaces such as K3, ALE spaces, and P2.

The relevant partition function for P2 and with gauge group U(2) follows from the works of
[12, 27, 28] and is expressed in terms of

f2,α(τ) :=
h2,α(τ)

η(τ)6
, α ∈ {0, 1},

1We use the notation fN,µ(τ) for the generating function of Vafa-Witten invariants and define the related

function hN,µ(τ) through fN,µ(τ) :=
hN,µ(τ)

η(τ)3N
, where η(τ) is Dedekind’s eta function. This notation is consistent

with that of [7] but differs from that of [17], where hN,µ(τ) =
fN,µ(τ)

η(τ)3N
is used to denote the generating function of

Vafa-Witten invariants.

1
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where η(τ) := q
1
24
∏∞
n=1(1− qn) is Dedekind’s eta-function, q := e2πiτ , and

h2,α(τ) := 3hα(τ) where hα(τ) :=

∞∑
n=0

H(4n+ 3α) qn+ 3α
4 , α ∈ {0, 1},

with H(N) denoting the Hurwitz class numbers. The first few Fourier coefficients of hα are
given by

h0(τ) = − 1

12
+

1

2
q + q2 +

4

3
q3 +

3

2
q4 + 2q5 + 2q6 + 2q7 + 3q8 +

5

2
q9 + 2q10 +O

(
q11
)
, (1.1)

h1(τ) =
1

3
q

3
4 + q

7
4 + q

11
4 + 2q

15
4 + q

19
4 + 3q

23
4 +

4

3
q

27
4 + 3q

31
4 + 2q

35
4 + 4q

39
4 +O

(
q

43
4

)
. (1.2)

The function hα is not modular invariant but one can add a piece that is non-holomorphic (and
simpler) in a way that makes it modular invariant [29] (see equation (2.7) for the associated
modular transformations). To be more precise, one defines

ĥα(τ) = ĥα(τ, τ) := hα(τ)− i

4
√

2π

i∞∫
−τ

ϑα
2
(w)

(−i(w + τ))
3
2

dw, (1.3)

where
ϑ`(τ) :=

∑
n∈`+Z

qn
2
.

The function f2,α is called a mixed mock modular form and is one of the first appearances of
mock modular forms in physics. The theory of (mixed) mock modular forms has developed
within the past two decades following the seminal work of Zwegers [30].

The next obvious generalization is to U(3) Vafa-Witten theory on P2 for which the relevant
partition functions are

f3,µ(τ) :=
h3,µ(τ)

η(τ)9
, µ ∈ {−1, 0, 1},

where the leading Fourier coefficients of h3,µ are given by [13, 15, 16, 17, 24]

h3,0(τ) =
1

9
−q+3q2+17q3+41q4+78q5+120q6+193q7+240q8+359q9+414q10+O

(
q11
)
, (1.4)

h3,1(τ) = h3,−1(τ) = 3q
5
3 + 15q

8
3 + 36q

11
3 + 69q

14
3 + 114q

17
3 + 165q

20
3 + 246q

23
3 +O

(
q

26
3

)
. (1.5)

As in the case of U(2), the function h3,µ is not modular but can be completed to a modular
object by adding an extra non-holomorphic term [17] (see equation (2.8) for the exact modular
transformations) to define

ĥ3,µ(τ, τ) = h3,µ(τ)− 9
√

3i

2
√

2π

∑
α (mod 2)

i∞∫
−τ

ĥα(τ,−w) ϑ 2µ+3α
6

(3w)

(−i(w + τ))
3
2

dw, (1.6)

where for ĥα(τ,−w) we use equation (1.3), considering τ as an independent variable for which
we then plug in −w. Because the holomorphic anomaly (i.e., the τ derivative) of the completion

ĥ3,µ(τ, τ) is given in terms of an ordinary mock modular form it is called a mock modular form
of depth two according to the unpublished work of Zagier and Zwegers. The theory of such
generalized mock modular forms at higher depth was developed recently in [1, 9, 14, 19, 25]
via indefinite theta functions for lattices of arbitrary signature. These functions already found
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applications in physics [2, 3] and mathematics [6]. In fact, a key point in the analysis of [17] is
the fact that h3,µ can be written explicitly in terms of generalized Appell functions [16] as in
equations (6.10), (6.17), and (6.18) of [17] using which one can also find the Fourier expansion in
(1.4) and (1.5). Generalized Appell functions are particular examples of indefinite theta series.

Using this fact, one can find the modular completion ĥ3,µ(τ, τ), rewrite them in the form given
in equation (1.6) and prove that they satisfy the modular transformations

ĥ3,µ(τ + 1) = e−
2πiµ2

3 ĥ3,µ(τ), ĥ3,µ

(
−1

τ

)
=

(−iτ)3

√
3

∑
ν (mod 3)

e−
2πiµν

3 ĥ3,ν (τ) ,

consistent with expectations from S-duality.
The goal of this paper is to exploit the modularity of U(3) Vafa-Witten invariants on P2 to

develop an exact formula for its Fourier coefficients, which makes its asymptotic form obvious
with all the subleading terms calculable. For this purpose we use the Circle Method, which
was first developed by Hardy and Ramanujan [10, 11] to study the asymptotic behavior of the
(integer) partition function p(n) and further refined by Rademacher [21] to give an exact formula
for p(n). We work with another version given by Rademacher [22] which is very suitable for
understanding the origin of each term in such formulae. For the U(2) gauge group, this problem
was considered in [7] in which the Circle Method was developed in order to deal with mixed mock
modular forms. Our paper naturally extends this and uses the Circle Method for a higher depth
mock modular form, taking as input only the form of modular transformations and completions
and the leading Fourier coefficients of h3,µ.

We denote the n-th Fourier coefficient of f3,µ by α3,µ(n). More specifically,

f3,µ(τ) =
∞∑
n=0

α3,µ(n) qn−∆µ , where ∆0 :=
3

8
and ∆1 = ∆−1 := −31

24
.

Our main theorem gives an exact formula for the Fourier coefficients, α3,µ(n). To state it, we
need some notation. Let nµ := n−∆µ, Q(x1, x2) := x2

1 + x2
2 + x1x2, and let g∗k,r and g∗k,r1,r2 be

given as

g∗k,r(w) := wg r
3k

(
3w

2
√

2k

)(
1− w2

) 5
4 , g∗k,r1,r2(w1, w2) := gk,r1,r2

(
3w1

2
√

2
,

3w2

2
√

2

)(
1−Q(w1, w2)

) 5
4 ,

with the ingredients defined in equations (4.1), (4.4), (4.5), (4.6), (4.7), and (4.8). Moreover the
generalized Kloostermann sums are defined as

Kk(µ, ν;n, r1, r2) :=
∑

0≤h<k
gcd(h,k)=1

ζ
−24nµh−(9+8Q(r1,r2))h′

24k ψh,k(ν, µ).

with multiplier system ψh,k(ν, µ) given through equations (2.11), (2.10), (2.2), and (2.3) with

M =
(
h′ − 1+hh′

k
k −h

)
∈ SL2(Z) for h′ satisfying hh′ ≡ −1 (mod k) and ζm := e

2πi
m .
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Theorem 1.1. We have

α3,µ(n) =
π

144

(
6

nµ

) 5
4
∞∑
k=1

Kk(µ, 0;n, 0, 0)

k
I 5

2

(
π
√

6nµ

k

)

− 9π

512

(
6

nµ

) 5
4 ∑
ν (mod 3)

∞∑
k=1

∑
r (mod 3k)
r≡ν (mod 3)

Kk(µ, ν;n, r, 0)

k2

∫ 1

−1
g∗k,r(w)I 5

2

(
π
√

6nµ (1− w2)

k

)
dw

+
3π

1024

(
6

nµ

) 5
4 ∑
ν (mod 3)

∞∑
k=1

∑
r1,r2 (mod 3k)
r1≡r2+ν (mod 3)

Kk(µ, ν;n, r1, r2)

k3

×
∫
Q(w1,w2)≤1

g∗k,r1,r2(w1, w2)I 5
2

π
√

6nµ
(
1−Q(w1, w2)

)
k

 dw1dw2.

Using the asymptotic behavior of the Bessel functions we obtain the following.

Corollary 1.2. We have, as n→∞,

α3,µ(n) =
1

4(6n)
3
2

eπ
√

6n

(
1− 81

8π(6n)
1
4

+

(
243
√

3

16π2
− 3

π

)
1

(6n)
1
2

+O
(
n−

3
4

))
.

Remark. One could determine further terms in the asymptotic expansion of α3,µ(n).

The use of Circle Method to get an exact formula for Fourier coefficients of ordinary modular
forms requires the precise transformation properties of these modular forms and their principal
(or polar) parts which separate their growing behavior near the cusps. So for our case too, we
start by reviewing modular transformation properties of h3,µ and other associated functions that
appear in its modular completion. For this purpose, in Section 2, we introduce certain multiplier
systems that appear in these modular transformations and record some of their properties. Then,
in Section 3 we give the modularity behavior of the functions f3,µ which lets us systematically
work out the behavior of f3,µ near the real line. Because of depth two mock modularity of
f3,µ, certain (one- and two-dimensional) theta integrals appear in the modular transformation
equations. Next, in Section 4, we find Mordell-type representations for these theta integrals
which reduce the τ dependence of the integrands to exponential functions. This allows us to
split pieces that grow closer to the real line, which can be thought of as principal (or polar)
parts of these contributions. In Section 5, we bound these integrals to find upper bounds on
the error one gets by restricting to the these principal parts. Finally using these ingredients,
in Section 6, we prove Theorem 1.1 using the Circle Method and find its asymptotics to prove
Corollary 1.2. We finish the paper in Section 7 by giving numerical results.
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2. Multiplier systems

We start by introducing two multiplier systems, which we denote by ψ2,M and ψ3,M for
M =

(
a b
c d

)
∈ SL2(Z). These arise as Weil representations associated with discriminant forms

for A1 and A2 lattices, respectively. For easy reference, we give explicit formulae for both
multiplier systems and refer the reader to [8] for further details.

Firstly, we define ψ2,M as, with α, β ∈ Z/2Z ,

ψ2,M (α, β) :=


iabα

2
e−

πi
4

(1−sgn(d)) δα,β if c = 0,

e−
πi
4 sgn(c)√

2|c|

|c|−1∑
j=0

e
πi
2c (a(2j+α)2−2β(2j+α)+dβ2) if c 6= 0,

(2.1)

where as usual δα,β = 0 unless α = β in which case it equals 1.
Then, we define, with µ, ν ∈ Z/3Z,

ψ3,M (µ, ν) :=

{
e

2πi
3
abµ2isgn(d)−1δµ,ν if c = 0,

i−sgn(c)
√

3|c| λ3,M (µ, ν) if c 6= 0,
(2.2)

where

λ3,M (µ, ν) :=

|c|−1∑
j1,j2=0

exp

(
2πi

3c

(
aµ2 + dν2 − 2µν + 3a

(
j2
1 − j1j2 + j2

2

)
+ 3j1(aµ− ν)

))
. (2.3)

Importantly for our arguments, ψ2,M and ψ3,M are unitary. It is enough to verify this for the
generators of SL2(Z), T := ( 1 1

0 1 ) and S :=
(

0 −1
1 0

)
. To state another property that is useful,

define M ] :=
(
a −b
−c d

)
, where we assume from now on that d > 0 if c = 0. Then by directly

inspecting equations (2.1), (2.2), and (2.3), one can see that

ψ2,M](α, β) = ψ∗2,M (α, β) and ψ3,M](µ, ν) = ψ∗3,M (µ, ν), (2.4)

where ∗ denotes the complex conjugate.
Finally we give a lemma that states several (mock) modular transformations.

Lemma 2.1. We have, for M =
(
a b
c d

)
∈ SL2(Z) and z ∈ C with Im(z) < 0,

ϑα
2

(
aτ + b

cτ + d

)
= (cτ + d)

1
2

∑
β (mod 2)

ψ2,M (α, β) ϑβ
2

(τ) , (2.5)

ϑ 2µ+3α
6

(
3
aτ + b

cτ + d

)
= (cτ + d)

1
2

∑
ν (mod 3)

∑
β (mod 2)

ψ∗2,M (α, β) ψ3,M (µ, ν) ϑ 2ν+3β
6

(3τ) , (2.6)

ĥα

(
aτ + b

cτ + d
,
az + b

cz + d

)
= (cτ + d)

3
2

∑
β (mod 2)

ψ∗2,M (α, β) ĥβ (τ, z) , (2.7)

ĥ3,µ

(
aτ + b

cτ + d

)
= (cτ + d)3

∑
ν (mod 3)

ψ∗3,M (µ, ν) ĥ3,ν (τ) . (2.8)
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Proof. It is enough to show the claims for M ∈ {T, S}.2 For this purpose and as a reference,
we list the relevant T and S transformations. In equations (2.5) and (2.6), we have theta
functions whose T transformations immediately follow from their definition as q-series and whose
S transformations are proved in a standard way via Poisson summation and are well-known.
More specifically, we have

ϑα
2
(τ + 1) = iα

2
ϑα

2
(τ), ϑα

2

(
−1

τ

)
=

(−iτ)
1
2

√
2

∑
β (mod 2)

(−1)αβ ϑβ
2

(τ) ,

ϑ `
6

(3(τ + 1)) = e
πi`2

6 ϑ `
6
(3τ), ϑ `

6

(
−3

τ

)
=

(−iτ)
1
2

√
6

∑
r (mod 6)

e−
πi`r
3 ϑ r

6
(3τ) .

For equation (2.7), we use the well-known transformation properties

ĥα(τ + 1) = i−α
2
ĥα(τ), ĥα

(
−1

τ

)
= −(−iτ)

3
2

√
2

∑
β (mod 2)

(−1)αβ ĥβ (τ) .

Finally, we compare equation (2.8) to the transformation properties given in [17]

ĥ3,µ(τ + 1) = e−
2πiµ2

3 ĥ3,µ(τ), ĥ3,µ

(
−1

τ

)
=

(−iτ)3

√
3

∑
ν (mod 3)

e−
2πiµν

3 ĥ3,ν (τ) .

�

We also need the modular transformations for the Dedekind η-function:

η

(
aτ + b

cτ + d

)
= ψ

(
a b
c d

)
(−i(cτ + d))

1
2 η(τ), (2.9)

where for c 6= 0, we define

ψ

(
a b
c d

)
:=


(
d
|c|

)
e
πi
12((a+d)c−bd(c2−1)−3c+3) if c is odd,(

c
d

)
e
πi
12(ac(1−d2)+d(b−c+3)) if c is even.

(2.10)

Lastly, using equations (2.2), (2.3), and (2.10) we set

χM (µ, ν) := i ψ(M)9 ψ3,M (µ, ν). (2.11)

3. The transformation behavior of the functions f3,µ

For j, ν ∈ N0, % ∈ Q, define the theta integrals

E1,j,%(τ) :=

i∞∫
%

ϑ j
6
(3w)

(−i (w + τ))
3
2

dw, (3.1)

E2,ν,%(τ) :=
∑

α (mod 2)

i∞∫
%

i∞∫
w1

ϑα
2
(w2)ϑ 2ν+3α

6
(3w1)

(−i (w2 + τ))
3
2 (−i (w1 + τ))

3
2

dw2 dw1. (3.2)

2Note that the goal of this lemma is not to prove that ψ2,M (α, β) and ψ3,M (µ, ν) are in fact multiplier systems
for SL2(Z). Instead, the aim is to show that these multiplier systems yield the multiplier systems of the (mock)
modular forms we are interested in. Verifying that T and S transformations are consistent with the given multiplier
systems is enough to show this claim.



AN EXACT FORMULA 7

The following lemma finds the mock modular transformation of f3,µ.

Lemma 3.1. For M = ( a bc d ) ∈ SL2(Z) with c 6= 0, f3,µ(τ)(−i(cτ + d))−
3
2 equals

∑
ν (mod 3)

χM (ν, µ)

(
f3,ν

(
aτ + b

cτ + d

)
− 9
√

3i

2
√

2π

∑
α (mod 2)

fα

(
aτ + b

cτ + d

)
E1,2ν+3α,−a

c

(
aτ + b

cτ + d

)

− 9
√

3

16π2
f

(
aτ + b

cτ + d

)
E2,ν,−a

c

(
aτ + b

cτ + d

))
,

where

fα(τ) :=
hα(τ)

η(τ)9
, f(τ) :=

1

η(τ)9
.

Proof. Using (1.6), (2.8), and the unitarity of ψ3,M , we find that

h3,µ(τ)− (cτ + d)−3
∑

ν (mod 3)

ψ3,M (ν, µ)h3,ν

(
aτ + b

cτ + d

)

=
9
√

3i

2
√

2π

∑
α (mod 2)

 i∞∫
−τ

ĥα(τ,−w)ϑ 2µ+3α
6

(3w)

(−i (w + τ))
3
2

dw (3.3)

−(cτ + d)−3
∑

ν (mod 3)

ψ3,M (ν, µ)

i∞∫
−aτ+b
cτ+d

ĥα

(
aτ+b
cτ+d ,−w

)
ϑ 2ν+3α

6
(3w)(

−i
(
w + aτ+b

cτ+d

)) 3
2

dw

 .

To simplify, we rewrite the first term on the right-hand side of (3.3). For this, we make the
change of variables w 7→ dw+b

cw+a and use the unitary of the multipliers, (2.4), (2.6), and (2.7), to
obtain that

ĥα

(
τ,−dw + b

cw + a

)
= (cτ + d)−

3
2

∑
β (mod 2)

ψ2,M (β, α)ĥβ

(
aτ + b

cτ + d
,−w

)
,

ϑ 2µ+3α
6

(3τ) = (−cτ + d)−
1
2

∑
ν (mod 3)

∑
β (mod 2)

ψ∗2,M (β, α)ψ3,M (ν, µ)ϑ 2ν+3β
6

(
3
aτ − b
−cτ + d

)
.

Plugging these in and simplifying, we find that (3.3) equals

− 9
√

3i

2
√

2π
(cτ + d)−3

∑
ν (mod 3)

ψ3,M (ν, µ)
∑

α (mod 2)

i∞∫
−a
c

ĥα

(
aτ+b
cτ+d ,−w

)
ϑ 2ν+3α

6
(3w)(

−i
(
w + aτ+b

cτ+d

)) 3
2

dw,

Using (1.3) and (2.9) then finishes the claim. �

4. Eichler integrals

In this section, we rewrite the theta integrals, defined in (3.1) and (3.2), as Eichler integrals.
Throughout the section, we assume that Re(z) > 0 and h′, k ∈ Z with k > 0.
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4.1. The one-dimensional case.

Lemma 4.1. We have

E
1,j,−h′

k

(
h′

k
+ iz

)
=

πi

3
√

6k

∑
r (mod 6k)
r≡j (mod 6)

ζ−h
′r2

12k

∫
R
wg r

6k

( w
2k

)
e−

1
6
πzw2

dw,

where, for c ∈ Q and w ∈ C,

gc(w) :=
sinh

(
2πw

3

)
cosh

(
2πw

3

)
− cos(2πc)

. (4.1)

Proof. Lemma 4.1 is well-known to experts, however, for the convenience of the reader, we give
a proof. Plugging in definition (3.1), we rewrite

E
1,j,−h′

k

(
h′

k
+ iz

)
=

∫ i∞

0

ϑ j
6

(
3
(
w − h′

k

))
(−i (iz + w))

3
2

dw.

We next assume that z > 0 and argue via analytic continuation. Letting w = it, using the
identity ∫

R
e−2πw2v w

w − is
dw =

1

2
√

2

∫ ∞
0

e−2πts2

(t+ v)
3
2

dt,

and inserting the Fourier expansion of ϑ j
6
, we obtain

E
1,j,−h′

k

(
h′

k
+ iz

)
=

√
2i√
3

∑
r (mod 6k)
r≡j (mod 6)

ζ−h
′r2

12k

∑
m∈Z

m≡r (mod 6k)

∫
R

we−
1
6
πzw2

w − im
dw.

Using

π cot(πx) = lim
M→∞

M∑
m=−M

1

x+m
, (4.2)

we may then show that

E
1,j,−h′

k

(
h′

k
+ iz

)
= − π

3
√

6k

∑
r (mod 6k)
r≡j (mod 6)

ζ−h
′r2

12k

∫
R
we−

1
6
πzw2

cot

(
π
iw + r

6k

)
dw.

The claim of the Lemma follows, using

cot(x+ iy) =
sin(2x)

cosh(2y)− cos(2x)
− i sinh(2y)

cosh(2y)− cos(2x)
(4.3)

and the fact that the contribution of the first term vanishes. �
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4.2. The two-dimensional case. The main goal of this section is to write the two-dimensional
Eichler integral as a Mordell integral. Such integrals were first found by Kaszian, Milas, and the
first author in [5]. To state the main result, we define the function gk,r : R2 → R as follows. Set

fc(w) :=
sin(2πc)

cosh
(

2πw
3

)
− cos(2πc)

, (4.4)

and write here and throughout this paper, vectors as z =: (z1, z2).
If r1, r2 6≡ 0 (mod 3k), then we define

gk,r(w) :=
(
w2

1 + w2
2 + 4w1w2

) (
g r1

3k

(w1

k

)
g r2

3k

(w2

k

)
− f r1

3k

(w1

k

)
f r2

3k

(w2

k

))
. (4.5)

If r1 ≡ 0, r2 6≡ 0 (mod 3k), then we let

gk,(0,r2)(w) :=
(
w2

1 + w2
2 + 4w1w2

)
g0

(w1

k

)
g r2

3k

(w2

k

)
− 3k

πw1

(
w2 +

w1

2

)2
g r2

3k

(
w2 + w1

2

k

)
.

(4.6)

If r1 6≡ 0, r2 ≡ 0 (mod 3k), then set

gk,(r1,0) := gk,(0,r1), (4.7)

Finally, if r1, r2 ≡ 0 (mod 3k), then

gk,0(w) :=
(
w2

1 + w2
2 + 4w1w2

)
g0

(w1

k

)
g0

(w2

k

)
− 3k

πw1

(
w2 +

w1

2

)2
g0

(
w2 + w1

2

k

)
(4.8)

− 3k

πw2

(
w1 +

w2

2

)2
g0

(
w1 + w2

2

k

)
.

Theorem 4.2. We have, with dw := dw1dw2

E
2,ν,−h′

k

(
h′

k
+ iz

)
= − 2π2

27
√

3k2

∑
r1,r2 (mod 3k)
r1≡r2+ν (mod 3)

ζ
−h′Q(r)
3k

∫
R2

gk,r(w)e−
2
3
πzQ(w)dw.

Before proving Theorem 4.2, we require an auxiliary lemma. For this, we introduce two
involutions ι1 and ι2 acting on R2 that leave the quadratic form Q∗(x1, x2) := x2

1 + x2
2 − x1x2

for x1, x2 ∈ R invariant, namely

ι1 : (x1, x2) 7→ (−x2,−x1) and ι2 : (x1, x2) 7→ (x2 − x1, x2).

These two involutions are the generators of the Weyl group for the root lattice A2, which is
isomorphic to the symmetric group S3. We average a function h : R2 → C over the orbit of a
point (x1, x2) under the group generated by the involutions ι1 and ι2, namely

(x1, x2)
ι17−→ (−x2,−x1)

ι27−→ (x2 − x1,−x1)
ι17−→ (x1, x1 − x2)

ι27−→ (−x2, x1 − x2)
ι17−→ (x2 − x1, x2)

ι27−→ (x1, x2).

We then define the average of h as∑a

x

h(x) :=
1

6

(
h(x1, x2) + h(−x2,−x1) + h(x2 − x1,−x1)

+ h(x1, x1 − x2) + h(−x2, x1 − x2) + h(x2 − x1, x2)
)
.
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Note that∑a

x

h(x) =
1

2

∑a

x

(h(x1, x2) + h(−x2,−x1)) =
1

2

∑a

x

(h(x1, x2) + h(x2 − x1, x2)) .

We also define (excluding 2x2 − x1, 2x1 − x2 = 0)

F (x) = F (x; z) :=

∫
R2

(w1 + w2)2e−
2
3
πzQ(w)

(w1 − i(2x2 − x1)) (w2 − i(2x1 − x2))
dw,

G(x) = G(x; z) :=

√
3

2

∞∫
0

e−
3
2
πx22w1

(w1 + z)
3
2

∞∫
w1

e−
1
2
π(2x1−x2)2w2

(w2 + z)
3
2

dw2dw1.

These functions agree when averaged.

Lemma 4.3. Let x1, x2 ∈ R with 2x2 − x1 6= 0, 2x1 − x2 6= 0, and x1 + x2 6= 0. Then we have∑a

x

F (x) =
∑a

x

G(x). (4.9)

We have, as x2
1 + x2

2 →∞,

G(x)�


x−2

2 (2x1 − x2)−2 if x2, 2x1 − x2 6= 0,

x−2
2 if 2x1 − x2 = 0, x2 6= 0,

(2x1 − x2)−2 if x2 = 0, x1 6= 0.

(4.10)

Proof. The bounds in (4.10) are direct, thus we only prove (4.9). Via analytic continuation, it
is enough to show this identity for z ∈ R+, which we assume from now on. We first claim that∑a

x

F (x) =

√
3

z

∑a

x

[
∂2

∂z2

(
(x2 + z)(2x1 − x2 + z)e2πzQ∗(x)+2πz(x1+x2)z (4.11)

×
∞∫

1

e−
3
2
πz(x2+z)2w2

1

∞∫
w1

e−
1
2
πz(2x1−x2+z)2w2

2dw2dw1

)
z=0

.

To prove (4.11), we use the change of variables w1 7→ w1−w2
2 in the definition of F (x), to rewrite

F (x) = − 1

4π2z2
e2πzQ∗(x)

[
∂2

∂z2

(
e2πz(x1+x2)zFx(z, 1)

)]
z=0

,

where

Fx(z, t) :=

∫
R2−i

(
3x2

2x1−x2

)
e−

1
6
πzw2

1−
1
2
πzw2

2−πizt((x2+z)(w1−w2)+2(x1+z)w2)

(w1 − w2)w2
dw.

Define

H(t) :=

[
∂2

∂z2

∑a

x

e2πzQ∗(x)+2πz(x1+x2)zFx(z, t)

]
z=0

.
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We identify H(t) by determining its derivative and its limiting behavior. We first compute

∂

∂t
Fx(z, t) = −πiz(x2 + z)

∫
R2−i

(
3x2

2x1−x2

) e
− 1

6
πzw2

1−
1
2
πzw2

2−πizt((x2+z)(w1−w2)+2(x1+z)w2) 1

w2
dw

− 2πiz(x1 + z)

∫
R2−i

(
3x2

2x1−x2

) e
− 1

6
πzw2

1−
1
2
πzw2

2−πizt((x2+z)(w1−w2)+2(x1+z)w2) 1

w1 − w2
dw. (4.12)

Evaluating the integral in w1 as Gaussian, one can show that the first term in (4.12) equals

−πi
√

6z(x2 + z)e−
3
2
πz(x2+z)2t2Gx(z, t), (4.13)

where

Gx(z, t) :=

∫
R−i(2x1−x2)

e−
1
2
πzw2

2−πizt(2x1−x2+z)w2
dw2

w2
.

For the second term on the right-hand side of (4.12) we change variables and take a Gaussian
integral to show that it equals

− πi
√

6z(x1 + z)e−
3
2
πz(x1+z)2t2

∫
R−i(2x2−x1)

e−
1
2
πzw2

2−πizt(2x2−x1+z)w2
dw2

w2
. (4.14)

Note that (4.13) and (4.14) are mapped to each other when applying the involution ι1 and

changing z into −z and w2 into −w2; note that the prefactor e2πzQ∗(x)+2πzz(x1+x2) is invariant
under these exchanges. Thus we obtain

H′(t) = −2πi
√

6z

[
∂2

∂z2

∑a

x

(x2 + z)e−
3
2
πz(x2+z)2t2+2πzQ∗(x)+2πz(x1+x2)zGx(z, t)

]
z=0

. (4.15)

It is not hard to show that

Gx(z, t) = πi(2x1 − x2 + z)
√

2z

∫ ∞
t

e−
1
2
πz(2x1−x2+z)2w2

dw.

Plugging this into (4.15) gives that

H′(t) = 4
√

3π2z

[
∂2

∂z2

∑a

x

(x2 + z)(2x1 − x2 + z)e−
3
2
πz(x2+z)2t2+2πzQ∗(x)+2πz(x1+x2)z

×
∫ ∞
t

e−
1
2
πz(2x1−x2+z)2w2

dw

]
z=0

.

Using that limt→∞H(t) = 0, we then obtain

H(t) = −4
√

3π2z

[
∂2

∂z2

∑a

x

(x2 + z)(2x1 − x2 + z)e2πzQ∗(x)+2πz(x1+x2)z

×
∫ ∞
t

e−
3
2
πz(x2+z)2w2

1

∫ ∞
w1

e−
1
2
πz(2x1−x2+z)2w2

2dw2dw1

]
z=0

.

Plugging in gives (4.11).
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Setting

F0(z) := (x2 + z)(2x1 − x2 + z)e2πz(x1+x2)z

∫ ∞
1

e−
3
2
πz(x2+z)2w2

1

∫ ∞
w1

e−
1
2
πz(2x1−x2+z)2w2

2dw2dw1,

a direct calculation shows that

F ′′0 (0) = 4π2z2(x1 + x2)2x2(2x1 − x2)

∫ ∞
1

e−
3
2
πzx22w

2
1

∫ ∞
w1

e−
1
2
πz(2x1−x2)w2

2dw2dw1

− πz(2x1 − x2)(4x1 + x2)e−
3
2
πzx22

∞∫
1

e−
1
2
πz(2x1−x2)2w2

2dw2 + e−2πzQ∗(x) − x2
1 − x2

2

2πzQ∗(x)2
e−2πzQ∗(x).

Noting that
∑a

x

(x2
2 − x2

1) = 0 and

[
(x1 + x2)2x2(2x1 − x2)

]
x1 7→x2−x1

+ (x1 + x2)2x2(2x1 − x2) = 3x2
2(2x1 − x2)2,

[(x2 − 2x1)(x2 + 4x1)]x1 7→x2−x1 + (x2 − 2x1)(x2 + 4x1) = −4(2x1 − x2)2,

yields, after a change of variables,∑a

x

F (x) =
π
√

3

2

∑a

x

(
3πzx2

2(2x1 − x2)2

∞∫
0

e−
3
2
πzx22w1

√
w1 + 1

∞∫
w1

e−
1
2
πz(2x1−x2)2w2

√
w2 + 1

dw2dw1 (4.16)

− 2(2x1 − x2)2

∞∫
0

e−
1
2
πz(2x1−x2)2w

√
w + 1

dw +
2

πz

)
.

Using integration by parts twice, we obtain that (4.16) equals

π
√

3

2

∑a

x

(
1

πz

∞∫
0

e−
3
2
πzx22w1

(w1 + 1)
3
2

∞∫
w1

e−
1
2
πz(2x1−x2)2w2

(w2 + 1)
3
2

dw2dw1

− 2

πz

∞∫
0

e−2πzQ∗(x)w

(w + 1)2
dw − 2(2x1 − x2)2

∞∫
0

e−2πzQ∗(x)w

w + 1
dw +

2

πz

)
.

Employing
∑a

x
(2x1 − x2)2 = 2Q∗(x) and integrating the third term by parts it is not hard

to see that the contribution of the second line vanishes. Finally, making the change of variable
wj 7→ wj

z , gives the claim. �

It is also convenient to define a regularized version of the function F

F reg(x) :=

∫ reg

R2

(w1 + w2)2e−
2
3
πzQ(w)

(w1 − i(2x2 − x1)) (w2 − i(2x1 − x2))
dw,

where for a function f : R2 → R, we set∫ reg

R2

f(w)dw :=
1

2

∫
R2

(f(w1, w2) + f(−w1, w2))dw.

Clearly, for 2x1 − x2, 2x2 − x1 6= 0, we have that F reg(x) = F (x). Moreover, the function F reg

has removable singularities at 2x1 − x2 = 0 and 2x2 − x1 = 0 so it extends F to these values.
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Lemma 4.6 still holds true at 2x1 − x2 = 0, 2x2 − x1 = 0, or x1 + x2 = 0 by continuity with F
replaced by F reg. This can be proved using Lebesgue’s dominated convergence theorem.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Starting with the definition of E
2,ν,−h′

k

and changing variables wj 7→

iwj − h′

k , we rewrite E
2,ν,−h′

k

(h
′

k + iz) as

−
∞∫

0

1

(w1 + z)
3
2

∞∫
w1

1

(w2 + z)
3
2

∑
α (mod 2)

ϑ 2ν+3α
6

(
3

(
iw1 −

h′

k

))
ϑα

2

(
iw2 −

h′

k

)
dw2dw1. (4.17)

Using

ϑα
2

(τ) =
∑

n∈α+2Z
q
n2

4 and ϑ 2ν+3α
6

(3τ) =
∑

n∈α+ 2ν
3

+2Z

q
3n2

4

we obtain that∑
α (mod 2)

ϑ 2ν+3α
6

(
3

(
iw1 −

h′

k

))
ϑα

2

(
iw2 −

h′

k

)

=
∑

α (mod 2)

∑
n1∈α+ 2ν

3
+2Z

n2∈α+2Z

ζ
−h′(3n2

1+n2
2)

4k e−
3
2
πn2

1w1− 1
2
πn2

2w2 . (4.18)

Changing variables to m1 = n1+n2
2 and m2 = n1 so that m1 runs over ν

3 + Z and m2 runs over

α+ 2ν
3 + 2Z, we rewrite (4.18) as∑

m1∈ ν3 +Z
m2∈− ν3 +Z

ζ
−h′Q∗(m)
k e−

3π
2
m2

2w1−π2 (2m1−m2)2w2 =
∑

m1∈ ν3 +Z
m2∈− ν3 +Z

ζ
−h′Q∗(m)
k

∑a

m

e−
3π
2
m2

2w1−π2 (2m1−m2)2w2 ,

using that the set over which m1 and m2 are summed as well as the root of unity inside are both
invariant under the involutions ι1 and ι2. We now interchange in (4.17) the outer sum with the
integrals and find that

E
2,ν,−h′

k

(
h′

k
+ iz

)
= − 2√

3

∑
m1∈Z+ ν

3
m2∈Z− ν3

ζ
−h′Q∗(m)
k

∑a

m

G(m; z). (4.19)

This interchange is legal due to Fubini’s Theorem because the double series on the left-hand
side of equation (4.19) is absolutely convergent when the integrand in the definition of G(m; z)
is replaced with its absolute value. Using Lemma 4.3 then gives

E
2,ν,−h′

k

(
h′

k
+ iz

)
= − 2√

3

∑
m1∈Z+ ν

3
m2∈Z− ν3

ζ
−h′Q∗(m)
k

∑a

m

F reg(m; z).

Again using that the double series outside is absolutely convergent we can change variables
to n1 = 2m2 − m1 and n2 = 2m1 − m2 so that n1, n2 run through integers satisfying n1 ≡
n2 + ν (mod 3). Note that ι1 corresponds to κ1 : (n1, n2) 7→ (−n2,−n1) and ι2 corresponds
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to κ2 : (n1, n2) 7→ (n1 + n2,−n2). Thus the averaging sum over (m1,m2) becomes averaging
(n1, n2) over the orbit

(n1, n2)
κ17−→ (−n2,−n1)

κ27−→ (−n1 − n2, n1)
κ17−→ (−n1, n1 + n2)

κ27−→ (n2,−n1 − n2)
κ17−→ (n1 + n2,−n2)

κ27−→ (n1, n2).

Noting that the integrals corresponding to (n1, n2) and to (−n2,−n1) are the same, we obtain3

E
2,ν,−h′

k

(
h′

k
+ iz

)
=

2

3
√

3

∑
n1,n2∈Z

n1≡n2+ν (mod 3)

ζ
−h′Q(n)
3k

∫ reg

R2

(w1 + w2)2e−
2
3
πzQ(w)

×
(

1

(iw1 + n1) (iw2 + n2)
+

1

(iw1 − n1) (iw2 + n1 + n2)
+

1

(iw1 + n1 + n2) (iw2 − n2)

)
dw.

We then write nj = rj +3kmj where rj runs modulo 3k and pick a particular order for the sums
over mj that makes the individual terms convergent to obtain that

E
2,ν,−h′

k

(
h′

k
+ iz

)
=

2

3
√

3

∑
r1,r2 (mod 3k)
r1≡r2+ν (mod 3)

ζ
−h′Q(r)
3k

∫ reg

R2

e−
2
3
πzQ(w)(w1 + w2)2

3∑
j=1

Cr,j(w)dw,

where

Cr,1(w) := lim
M1,M2→∞

M∑
m1=−M1

M2∑
m2=−M2

1

(iw1 + r1 + 3km1)(iw2 + r2 + 3km2)
,

Cr,2(w) := lim
M1,M2→∞

M∑
m1=−M1

M2∑
m2=−M2

1

(iw1 − r1 − 3km1)(iw2 + r1 + r2 + 3k(m1 +m2))
,

Cr,3(w) := lim
M1,M2→∞

M∑
m1=−M1

M2∑
m2=−M2

1

(iw1 + r1 + r2 + 3k(m1 +m2))(iw2 − r2 − 3km2)
.

Using (4.2), we obtain

Cr,1(w) =
π2

9k2
cot

(
π
iw1 + r1

3k

)
cot

(
π
iw2 + r2

3k

)
.

To compute Cr,2, we observe that

Cr,2(w) = Cκ1◦κ2◦κ1(r),1(w).

3 Each of the three terms in the parenthesis naively gives equal contributions as they seem to be related by
a change of dummy variables for the double sum. This however leads to a wrong result; because if the terms
are separated, one only gets conditionally convergent double series. The ordering in the double sum that gives
convergence should be picked to be the same for each of the three terms and that ordering is not necessarily
compatible with the change of variables required to show that the contribution from each term is equal.
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Thus these terms yield the same contribution to the overall sum. For Cr,3, we split

1

(iw1 + r1 + r2 + 3k(m1 +m2))(iw2 − r2 − 3km2)

=

(
1

iw1 + r1 + r2 + 3k(m1 +m2)
+

1

iw2 − r2 − 3km2

)
1

i(w1 + w2) + r1 + 3km1
,

to obtain that

Cr,3(w1, w2) = −Cκ2◦κ1(r),1(−w1, w1 + w2)− Cr,1(w1 + w2,−w2).

For the contribution from the first term, we change variables (w1, w2) 7→ (−w1, w1 +w2) and for
the contribution from the second term, we change variables (w1, w2) 7→ (w1 +w2,−w2) yielding

that E
2,ν,−h′

k

(h
′

k + iz) equals

2π2

27
√

3k2

∑
r1,r2 (mod 3k)
r1≡r2+ν (mod 3)

ζ
−h′Q(r)
3k

×
∫ reg

R2

(
w2

1 + w2
2 + 4w1w2

)
cot

(
π
iw1 + r1

3k

)
cot

(
π
iw2 + r2

3k

)
e−

2
3
πzQ(w)dw.

Next, using (4.3), we rewrite

cot

(
π
iw1 + r1

3k

)
cot

(
π
iw2 + r2

3k

)
=

sin
(

2πr1
3k

)
sin
(

2πr2
3k

)
− sinh

(
2πw1

3k

)
sinh

(
2πw2

3k

)(
cosh

(
2πw1

3k

)
− cos

(
2πr1
3k

)) (
cosh

(
2πw2

3k

)
− cos

(
2πr2
3k

))
− i

sinh
(

2πw1
3k

)
sin
(

2πr2
3k

)
+ sinh

(
2πw2

3k

)
sin
(

2πr1
3k

)(
cosh

(
2πw1

3k

)
− cos

(
2πr1
3k

)) (
cosh

(
2πw2

3k

)
− cos

(
2πr2
3k

)) .
The contribution of the imaginary part to the integral vanishes (it is odd under the change of
variables (w1, w2) 7→ (−w1,−w2) and the rest of the integrand is even) and we find that

E
2,ν,−h′

k

(
h′

k
+ iz

)
= − 2π2

27
√

3k2

∑
r1,r2 (mod 3k)
r1≡r2+ν (mod 3)

ζ
−h′Q(r)
3k Fk(r; z),

where we define

Fk(r; z) :=
1

2

∫
R2

∑
±

(
−f r1

3k

(w1

k

)
f r2

3k

(w2

k

)
± g r1

3k

(w1

k

)
g r2

3k

(w2

k

))
×
(
w2

1 + w2
2 ± 4w1w2

)
e−

2
3
πz(w2

1+w2
2±w1w2)dw.

If r1, r2 6≡ 0 (mod 3k), then the two terms that contribute to the sum can be separately inte-
grated and are equal to each other, so we obtain the claim, changing w1 into −w1 for the minus
sign.

Next suppose that r1 ≡ 0, r2 6≡ 0 (mod 3k). In what follows, we add and subtract terms which
allows us to separate several terms that are well-behaved near w1 = 0 and can be integrated
individually. By definition

Fk(0, r2; z) =
1

2

∫
R2

e−
2
3
πz(w2

1+w2
2)g0

(w1

k

)
g r2

3k

(w2

k

)∑
±

(
4w1w2 ± w2

1 ± w2
2

)
e∓

2
3
πzw1w2dw.
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The term 4w1w2 ± w2
1 contributes, again changing w1 into −w1 for the minus sign,∫

R2

w1(4w2 + w1)g0

(w1

k

)
g r2

3k

(w2

k

)
e−

2
3
πzQ(w)dw. (4.20)

In the term from ±w2
2, we write

g0

(w1

k

)
=

(
g0

(w1

k

)
− 3k

πw1

)
+

3k

πw1
.

The first term has a removable singularity and contributes, changing w1 into −w1, for the minus
sign ∫

R2

w2
2

(
g0

(w1

k

)
− 3k

πw1

)
g r2

3k

(w2

k

)
e−

2
3
πzQ(w)dw. (4.21)

In the term from 3k
πw1

, we write

G r2
3k

(w2

k

)
=

(
G r2

3k

(w2

k

)
−G r2

3k

(
w2 ± w1

2

k

))
+G r2

3k

(
w2 ± w1

2

k

)
,

where

Gc(x) := x2gc(x).

The first term contributes, again changing w1 into −w1 for the minus term

3k3

π

∫
R2

w−1
1

(
G r2

3k

(w2

k

)
−G r2

3k

(
w2 + w1

2

k

))
e−

2
3
πzQ(w)dw. (4.22)

Using w2
1 +w2

2 ±w1w2 = (w2± w1
2 )2 + 3

4w
2
1, the contribution from the final term can be written

as

3k3

2π

∫
R
w−1

1 e−
3
4
πzw2

1

(∫
R

∑
±
±G r2

3k

(
w2 ± w1

2

k

)
e−

2
3
πz(w2±w1

2 )
2

dw2

)
dw1.

The integral on w2 vanishes as may be seen by changing variable w2 7→ w2 + w1 in the integral
for the minus sign. Combining gives the claim. The case r1 6≡ 0, r2 ≡ 0 (mod 3k) is completely
analogous.

Finally, we assume r1 ≡ r2 ≡ 0 (mod 3k). The term coming from 4w1w2 contributes, again
changing w1 into −w1 in the term with the minus sign

4

∫
R2

w1w2g0

(w1

k

)
g0

(w2

k

)
e−

2
3
πzQ(w)dw.

In the contribution from w2
2, the function w2 7→ w2

2g0

(
w2
k

)
has a removable singularity and the

exact same proof as in the case r1 ≡ 0, r2 6≡ 0 (mod 3k) works for handling g0

(
w1
k

)
. In the

contribution from w2
1, we switch roles of w1 and w2. This gives overall∫

R2

Gk(w)e−
2
3
πzQ(w)dw,
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where

Gk(w) := 4w1w2g0

(w1

k

)
g0

(w2

k

)
+ k2G0

(w2

k

)(
g0

(w1

k

)
− 3k

πw1

)
(4.23)

+
3k3

πw1

(
G0

(w2

k

)
−G0

(
w2 + w1

2

k

))
+ k2G0

(w1

k

)(
g0

(w2

k

)
− 3k

πw2

)
+

3k3

πw2

(
G0

(w1

k

)
−G0

(
w1 + w2

2

k

))
.

Simplifying gives the claim. �

5. Bounds for Eichler integrals

In this chapter we find bounds for the Eichler integrals (3.1) and (3.2) using the representations
from Lemma 4.1 and Theorem 4.2. For this, we split off “principal part contributions”.

5.1. The one-dimensional case. Define, for b ≥ 0,

E∗
1,j,−h′

k
,b

(
h′

k
+
i

z

)
:= e

2πb
z

πi

3
√

6k

∑
r (mod 6k)
r≡j (mod 6)

ζ−h
′r2

12k

∫ 2
√

3b

−2
√

3b
wg r

6k

( w
2k

)
e−

πw2

6z dw.

Lemma 5.1. We have, for b ≥ 0, h′, k ∈ Z, k > 0, and Re(1
z ) ≥ 1,

e
2πb
z E

1,j,−h′
k

(
h′

k
+
i

z

)
= E∗

1,j,−h′
k
,b

(
h′

k
+
i

z

)
+O(log(k)),

where the error term is independent of h′ and z.

Proof. We compute∣∣∣∣e 2πb
z E

1,j,−h′
k

(
h′

k
+
i

z

)
− E∗

1,j,−h′
k
,b

(
h′

k
+
i

z

)∣∣∣∣
� e2πbRe( 1

z )
1

k

6k−1∑
r=0

∫
|w|≥2

√
3b

∣∣∣wg r
6k

( w
2k

)∣∣∣ e− 1
6
πRe( 1

z )w
2
dw.

We first bound the contribution from r 6= 0. Using that, for 0 < c < 1,

|gc(w)| � 1

c
+

1

1− c
, (5.1)

it is not hard to see that this contribution is O(log(k)).
For r = 0, we require that

|wg0(w)| � 1 + |w|, (5.2)

to show that this term contributes O(1). Combining gives the statement of the lemma. �
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5.2. The two-dimensional case. Define, for b ≥ 0,

E∗
2,ν,−h′

k
,b

(
h′

k
+
i

z

)
:= −e

2πb
z

2π2

27
√

3k2

∑
r1,r2 (mod 3k)
r1≡r2+ν (mod 3)

ζ
−h′Q(r)
3k

∫
Q(w)≤3b

gk,r(w)e−
2π
3z
Q(w)dw.

Lemma 5.2. For b ≥ 0, h′, k ∈ Z, k > 0, and Re(1
z ) ≥ 1 we have

e
2πb
z E

2,ν,−h′
k

(
h′

k
+
i

z

)
= E∗

2,ν,−h′
k
,b

(
h′

k
+
i

z

)
+ O

(
log(k)2

)
,

where the error term is independent of h′ and z.

Proof. We first bound∣∣∣∣e 2πb
z E

2,ν,−h′
k

(
h′

k
+
i

z

)
− E∗

2,ν,−h′
k
,b

(
h′

k
+
i

z

)∣∣∣∣
� e2πbRe( 1

z )

k2

∑
r (mod 3k)

∫
Q(w)≥3b

|gk,r(w)|e−
2
3
πRe( 1

z )Q(w)dw.

Using polar coordinates, it is not hard to show that, for j1, j2 ∈ N0, we have∫
Q(w)≥3b

|w1|j1 |w2|j2e−
2
3
πRe( 1

z )Q(w)dw � e−2πbRe( 1
z ).

We now first bound the contribution from r1, r2 6≡ 0 (mod 3k). By (5.1) and the fact that fc
is maximized at w = 0, one may show that this contribution is O(log(k)2).

We next consider the case r1 ≡ 0, r2 6≡ 0 (mod 3k). For this, we split gk,(0,r2) as in (4.20),
(4.21), and (4.22). We first bound (4.20), using (5.1) and (5.2),∣∣∣w1(4w2 + w1)g0

(w1

k

)
g r2

3k

(w2

k

)∣∣∣� k

(
1 +
|w1|
k

)
(|w1|+ |w2|)

(
k

r2
+

k

3k − r2

)
.

For (4.21), we use the bound

g0(w)− 3

πw
� 1, (5.3)

and estimate ∣∣∣∣w2
2 g r2

3k

(w2

k

)(
g0

(w1

k

)
− 3k

πw1

)∣∣∣∣� (
k

r2
+

k

3k − r2

)
w2

2.

For (4.22), we use Taylor expansions, to bound

1

|w1|

∣∣∣Gc(w2)−Gc
(
w2 +

w1

2

)∣∣∣� (
w2

1 + w2
2 + |w2|

)( 1

c2
+

1

(1− c)2

)
.

Thus we may estimate

k3

|w1|

∣∣∣∣G r2
3k

(w2

k

)
−G r2

3k

(
w2 + w1

2

k

)∣∣∣∣� (
w2

1 + w2
2 + |w2|

)(k2

r2
2

+
k2

(3k − r2)2

)
.
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Therefore

|gk,(0,r2)(w)| � k

(
1 +
|w1|
k

)
(|w1|+ |w2|)

(
k

r2
+

k

3k − r2

)
+
(
w2

1 + w2
2 + |w2|

)(k2

r2
2

+
k2

(3k − r2)2

)
and we obtain the overall contribution as O(log(k)). The case r1 6≡ 0 (mod 3k), r2 ≡ 0 (mod 3k)
is done in exactly the same way.

We finally consider the case r1 ≡ r2 ≡ 0 (mod 3k). Using the splitting as in (4.23) and
employing (5.2), we may bound the first term of Gk against

k2

(
1 +
|w1|
k

)(
1 +
|w2|
k

)
.

Overall this term contributes O(1).
The second term of Gk is estimated against, using (5.2) and (5.3)

k2 |w2|
k

(
1 +
|w2|
k

)
.

Overall this term contributes O( 1
k ). The fourth term is handled in exactly in the same way.

The third term of Gk may be bounded by

k3

|w1|

∣∣∣∣G0

(w2

k

)
−G0

(
w2 + w1

2

k

)∣∣∣∣� k2(1 + |w1|),

again using Taylor’s Theorem. Thus overall this term contributes O(1). The fifth term is handled
in exactly the same way.

Combining gives the claim. �

6. The Circle Method and the proof of Theorem 1.1 and Corollary 1.2

6.1. Proof of Theorem 1.1. We follow the version of the Circle Method due to Rademacher
and refer the reader to Chapter 5 of [4] for basic facts on Farey fractions and the Circle Method.
The starting point is Cauchy’s Theorem, which yields

a3,µ(n) =

∫ i+1

i
f3,µ(τ)e−2πinµτdτ,

where the integral goes along any path connecting i and i+ 1. We decompose the integral into
arcs lying near the root of unity ζhk , where 0 ≤ h < k ≤ N with gcd(h, k) = 1, and N ∈ N
is a parameter, which then tends to infinity. For this, the Ford Circle Ch,k denotes the circle

in the complex τ -plane with radius 1
2k2

and center h
k + i

2k2
. We let PN :=

⋃
h
k
∈FN Ch,k(N),

where FN is the Farey sequence of order N and Ch,k(N) is the upper arc of the Ford Cir-

cle Ch,k from its intersection with Ch1,k1 to its intersection with Ch2,k2 where h1
k1

< h
k < h2

k2
are consecutive fractions in FN . In particular C0,1(N) and C1,1(N) are half-arcs with the
former starting at i and the latter ending at i + 1. This is illustrated for P4 in Figure 1.
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Figure 1. Rademacher’s integration path PN for N = 4.
We obtain

α3,µ(n) =
N∑
k=1

∑
0≤h≤k

gcd(h,k)=1

∫
Ch,k(N)

f3,µ(τ)e−2πinµτdτ. (6.1)

Next, we make the change of variables τ = h
k + iz

k2
, which maps the Ford Circles to a standard

circle with radius 1
2 which is centered at z = 1

2 . The image of the arc Ch,k(N) is now an arc on
the standard circle from z1 to z2, where

z1 = z1(h, k) :=
k2

k2 + k2
1

+ i
kk1

k2 + k2
1

, z2 = z2(h, k) :=
k2

k2 + k2
2

− i kk2

k2 + k2
2

.

We also combine the half-arcs C0,1(N) and C1,1(N) into an arc in the z-plane from z1(1, 1) :=
1

1−iN to z2(1, 1) := 1
1+iN by shifting the C1,1(N) half-arc as τ 7→ τ − 1. Note that on the disc

bounded by the standard circle we always have Re(1
z ) ≥ 1. Moreover, for any point z on the

chord that is connecting z1(h, k) and z2(h, k), we have |z| ≤ k
√

2
N and the length of this chord

does not exceed 2
√

2k
N .

Equation (6.1) then becomes

α3,µ(n) =
N∑
k=1

i

k2

∑
0≤h<k

gcd(h,k)=1

z2∫
z1

e
−2πinµ

(
h
k

+ iz
k2

)
f3,µ

(
h

k
+
iz

k2

)
dz. (6.2)

Now, as N → ∞ the path of integration gets closer to the point z = 0 for each term. Using
modular transformations one can control the way the integrand behaves as this happens. In

particular, we use the modular transformations M =
(
h′ − 1+hh′

k
k −h

)
with h′ satisfying hh′ ≡

−1 (mod k). Under this modular transformation we have4 aτ+b
cτ+d = h′

k + i
z . Using Lemma 3.1, we

4The Ford Circles are mapped to the Im(τ) = 1 line under this transformation.
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obtain that f3,µ(hk + iz
k2

) equals

z
3
2

k
3
2

∑
ν (mod 3)

ψh,k(ν, µ)

(
f3,ν

(
h′

k
+
i

z

)
− 9
√

3i

2
√

2π

∑
α (mod 2)

fα

(
h′

k
+
i

z

)
E

1,2ν+3α,−h′
k

(
h′

k
+
i

z

)

− 9
√

3

16π2
f

(
h′

k
+
i

z

)
E

2,ν,−h′
k

(
h′

k
+
i

z

))
. (6.3)

We now approximate all q-series and Eichler integrals by their principal parts and show that
the introduced error is neglectible. For this, we use (1.1), (1.2), (1.4), and (1.5) to note that

fP
3,0(τ) :=

1

9
q−

3
8 , fP

3,1(τ) := fP
3,−1(τ) = 0, fP

0 (τ) := − 1

12
q−

3
8 , fP

1 (τ) := 0, fP(τ) := q−
3
8 ,

where F p denotes the principal (or polar) part of a q-series F . We obtain, plugging (6.3) into
(6.2) and using Lemmas 5.1 and 5.2

a3,µ(n) = S1(N) + S2(N) + S3(N) + E(N),

where

S1(N) :=
i

9

N∑
k=1

k−
7
2

∑
0≤h<k

gcd(h,k)=1

ζ
−3h′−8nµh
8k ψh,k(0, µ)

z2∫
z1

z
3
2 e2πnµ

z
k2

+ 3π
4z dz,

S2(N) := − 3
√

3

8
√

2π

N∑
k=1

k−
7
2

∑
0≤h<k

gcd(h,k)=1

ζ
−3h′−8nµh
8k

×
∑

ν (mod 3)

ψh,k(ν, µ)

∫ z2

z1

z
3
2 e2πnµ

z
k2 E∗

1,2ν,−h′
k
, 3
8

(
h′

k
+
i

z

)
dz,

S3(N) := −9
√

3i

16π2

N∑
k=1

k−
7
2

∑
0≤h<k

gcd(h,k)=1

ζ
−3h′−8nµh
8k

×
∑

ν (mod 3)

ψh,k(ν, µ)

∫ z2

z1

z
3
2 e2πnµ

z
k2 E∗

2,ν,−h′
k
, 3
8

(
h′

k
+
i

z

)
dz,

and where the error term E(N) satisfies

E(N)� N−
3
2 log(N)2.

In particular, limN→∞ E(N) = 0.
In each of the integrals, we now write∫ z2

z1

=

∫
C
−
∫ z1

0
−
∫ 0

z2

, (6.4)

where C denotes the entire standard circle traversed in a clockwise direction. Note that when
integrated over an arc in the standard circle, on [0, z1] and [z2, 0] the same bounds hold as for
the non-principal parts (note that the length of such arcs is � k

N ). Thus, letting N →∞,

a3,µ(n) = S1 + S2 + S3,
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where Sj is obtained from Sj(N) by only taking the first term in (6.4) and then letting N →∞.
We next rewrite the integrals over C in terms of the Bessel functions. For this, we define, for
m,n > 0, ` ∈ R,

In,m,` :=

∫
C
z`e

2πnz
k2

+ 2πm
z dz.

We make the change of variables z 7→ 1
z and use the following representation for the I-Bessel

function

Iκ(x) =

(
x
2

)κ
2πi

∫ c+i∞

c−i∞
t−κ−1et+

x2

4t dt

with c > 0, Re(κ) > 0. This yields

In,m,` = −2πi

(
k

√
m

n

)`+1

I`+1

(
4π
√
mn

k

)
.

Plugging this into Sj gives the statement of the theorem.

6.2. Proof of Corollary 1.2. To prove Corollary 1.2, we require the following Bessel function
asymptotics (` ∈ 1

2 + Z), as x→∞,

I`(x) =
ex√
2πx

(
1− 4`2 − 1

8x
+O

(
1

x2

))
. (6.5)

Because of (6.5), the k = 1 terms give the leading exponential behavior. The corresponding
generalized Kloostermann sum is simply

K1(µ, ν;n, r1, r2) = ψ0,1(ν, µ) =
1√
3
ζ−2µν

3 .

We now investigate the asymptotic behavior of the Sj seperately starting with S1. Using (6.5)
gives that, as n→∞,

S1 =
1

24
√

6n
3
2

eπ
√

6n

(
1− 3

π
√

6n
+O

(
1

n

))
. (6.6)

Next we estimate S2 using the leading term in (6.5)

S2 = − 27

256
√

6n
3
2

(
1 +O

(
n−

1
2

)) ∑
ν (mod 3)

ζ−2µν
3

∫ 1

−1

(
1− w2

)− 1
4 g∗1,ν(w)eπ

√
6n(1−w2)dw.

Using the saddle point method and the fact that g∗1,ν(0) = 2
√

2
π δν,0 we obtain

S2 = − 81

32π (6n)
7
4

eπ
√

6n
(

1 +O
(
n−

1
2

))
.

Next we approximate

S3 =
9

512
√

6n
3
2

(
1 +O

(
n−

1
2

)) ∑
ν (mod 3)

ζ−2µν
3

×
∑

r1,r2 (mod 3k)
r1≡r2+ν (mod 3)

∫
Q(w)≤1

(1−Q(w))−
1
4 g∗1,r(w)eπ

√
6n(1−Q(w))dw.



AN EXACT FORMULA 23

Again using the saddle point method and the fact that g∗1,r(0) = 27
π2 δr,0 we obtain

S3 =
27
√

3

256π2n2
eπ
√

6n
(

1 +O
(
n−

1
2

))
.

Combining all three terms proves the claim.

7. Numerical Results on an Example

In this section, we give numerical data for the Rademacher expansion of α3,µ(n) given in
Theorem 1.1. Denote the contribution of the first line of α3,µ(n) expansion by A1(N), the
second line by A2(N), and the third and fourth lines by A3(N) with the sum over k taken from
one to N in all cases. In Tables 1 and 2 we take the n = 5 case as an example and display how
A1(N) +A2(N) +A3(N) approaches to α3,0(5) = 1512 and α3,1(5) = 40881, respectively.5

N = 1 N = 2 N = 3
A1(N) 21840.0401 . . . 21843.2723 . . . 21843.0363 . . .
A2(N) −32806.5410 . . . −32811.3140 . . . −32810.8548 . . .
A3(N) 12478.4547 . . . 12480.0457 . . . 12479.8193 . . .

A1(N) +A2(N) +A3(N) 1511.9538 . . . 1512.0039 . . . 1512.0008 . . .

Table 1. Numerical results for α3,0(5) = 1512.

N = 1 N = 2 N = 3
A1(N) 221918.638 . . . 221910.095 . . . 221910.095 . . .
A2(N) −255562.432 . . . −255548.451 . . . −255548.537 . . .
A3(N) 74525.064 . . . 74519.364 . . . 74519.440 . . .

A1(N) +A2(N) +A3(N) 40881.270 . . . 40881.008 . . . 40880.998 . . .

Table 2. Numerical results for α3,1(5) = 40881.

Our results in Section 6 give upper bounds for the error in A1(N) + A2(N) + A3(N) by

O(N−
3
2 log(N)2) for fixed n. This should be compared with the O(N−

3
2 ) error that one would

have in the case of an ordinary modular form of the same weight. Despite that, our numerical
results suggest that A1(N) +A2(N) +A3(N) converges faster than A1(N) due to cancellations
between A1(N), A2(N), and A3(N). It would be interesting to go beyond numerical analysis,
understand whether this is in fact the case and whether there is another representation of the
Fourier coefficients that can make this behavior obvious.

5The computation of A1(N), A2(N), and A3(N) requires O(N), O(N2), and O(N3) computations involving
modified Bessel functions and their integrals, respectively. Also note that the leading term (N = 1) can be
computed in constant time and our discussion on the asymptotic expansion shows that the error is exponentially
suppressed as n gets larger.
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