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Abstract. False theta functions form a family of functions with intriguing modular properties
and connections to mock modular forms. In this paper, we take the first step towards investigating
modular transformations of higher rank false theta functions, following the example of higher depth
mock modular forms. In particular, we prove that under quite general conditions, a rank two false
theta function is determined in terms of iterated, holomorphic, Eichler-type integrals. This provides
a new method for examining their modular properties and we apply it in a variety of situations
where rank two false theta functions arise. We first consider generic parafermion characters of
vertex algebras of type A2 and B2. This requires a fairly non-trivial analysis of Fourier coefficients
of meromorphic Jacobi forms of negative index, which is of independent interest. Then we discuss
modularity of rank two false theta functions coming from superconformal Schur indices. Lastly, we

analyze Ẑ-invariants of Gukov, Pei, Putrov, and Vafa for certain plumbing H-graphs. Along the
way, our method clarifies previous results on depth two quantum modularity.

1. Introduction and statement of results

Modular forms and their variations provide a rich source of interaction between physics and
mathematics. More recently, functions with more general forms of modular properties, such as
mock modular forms, have gathered attention in both areas. In this paper, we focus on such a
family of functions with generalized modularity properties called false theta functions. These are
functions that are similar to ordinary theta functions on lattices with positive definite signature,
except for certain extra sign functions, which prevent them from having the same simple modular
properties as ordinary theta functions. For false theta functions over rank one lattices, one approach
to understand them is by noting that they can be realized as holomorphic Eichler integrals of unary
theta functions. This representation can be used to study the modular transformations of such
functions and helps one understand why their limit to rational numbers yield quantum modular
forms [35]. An alternative approach to modularity of false theta functions in [17, 18] is motivated
by the concept of the S-matrix in conformal field theory. In this setup, false theta functions are
“regularized” (defined on C × H, where H is the complex upper half-plane) and transform with
integral kernels under the modular group. The S-kernel can be used to formulate a continuous
version of the Verlinde formula [17]. Yet another approach is to follow the example of mock
modular forms and form a modular completion as done in [11], where elliptic variables can also
be naturally understood. The modular completion now depends on two complex variables in the
upper half-plane (τ, w) ∈ H×H, which transform in the same way under modular transformations,1

and similar to mock modular forms, differentiating in w yields a modular form in w.
One of the main goals in this paper is to generalize the considerations from [11] to rank two false

theta functions. As for rank one false theta functions, to study the modular transformations we
follow the lead of higher depth mock modular forms, which were defined in unpublished work of
Zagier and Zwegers and were recently developed through signature (n, 2) indefinite theta functions

1A similar picture is obtained for mock modular forms by complexifying the complex conjugate of the modular
variable τ so that we have a pair of complex variables (τ, w) one living in the upper half-plane and one in the lower
half-plane with both transforming in the same way under modular transformations.
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by [2].2 In particular, the double error functions introduced by [2] show how double products of sign
functions can be replaced to give modular completions. In Lemma 3.1 we give a particularly useful
form to understand this fact in a shape suitable for our context. This result then suggests a notion
of false theta functions at “depth two”, where we find a modular completion again depending on
two complex variables (τ, w) ∈ H × H \ {τ = w} and where the derivative in w leads to modular
completions of the kind studied in [11], which are at “depth one”. More specifically, our result leads

us to modular completions f̂(τ, w) which transform like modular forms under simultaneous modular
transformations (τ, w) 7→ (aτ+b

cτ+d ,
aw+b
cw+d) for

(
a b
c d

)
∈ SL2(Z) and reproduce the rank two false theta

functions we are studying through the limit limw→τ+i∞ f̂(τ, w). Moreover, their derivatives with
respect to w appear in the form

∂f̂(τ, w)

∂w
=
∑
j

(i(w − τ))rj ĝj(τ, w)hj(w),

where rj ∈ Z
2 , hj is a weight 2 + rj modular form (with an appropriate multiplier system), and

ĝj(τ, w) is a modular completion of the sort studied in [11]. This is a structure that closely resembles
those of depth two mock modular forms. It would be interesting to elaborate on the details here
and form an appropriate notion of “higher depth false modular forms” by mirroring the structure of
higher depth mock modular forms. We leave this problem as future work and restrict our attention
to answering concrete modularity questions about rank two false theta functions arising in a variety
of mathematical fields.

A rich source of false theta functions that is studied in this paper is through the Fourier co-
efficients of meromorphic Jacobi forms with negative index or their multivariable generalizations
[7, 12].3 Such meromorphic Jacobi forms naturally arise in representation theory of affine Lie alge-
bras and in conformal field theory. In vertex algebra theory, important examples of meromorphic
Jacobi forms come from characters of irreducible modules for the simple affine vertex operator
algebra Vk(g) at an admissible level k. At a boundary admissible level [26], these characters admit
particularly elegant infinite product form. Modular properties of their Fourier coefficients are un-
derstood only for g = sl2 and V− 3

2
(sl3). For the latter, the Fourier coefficients are essentially rank

two false theta functions (see [7] for more details). On the very extreme, if the level is generic, the
character of Vk(g) is given by

ch[Vk(g)](ζ; q)] =
q
− dim(g)k

24(k+h∨)

(q; q)n∞
∏
α∈∆+

(ζαq; q)∞
∏
α∈∆+

(ζ−αq; q)∞
, (1.1)

where n is the rank of g, h∨ the dual Coxeter number, and as usual, (a; q)r :=
∏r−1
j=0(1 − aqj)

for r ∈ N0 ∪ {∞}. Moreover ζ are variables parametrizing the set of positive roots ∆+ of g and
throughout this paper we use bold letters to denote vectors. Although (1.1) is not a Jacobi form,
a slight modification in the Weyl denominator gives a genuine Jacobi form of negative index. The
Fourier coefficients of (1.1) are important because they are essentially characters for the parafermion
vertex algebra Nk(g) [19, 20, 25] (see also Section 5), whose character is given by

(q; q)n∞CT[ζ] (ch[Vk(g)](ζ; q)) , (1.2)

where CT[ζ] denotes the constant term in the expansion in ζj . The character can be expressed as
linear combinations of coefficients of Jacobi forms. One of the goals of this paper is to investigate
modular properties of (1.2) for types A2 and B2, which leads us to the following result.

2A notion that is similar to higher depth mock modular forms is that of polyharmonic Maass forms [5, 29].
3Here and in the rest of this paper, whenever we say Fourier coefficients of (meromorphic) Jacobi forms, we mean

Fourier coefficients with respect to the elliptic variables.
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Theorem 1.1. Characters of the parafermion vertex algebras of type A2 and B2 can be written
as linear combinations of (quasi-)modular forms and false theta functions of rank one and two.
The rank two pieces in these decompositions can be written as iterated holomorphic Eichler-type
integrals, which yields the modular transformation properties of these functions.

Note that more precise versions of this result are given in Propositions 5.1, 5.4, 5.5, 6.1, 6.6, and
6.7. Independent of modular properties, we expect that the analysis we make on the characters
ch[Vk(g)] in these two cases will also shed some light on the nature of coefficients of meromorphic,
multivariable Jacobi forms of negative definite index. We furthermore hope that our techniques
can be extended to study parafermionic characters at boundary admissible levels.

Meromorphic Jacobi forms closely related to characters of affine Lie algebras at boundary admis-
sible levels also show up in the computation of the Schur index I(q) of 4d N = 2 superconformal
field theories (SCFTs) [4, 13]. If refined by flavor symmetries, the Schur index is denoted by
I(q, z1, .., zn). In this paper, we are only interested in the Schur index of some specific SCFTs,
called Argyres–Douglas theories of type (A1, D2k+2), whose index with two flavors was first com-
puted in [13] (see also [15]) and later identified with certain vertex algebra characters in [16]. In
particular, for k = 1 the index coincides with the character of the aforementioned vertex algebra
V− 3

2
(sl3). Our second main result deals with modularity of Fourier coefficients of these indices; for

a more precise statement see Section 7.

Theorem 1.2. The Fourier coefficients of the Schur indices of Argyres–Douglas theories of type
(A1, D2k+2) are essentially rank two false theta functions. Moreover, the constant terms in these
Fourier expansions can be expressed as double Eichler-type integrals.

The third main result concerns the Ẑ-invariants, called homological blocks, of plumbed 3-
invariants introduced recently by Gukov, Pei, Putrov, and Vafa [24] and further studied from
several viewpoints in [9, 14, 21, 23, 24, 27, 32]. For Seifert homology spheres, it is well-known
that they can be expressed as linear combinations of derivatives of unary false theta functions,
whose modular properties are known. Further computations of Ẑ-invariants for certain non-Seifert
integral homology spheres were given in [9]. Our next result is an integral representation of these
invariants. Compared to [9], Theorem 1.3 gives a more direct relationship between iterated Eichler

integrals and Ẑ-invariants.

Theorem 1.3. Let M be a plumbed 3-manifold obtained from a unimodular H graph as in [9]. Then

the Ẑ-invariant of M has a representation of the shape

Ẑ(τ) =

∫ τ+i∞

τ

∫ w1

τ

Θ1(w1, w2)√
i(w1 − τ)

√
i(w2 − τ)

dw2dw1 + Θ2(τ),

where Θ1(w1, w2) is a linear combination of products of derivatives of unary theta functions in

w1 and w2 and Θ2(τ) is a rank two theta function. Moreover, there is a completion of Ẑ which
transforms like a weight one modular form.4

Importantly, Theorems 1.1, 1.2, and 1.3 completely determine the modular properties of the func-
tions under investigation. These results in turn pave the way for studying “precision asymptotics”
for the relevant functions within all the contexts stated above, i.e., characters of parafermionic
algebras, supersymmetric Schur indices, and homological invariants of 3-manifolds. In the case of
classical modular forms, this is accomplished by studying Poincaré series and by using the Circle
Method. The most classical example is the exact formula for the integer partition function found

4In this paper, we employ “hats” to denote modular completions as is common in the literature for mock modular

forms. This should not be confused with the hat that appears in Ẑ for homological blocks, which is also a standard
notation in literature.
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by Rademacher [33], whose convergent formula extended the asymptotic results of Hardy and Ra-
manujan significantly. In fact, such results are intimately related to the finite-dimensionality of
the associated vector spaces of modular objects and this property forms the basis for many of the
remarkable applications of modularity to different fields of mathematics. The Circle Method has
already been applied to a case involving rank one false theta functions in [11] and to one involving
depth two mock modular forms in [10]. It would be interesting to extend these results to the class
of functions studied in this paper and explore the implications to the different fields considered
here.

Finally, the outline of the paper is as follows: In Section 2, we gather several facts on certain
classical modular forms, Jacobi theta functions, and a number of meromorphic Jacobi forms of
two complex variables used in the paper. In Section 3, we prove Lemma 3.1, which is the main
technical tool used to study rank two false theta functions as we demonstrate in the rest of the
section. Then in Section 4, we collect several technical results used in studying Fourier coefficients
of meromorphic Jacobi forms. In Section 5, we turn our attention to parafermionic characters of
type A2 and show that one can write them in terms of modular forms and a rank two false theta
function. We then find the modular transformations of the rank two piece using tools from Section
3. In Section 6, we apply the same type of analysis on generic parafermionic characters of type B2.
In Section 7, we demonstrate how the tools used in this paper also applies to rank two false theta
functions coming from superconformal Schur indices and Ẑ-invariants of 3-manifolds. We conclude
in Section 8 with final remarks and comments on future prospects.
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2. Preliminaries

We start by recalling several functions which we require in this paper. Firstly, let

η(τ) := q
1
24

∞∏
n=1

(1− qn)

be Dedekind’s η-function, where q := e2πiτ . It satisfies the modular transformations

η(τ + 1) = e
πi
12 η(τ), η

(
−1

τ

)
=
√
−iτη(τ).

Note that these two transformations imply that for M =
(
a b
c d

)
∈ SL2(Z) we have

η

(
aτ + b

cτ + d

)
= νη(M)(cτ + d)

1
2 η(τ),

where νη denotes the multiplier system for the η-function. We furthermore use the identity

η(τ)3 =
∑
n∈Z

(−1)n
(
n+

1

2

)
q

1
2(n+ 1

2)
2

.
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We also require the Jacobi theta function defined by (ζ := e2πiz)

ϑ(z; τ) :=
∑

n∈Z+ 1
2

eπinqn
2
ζn.

By the Jacobi triple product formula, we have the product expansion

ϑ(z; τ) = −iq
1
8 ζ−

1
2 (q; q)∞(ζ; q)∞

(
ζ−1q; q

)
∞ . (2.1)

The Jacobi theta function transforms like a Jacobi form of weight and index 1
2 :

ϑ(z; τ + 1) = e
πi
4 ϑ(z; τ), ϑ

(
z

τ
;−1

τ

)
= −i

√
−iτe

πiz2

τ ϑ(z; τ), (2.2)

ϑ(z + 1; τ) = −ϑ(z; τ), ϑ(z + τ ; τ) = −q−
1
2 ζ−1ϑ(z; τ). (2.3)

Moreover, we have [
∂

∂z
ϑ(z; τ)

]
z=0

= −2πη(τ)3. (2.4)

We also need the unary theta functions

ϑm,r(z; τ) :=


∑

n∈Z+ r
2m

qmn
2
ζ2mn if m ∈ Z,∑

n∈Z+ r
2m

+ 1
2

(−1)n−
r+m
2m qmn

2
ζ2mn if m ∈ Z + 1

2 .

They satisfy the following elliptic and modular transformations.

Lemma 2.1.
(1) For m ∈ Z and r ∈ Z/2mZ, we have:

ϑm,r(z; τ + 1) = e
πir2

2m ϑm,r(z; τ),

ϑm,r

(
z

τ
;−1

τ

)
= e

2πimz2

τ

√
−iτ√
2m

∑
` (mod 2m)

e−
πir`
m ϑm,`(z; τ).

(2) For m ∈ Z + 1
2 and r ∈ Z/2mZ, we have:

ϑm,r(z; τ + 1) = e
πi(r+m)2

2m ϑm,r(z; τ),

ϑm,r

(
z

τ
;−1

τ

)
= e

2πimz2

τ
e−πim

√
−iτ√

2m

∑
` (mod 2m)

(−1)r+`e−
πir`
m ϑm,`(z; τ).

We denote the derivatives of ϑm,r(z; τ) with respect to z as:

ϑ[k]
m,r(τ) :=

[(
1

4πim

∂

∂z

)k
ϑm,r(z; τ)

]
z=0

.

Note that we drop the superscript if k = 0.
Another function we use is the quasimodular Eisenstein series

E2(τ) := 1− 24

∞∑
n=1

∑
d|n

dqn,
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which satisfies the (quasi)modular transformations

E2(τ + 1) = E2(τ), E2

(
−1

τ

)
= τ2E2(τ) +

6τ

πi
.

This function is used in the definition of the Ramanujan-Serre derivative,

Dk :=
1

2πi

∂

∂τ
− k

12
E2(τ),

which maps modular forms of weight k to modular forms of weight k + 2.
Finally, in Sections 5 and 6, we analyze Fourier coefficients of two multivariable meromorphic

Jacobi forms defined as follows:

TA(z; τ) :=
1

ϑ(z1; τ)ϑ(z2; τ)ϑ(z1 + z2; τ)
, TB(z; τ) :=

TA(z; τ)

ϑ(2z1 + z2; τ)
. (2.5)

Here we recall that a Jacobi form f : CN ×H→ C of weight k ∈ 1
2Z and matrix index M ∈ 1

4Z
N×N

satisfies the following transformation laws (with multipliers ν1, ν2):

(1) For
(
a b
c d

)
∈ SL2(Z) we have

f

(
z

cτ + d
;
aτ + b

cτ + d

)
= ν1

(
a b
c d

)
(cτ + d)k e

2πic
cτ+d

zTMzf(z; τ).

(2) For (m, `) ∈ ZN × ZN we have

f (z +mτ + `; τ) = ν2(m, `)q−m
TMme−4πimTMzf(z; τ).

From (2.2) and (2.3) we easily see that TA and TB transform like Jacobi forms with weights −3
2

and −2, and matrix indices −1
2 ( 2 1

1 2 ) and −1
2 ( 6 3

3 3 ), respectively (with some multipliers). We also
consider in Section 7 for k ∈ N,

Tk(z; τ) :=
ϑ(z1; (k + 1)τ)ϑ(z2; (k + 1)τ)ϑ(z1 + z2; (k + 1)τ)

ϑ (z1; τ)ϑ
(
z2; k+1

2 τ
)
ϑ
(
z1 + z2; k+1

2 τ
) .

The function Tk((k + 1)z; τ) with rescaled elliptic variables is a Jacobi form of weight zero and
matrix index −k+1

2

(
k+1 1

1 2

)
.

3. Products of Sign Functions and Iterated Integrals

A key technical result in this paper is the following lemma which allows one to write products
of sign functions in terms of iterated integrals. This lemma essentially follows from Proposition 3.8
of [2], which gives an expression that allows efficient numeric evaluation of double error functions
developed there. These double error functions play a fundamental role in understanding modular
properties of indefinite theta functions for lattices of signature (n, 2). The double error functions
become signs towards infinity and this is what we express in the next lemma. It is further processed
and cast into a form from which the modular properties of false theta functions are manifest.

Lemma 3.1. For `1, `2 ∈ R, κ ∈ R, with (`1, `2 + κ`1) 6= (0, 0), we have

sgn(`1)sgn(`2 + κ`1)q
`21
2

+
`22
2 =

∫ τ+i∞

τ

`1e
πi`21w1√

i(w1 − τ)

∫ w1

τ

`2e
πi`22w2√

i(w2 − τ)
dw2dw1

+

∫ τ+i∞

τ

m1e
πim2

1w1√
i(w1 − τ)

∫ w1

τ

m2e
πim2

2w2√
i(w2 − τ)

dw2dw1 +
2

π
arctan(κ)q

`21
2

+
`22
2 ,

where sgn(x) := x
|x| for x 6= 0, sgn(0) := 0, m1 := `2+κ`1√

1+κ2
, and m2 := `1−κ`2√

1+κ2
.
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Remark. We use τ + i∞ in the upper limits of these integrals to indicate that all such integrals
are taken along the vertical path from τ to i∞ and we use the principal value of the square root.

Proof of Lemma 3.1. We first assume that both `1, `2 + κ`1 6= 0. Shifting wj 7→ iwj + τ the first
term on the right-hand side of the lemma equals

− `1`2q
`21
2

+
`22
2

∫ ∞
0

e−π`
2
1w1

√
−w1

∫ w1

0

e−π`
2
2w2

√
−w2

dw2dw1. (3.1)

On the path of integration, we have
√−wj = i

√
wj . Changing wj 7→ w2

j , equation (3.1) thus equals

4`1`2q
`21
2

+
`22
2

∫ ∞
0

e−π`
2
1w

2
1

∫ w1

0
e−π`

2
2w

2
2dw2dw1.

We then employ the following integral identity, which is straightforward to verify

4`1`2

∫ ∞
0

e−π`
2
1w

2
1

∫ w1

0
e−π`

2
2w

2
2dw2dw1 =

2

π
arctan

(
`2
`1

)
.

Using that m2
1 +m2

2 = `21 + `22, the statement of the lemma is equivalent to

2

π

(
arctan

(
`2
`1

)
+ arctan

(
m2

m1

)
+ arctan(κ)

)
= sgn(`1)sgn(`2 + κ`1).

This identity may be deduced using general properties of arctangent. The cases in which one of
`1, `2 + κ`1 vanishes can be shown similarly. �

Now, consider a general rank two false theta function∑
n∈Z2+α

sgn(n1)sgn(n2)q
1
2(an2

1+2bn1n2+cn2
2),

where a, b, and c are integers such that the quadratic form in the exponent is positive definite, and
α = (α1, α2) ∈ Q2. Moreover define the theta functions

Θ1(w) :=
∑

n∈Z2+α

n1

(
n2 +

b

c
n1

)
eπi

∆
c
n2

1w1+πic(n2+ b
c
n1)

2
w2 ,

Θ2(w) :=
∑

n∈Z2+α

n2

(
n1 +

b

a
n2

)
eπi

∆
a
n2

2w1+πia(n1+ b
a
n2)

2
w2 ,

where ∆ := ac− b2 > 0, and the modular theta function

Θ(τ) :=
∑

n∈Z2+α

q
1
2(an2

1+2bn1n2+cn2
2).

Then we have the following:

Proposition 3.2. We have∑
n∈Z2+α

sgn(n1)sgn(n2)q
1
2(an2

1+2bn1n2+cn2
2) − 2

π
δα∈Z2 arctan

(
b√
∆

)

=
√

∆

∫ τ+i∞

τ

∫ w1

τ

Θ1(w) + Θ2(w)√
i(w1 − τ)

√
i(w2 − τ)

dw2dw1 −
2

π
arctan

(
b√
∆

)
Θ(τ),

where δC = 1 if a condition C holds and zero otherwise.
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Proof. Letting `1 =
√

∆
c n1, `2 =

√
cn2 + b√

c
n1, and κ = − b√

∆
, we get

sgn(`1)sgn(`2 + κ`1)q
`21
2

+
`22
2 = sgn(n1)sgn(n2)q

1
2(an2

1+2bn1n2+cn2
2).

Summing over Z2 + α using Lemma 3.1, noting that m1 =
√

∆
a n2 and m2 = 1√

a
(an1 + bn2) and

including a correction for the case (`1, `2 +κ`1) = (0, 0) which occurs if α ∈ Z2 yields the claim. �

Remark. We may modify the above construction to get a family of functions for which both the
modular part including Θ(τ) and the correction term including δα∈Z2 vanish. For this purpose,
consider false theta functions of the form∑

n∈Z2+(0,α2)

(−1)n1sgn(n1)sgn(n2)q
1
2(an2

1+2bn1n2+cn2
2),

such that a | b and b
aα2 ≡ 1

2 (mod 1). In particular, we have α2 6∈ Z and hence the correction

term, with δα∈Z2 , vanishes. Note that this condition is satisfied if α2 = 1
2r , where r = b

a . Some
series of this form are discussed in Chapter 5. As in Proposition 3.2, we can represent these q-series
as iterated Eichler-type integrals with Θ1, Θ2, and Θ now picking up an additional (−1)n1 factor.
Because b

aα2 ≡ 1
2 (mod 1), the corresponding Θ-part is vanishing as∑

n∈Z2+(0,α2)

(−1)n1q
1
2(an2

1+2bn1n2+cn2
2) =

∑
n2∈Z+α2

q
∆
2a
n2

2

∑
n1∈Z

(−1)n1q
a
2

(
n1+

bn2
a

)2

= 0.

4. Decomposition Formulas for Meromorphic Jacobi Forms

Before moving to examples, we collect a few auxiliary results used in decomposing multivariable
meromorphic Jacobi forms and extracting their Fourier coefficients. We start with a basic result
involving two Jacobi theta functions. Besides its use in Section 5, the methods employed in its
proof are employed as a blueprint for more complex variations that we need in sections below. Here
and throughout we sometimes drop dependencies on τ if they are clear from the context; e.g. we
often write η instead of η(τ). The next result was suggested to us by S. Zwegers.

Lemma 4.1. For r ∈ Z and w 6∈ Zτ + Z we have

ζr

ϑ(z)ϑ(z + w)
=

i

η3ϑ(w)

∑
n∈Z

qn
2−rne−2πinw

1− ζqn
− ie−2πirw

η3ϑ(w)

∑
n∈Z

qn
2−rne2πinw

1− ζe2πiwqn
.

Proof. Define

h(z) :=
e2πirz

ϑ(z)ϑ(z + w)
, g(z, z) :=

∑
n∈Z

qn
2−rne−2πin(2z+w)

1− ζe−2πizqn
.

Using (2.3) gives that z 7→ h(z)g(z, z) is elliptic. Let Pδ := δ + [0, 1] + [0, 1]τ be a fundamental
parallelogram with δ in a small neighborhood of 0 such that z 7→ h(z)g(z, z) has no poles on the
boundary. Moreover, we assume that z and −w are in Pδ and prove the proposition statement
for such values; the result generalizes to the whole complex plane by analytic continuation. If we
integrate h(z)g(z, z) around Pδ counterclockwise, then the integral vanishes by ellipticity of the
function and we have, by the Residue Theorem

0 =

∫
∂Pδ

h(z)g(z, z)dz = 2πi
∑
w∈Pδ

Resz=w(h(z)g(z, z)).

Using that Resz=z(g(z, z)) = 1
2πi , we get

h(z) = −2πig(z, 0) Resz=0(h(z))− 2πig(z,−w) Resz=−w(h(z)).
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We compute, using (2.4)

Resz=0(h(z)) = − 1

2πη3ϑ(w)
, Resz=−w(h(z)) =

e−2πirw

2πη3ϑ(w)
,

which then gives the claim. �

We next state two variations of this result involving three Jacobi theta functions, which we need
in Section 6 and whose proofs follow the same method as the one used in Lemma 4.1.

Lemma 4.2. For w1, w2, w1 − w2 6∈ Zτ + Z, and r ∈ Z + 1
2 , we have

ζr

ϑ(z)ϑ(z + w1)ϑ(z + w2)
=

i

η3ϑ(w1)ϑ(w2)

∑
n∈Z

(−1)nq
3n2

2
−rne−2πin(w1+w2)

1− ζqn

+
ie−2πirw1

η3ϑ(w1)ϑ(w1 − w2)

∑
n∈Z

(−1)nq
3n2

2
−rne−2πin(w2−2w1)

1− ζe2πiw1qn

+
ie−2πirw2

η3ϑ(w2)ϑ(w2 − w1)

∑
n∈Z

(−1)nq
3n2

2
−rne−2πin(w1−2w2)

1− ζe2πiw2qn
.

Lemma 4.3. For w1, w2 6∈ Z τ
2 + Z1

2 , w1 − w2 6∈ Zτ + Z, and r ∈ Z, we have

ζr

ϑ(2z)ϑ(z + w1)ϑ(z + w2)

=
ie−2πirw1

η3ϑ(2w1)ϑ(w1 − w2)

∑
n∈Z

q3n2−rne2πin(5w1−w2)

1− ζe2πiw1qn
+

ie−2πirw2

η3ϑ(2w2)ϑ(w2 − w1)

∑
n∈Z

q3n2−rne2πin(5w2−w1)

1− ζe2πiw2qn

+
i

2η3

∑
`1,`2∈{0,1}

(−1)`1+`2+r`2q
`1(`1+r)

2

ϑ
(
w1 + `1τ+`2

2

)
ϑ
(
w2 + `1τ+`2

2

)∑
n∈Z

q3n2−(3`1+r)ne−2πin(w1+w2)

1− (−1)`2ζqn−
`1
2

.

5. Generic Parafermionic Characters of type A2

5.1. Parafermions and parfermion algebras. The parafermionic conformal field theories first
appeared in the famous article of Fateev and Zamolodchikov on Zk-parafermions [36]. The fields
in such theories have fractional conformal weight and are not necessarily local to each other, which
thereby generalizes the familiar bosonic and fermionic free fields.

In mathematics literature, parafermions and parafermionic spaces originally appeared in the
ground-breaking work of Lepowsky and Wilson on Z-algebras and Rogers–Ramanujan identities
[30]. This concept was later formalized by Dong and Lepowsky in [19], where parafermionic spaces
[36] were viewed as examples of generalized vertex algebras. Although [30, 36] dealt only with sl2
parafermions at positive integral levels, parafermions can be defined for any affine Lie algebra g and
any level k. In this generality, the parafermionic space Ωk(g) consists of highest weight vectors for
the Heisenberg vertex subalgebra inside the affine vertex algebra Vk(g). The parafermion (vertex)
algebra, denoted by Nk(g) ⊂ Ωk(g), is defined as the charge zero subspace of the parafermionic

space. It has a natural vertex operator algebra structure of central charge c = kdim(g)
k+h∨ − n. Then

the parafermionic character is defined by

ch[Nk(g)](q) := tr|Nk(g)q
L(0)− c

24 ,

where L(0) is the degree operator. This can in turn be expressed as the constant term (1.2)
discussed in the introduction. To illustrate this concept, let us consider the simplest non-trivial
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case of V2(sl2). The parafermionic space Ω2(sl2) is simply the free fermion vertex superalgebra and
N2(sl2) is the even part thereof, also known as the c = 1

2 Ising model. Therefore,

ch[N2(sl2)](q) = q−
1
48


(
−q

1
2 ; q
)
∞

2
+

(
q

1
2 ; q
)
∞

2

 .

For other levels, k ∈ N, k ≥ 3, the algebraic structure of Nk(sl2) is more complicated and in-
volves non-linear W -algebras. Parafermionic characters of sl2 for positive integral levels are well-
understood [3, 25] and they transform as vector-valued modular forms of weight zero. Similar
results persist for higher rank algebras.

For generic k, that is if Vk(g) is the universal affine vertex algebra (e.g. k 6∈ Q), properties of
Nk(g) are quite different. The structure of the parafermion algebra is known explicitly only in a
handful of examples and their parafermionic characters are not modular.

5.2. Parafermionic character of A2. We are finally at a point where we can work out our first
example involving generic parafermionic characters of type A2. As a warm up to this discussion,
we first consider the simplest example, which is the generic parafermionic characters of type A1.
Example. For g = sl2, the parafermionic character is known to be (see for instance [1, 3])

CT[ζ]

(
1

(ζq; q)∞(ζ−1q; q)∞

)
=

1

(q; q)2
∞

(
−1 + 2

∞∑
n=0

(−1)nq
n(n+1)

2

)
= − q

1
12

η(τ)2
+ 2

q−
1
24ψ(τ)

η(τ)2
,

where ψ(τ) :=
∑

n∈Z sgn(n + 1
4)q2(n+ 1

4
)2

is Rogers’ false theta function. The modular properties

of ψ(τ)
η(τ)2 were studied and used in [11] to give a Rademacher type exact formula for its coefficients

in the q-expansion. The constant term in the above example splits into two q-series with different
modular behaviors (note the different q-powers). Our goal is to obtain a similar decomposition for
the A2 vacuum character.

5.3. Expression in terms of false theta functions.
Specializing equations (1.1) and (1.2) to the case of A2 with positive roots

∆+ :=

{
α1 =

(
1
0

)
, α2 =

(
0
1

)
, α1 + α2

}
,

the goal in this section is to study the constant term of

G(ζ) := q
8k

24(k+3) (q; q)2
∞ch[Vk(sl3)](ζ; q) =

1(
ζ1q, ζ

−1
1 q, ζ2q, ζ

−1
2 q, ζ1ζ2q, ζ

−1
1 ζ−1

2 q; q
)
∞
,

where (a1, . . . , a`; q)n :=
∏`
j=1(aj ; q)n. Using (2.1) we rewrite it as (ζj := e2πizj )

G(ζ) = iq
1
4 η3 ζ

−1
1 ζ−1

2 (1− ζ1)(1− ζ2)(1− ζ1ζ2)

ϑ(z1)ϑ(z2)ϑ(z1 + z2)
. (5.1)

Then, to state our result on the constant term of G(ζ), we introduce the following functions:

G0(τ) := 1 + 3
∑
n∈Z
|n|qn2 − 6q−

1
4

∑
n∈Z+ 1

2

|n|qn2
,

Ψ(τ) :=
∑

n∈Z2+( 1
3
, 1
3)

sgn(n1)sgn(n2)n1q
QA(n), where QA(n) := n2

1 + n1n2 + n2
2.
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Proposition 5.1. For |q| < |ζ1|, |ζ2|, |ζ1ζ2| < 1 we have

CT[ζ] (G (ζ)) =
q

1
4

η(τ)6
G0(τ) +

9q−
1
12

η(τ)6
Ψ(τ)

= 1 + 3q2 + 8q3 + 21q4 + 48q5 + 116q6 + 252q7 + 555q8 + 1156q9 +O
(
q10
)
.

To prove Proposition 5.1, we employ Lemma 4.1 and another auxiliary result stated below, which
itself is a corollary of Lemma 4.1.

Lemma 5.2. For r ∈ Z we have

ζr

ϑ(z)2
= − 1

η6

∑
n∈Z

qn
2−rn

(
2n− r − 1

1− ζqn
+

1

(1− ζqn)2

)
.

Proof. Using (2.4) and the fact that ϑ is odd, we find that for a function F that is holomorphic in
a neighborhood of w = 0, we have

F (w)

ϑ(w)
= − 1

2πη3

(
F (0)

w
+ F ′(0)

)
+O(w) as w → 0.

Thus taking the limit w → 0 in Lemma 4.1 yields (noting that F (0) = 0 in this case)

ζr

ϑ(z)2
= − i

2πη6

∑
n∈Z

qn
2−rn

[
∂

∂w

(
e−2πinw

1− ζrqn
− e2πi(n−r)w

1− ζre2πiwqn

)]
w=0

.

The result follows, using that

i

2π

[
∂

∂w

(
e−2πinw

1− ζqn
− e2πi(n−r)w

1− ζe2πiwqn

)]
w=0

=
2n− r − 1

1− ζqn
+

1

(1− ζqn)2
. �

We are now ready to compute Fourier coefficients of the meromorphic Jacobi form appearing in
equation (5.1). To state our result, we define

D(r) := CT[ζ]

(
iη9ζr11 ζ

r2
2

ϑ(z1)ϑ(z2)ϑ(z1 + z2)

)
,

D1(r) :=
∑
n∈N2

0

(n1 + 2n2 − r1)qn
2
1+n1n2+n2

2−r2n1−r1n2 ,

D2(r) :=
∑
n∈N2

0

(n1 − 2n2 + r1 − r2)qn
2
1−n1n2+n2

2−r2n1+(r2−r1)n2 .

Corollary 5.3. For |q| < |ζ1|, |ζ2|, |ζ1ζ2| < 1 and for r ∈ Z2 we have

D(r) = D1(r) +D2(r).

Proof. Using Lemma 4.1 with (r, z, w) 7→ (r2, z2, z1) we find that with TA defined in (2.5),

TA(z)ζr22 =
i

η3ϑ(z1)2

∑
n1∈Z

qn
2
1−r2n1ζ−n1

1

1− ζ2qn1
−
∑
n1∈Z

qn
2
1−r2n1ζn1−r2

1

1− ζ1ζ2qn1

 .

Next, we use Lemma 5.2 with (r, z) 7→ (r1 − n1, z1) and (r, z) 7→ (r1 − r2 + n1, z1) to write

iη9TA(z)ζr11 ζ
r2
2 =

∑
n∈Z2

qn
2
1+n1n2+n2

2−r2n1−r1n2

1− ζ2qn1

(
2n2 + n1 − r1 − 1

1− ζ1qn2
+

1

(1− ζ1qn2)2

)

−
∑
n∈Z2

qn
2
1−n1n2+n2

2−r2n1+(r2−r1)n2

1− ζ1ζ2qn1

(
2n2 − n1 + r2 − r1 − 1

1− ζ1qn2
+

1

(1− ζ1qn2)2

)
.
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The claim now follows using the identity

CT[ζ]

(
1

(1− ζqn)k

)
=

{
1 if n ≥ 0,

0 if n < 0,
(5.2)

which holds for z sufficiently close to 0 with |ζ| < 1 and k ∈ N. �

We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. Using (5.1) and Corollary 5.3, for |q| < |ζ1|, |ζ2|, |ζ1ζ2| < 1 we have

CT[ζ] (G (ζ)) =
q

1
4

η6

∑
r∈SA

εA(r)D(r),

where

SA := {(1, 0), (0, 1), (−1,−1), (−1, 0), (0,−1), (1, 1)} ,

εA(r) :=

{
1 if r ∈ {(1, 0), (0, 1), (−1,−1)},
−1 if r ∈ {(−1, 0), (0,−1), (1, 1)}.

Defining Q∗A(n) := QA(−n1, n2), we rewrite D1(r) and D2(r) as

D1(r) = q−
Q∗A(r)

3

∑
n∈N2

0

(n1 + 2n2 − r1)q
QA

(
n1+

r1−2r2
3

,n2+
r2−2r1

3

)
,

D2(r) = q−
Q∗A(r)

3

∑
n∈N2

0

(n1 − 2n2 + r1 − r2)q
Q∗A

(
n1− r1+r2

3
,n2+

r2−2r1
3

)
.

Then,

q
1
3

∑
r∈SA

εA(r)D1(r) =
∑
n∈N2

0

(
(n1 + 2n2 − 1)qQA(n1+ 1

3
,n2− 2

3) + (n1 + 2n2)qQA(n1− 2
3
,n2+ 1

3)

+ (n1 + 2n2 + 1)qQA(n1+ 1
3
,n2+ 1

3) − (n1 + 2n2 + 1)qQA(n1− 1
3
,n2+ 2

3)

− (n1 + 2n2)qQA(n1+ 2
3
,n2− 1

3) − (n1 + 2n2 − 1)qQA(n1− 1
3
,n2− 1

3)

)
.

Shifting either n1 or n2 by one while collecting the one-dimensional boundary terms yields∑
r∈SA

εA(r)D1(r) = 3q−
1
3

∑
n∈N2

0

(
(n1 + 2n2 + 1)qQA(n1+ 1

3
,n2+ 1

3) − (n1 + 2n2 + 2)qQA(n1+ 2
3
,n2+ 2

3)
)

+
∞∑
n=0

(
(n− 1)qn

2
+ 2nqn

2 − (2n+ 1)qn(n+1) − nqn(n+1) − (2n− 1)qn(n−1) − nqn(n+1)
)
.

Changing n 7→ −(1, 1) − n for the second two-dimensional term and shifting n 7→ n + 1 in the

one-dimensional contribution with the factor qn(n−1) we find that∑
r∈SA

εA(r)D1(r) =
3

2
q−

1
3

∑
n∈Z2+( 1

3
, 1
3)

(1 + sgn(n1)sgn(n2))(n1 + 2n2)qQA(n)

+ 1 +

∞∑
n=0

(
(3n− 1)qn

2 − 2(3n+ 1)qn(n+1)
)
.

12



A similar computation gives∑
r∈SA

εA(r)D2(r) =
3

2
q−

1
3

∑
n∈Z2+( 1

3
, 1
3)

(−1 + sgn(n1)sgn(n2))(n1 + 2n2)qQA(n)

+
∞∑
n=0

(
(3n+ 1)qn

2 − 2(3n+ 2)qn(n+1)
)
.

Then, combining the two terms we find∑
r∈SA

εA(r)D(r) = 3q−
1
3

∑
n∈Z2+( 1

3
, 1
3)

sgn(n1)sgn(n2)(n1 + 2n2)qQA(n)

+ 1 +

∞∑
n=0

(
6nqn

2 − 6 (2n+ 1) q(n+ 1
2)

2− 1
4

)
.

Noting the symmetry between n1 and n2 of the two-dimensional sum and antisymmetry of the two
one-dimensional sums under n 7→ −n and n 7→ −n − 1, respectively, (as well as the vanishing of
the first one-dimensional summand for n = 0) yields the result. �

Remark. Note that for r = (r1, r2), such that r1 + r2 ≡ 0 (mod 3), the coefficient D(r) is a finite
sum of one-dimensional false theta functions. Specifically for k ∈ N0, we have

D(3k, 3k) =

k−1∑
j=0

−
3k∑

j=k+1

 qj
2−3kj

∞∑
n=0

(2n+ j − 3k)qn
2+(j−3k)n

+

k∑
j=−k

qj
2−3k2

∞∑
n=0

qn
2

(
n
qjn + q−jn

2
+ j

(
qjn − q−jn

))
.

In particular, D(0, 0) =
∑∞

n=1 nq
n2

. This leads to the new q-hypergeometric representation

D(0, 0)

(q)6
∞

=
∑
n∈N4

0

qn1+n2+n4

(q)n1+n4−n3−1(q)n2+n4−n3−1(q)n1(q)n2(q)n3(q)n4

,

which easily follows from applying Euler’s identity 1
(a)∞

=
∑∞

n=0
an

(q)n
to TA(z; τ) six times.

Another consequence of the formula for D(0, 0) is the following q-series identity

∞∑
n=1

nqn
2

=
∑
n∈N4

0

(−1)n1+n2+n3q
1
2(n2

1+n2
2+n2

3+n1+n2+n3)+(n1+n2+n3+2)(n4+1)−n1
(
1 + qn1−n2−n3−n4−1

)
,

which follows after three applications of another well-known identity [3]

(q)2
∞

(ζ)∞(ζ−1q)∞
=
∑
`∈Z

ζ`
∑
n≥0

(−1)nq
n2+n

2
+n|`|+ 1

2
(|`|−`).

5.4. Modular properties of the parafermion character.
We now study the modular transformations of Ψ appearing in the A2 parafermion character. This

contains a two-dimensional false theta function and is the more interesting part of the character.
The first step is to apply Lemma 3.1 and rewrite Ψ in a more appropriate form to analyze modular
properties. To give this statement, we consider the function

h(w) := ϑ
[1]
3,1(w1)ϑ1,1(w2)− ϑ[1]

3,2(w1)ϑ1,0(w2)
13



and also define the following regularized integral for w1 ∈ H \ {τ}:∫ w1

∗ τ

f(w2)

(i(w2 − τ))
3
2

dw2 := lim
z→τ

(∫ w1

z

f(w2)

(i(w2 − τ))
3
2

dw2 + 2i
f(τ)√
i(z− τ)

)
,

where both the integral and the one-sided limit are taken along the hyperbolic geodesic from τ to
w. Now, one could deform the path of integration away from the hyperbolic geodesic and provided
that the contour does not cross the branch point at w2 = τ , the value of the regularized integral
is maintained thanks to the holomorphy of the integrand. The choice for the path here gives a
concrete way to compute the integral while working with the principal value of the square root and
moreover is quite convenient for studying the modular transformation properties we encounter in
this paper. In fact, for the remainder of this paper we assume that all similar (iterated) integrals in
the upper half-plane, including the one-sided limits involved in the regularization, are taken along
hyperbolic geodesics.

Proposition 5.4. We have

Ψ(τ) =

√
3

2π

∫ τ+i∞

τ

∫ w1

∗ τ

h(w)√
i(w1 − τ)(i(w2 − τ))

3
2

dw2dw1.

Proof. The claim follows from Lemma 3.1 and integration by parts noting that h(w1, w1) = 0. �

We now define the completion of Ψ as a function on H×H by

Ψ̂(τ, w) :=

√
3

2π

∫ w

τ

∫ w1

∗ τ

h(w)√
i(w1 − τ)(i(w2 − τ))

3
2

dw2dw1,

so that, with the limit taken to be vertical

Ψ(τ) = lim
w→τ+i∞

Ψ̂(τ, w).

Note that, unlike the one-dimensional false theta functions studied in [11] (where a cut-plane is
used for the domain of w), the integral to i∞ can be taken in any direction as long as the same
branch of square-root is used for both half-integral powers in the integrand.

Proposition 5.5. For M =
(
a b
c d

)
∈ SL2(Z) we have

Ψ̂

(
aτ + b

cτ + d
,
aw + b

cw + d

)
= νη(M)8(cτ + d)2 Ψ̂(τ, w).

Proof. It suffices to prove the statement for translation and inversion, in which case the claim is

Ψ̂(τ + 1, w + 1) = e
2πi
3 Ψ̂(τ, w) and Ψ̂

(
−1

τ
,− 1

w

)
= τ2Ψ̂ (τ, w) . (5.3)

We first recall that the integrals in w1 and w2 (as well as the one-sided limit used in regularizing
the integral) are taken along the hyperbolic geodesic from τ to w, i.e., along the unique circle with
a real center containing τ and w or along the straight vertical line from τ to w if Im(τ) = Im(w).

Then, we modify Ψ̂(τ, w) in the following way without changing its value

Ψ̂(τ, w) =

√
3

2π

∫ w

τ

1√
i(w1 − τ)

lim
z→τ

(∫ w1

z

h(w)

(i(w2 − τ))
3
2

dw2 + 2i
h(w1, z)√
i(z− τ)

z− w1

τ − w1

)
dw1. (5.4)

In this form, the modular transformation properties may be concluded by the following modular
transformations for h(w), which can be deduced from Lemma 2.1:

h(w + (1, 1)) = e
2πi
3 h(w) and h

(
− 1

w1
,− 1

w2

)
= w

3
2
1 w

1
2
2 h(w).
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In fact, to work with Ψ̂(− 1
τ ,−

1
w ), we change variables as w1 7→ − 1

w1
, w2 7→ − 1

w2
, z 7→ −1

z , z 7→ −
1
z

in equation (5.4). Note that integration and limit are originally taken along the geodesic from − 1
τ

to − 1
w , and the transformations map them to be on the geodesic from τ to w. We then find

Ψ̂

(
−1

τ
,− 1

w

)
=

√
3

2π

∫ w

τ

χw1,τ
√
w1
√
τ√

i(w1 − τ)

× lim
z→τ

(∫ w1

z
χw2,τ

w
3
2
2 τ

3
2h
(
− 1
w1
,− 1

w2

)
(i(w2 − τ))

3
2

dw2

w2
2

+ 2iχz,τ

z
1
2 τ

1
2h
(
− 1
w1
,−1

z

)
√
i(z− τ)

z− w1

τ − w1

τ

z

)
dw1

w2
1

,

where

χτ1,τ2 :=

√
i(τ1 − τ2)

τ1τ2

√
τ1
√
τ2√

i(τ1 − τ2)
∈ {−1,+1} for τ1, τ2 ∈ H

keeps track of signs required to work with the principal value of the square-root. Crucially, along
the geodesic from τ to w we have χw1,τ = χw2,τ = χz,τ = χw,τ . Using this fact as well as the
inversion properties of h we obtain the second identity in (5.3).

A similar and easier computation yields the translation property. �

The one-dimensional false theta functions appearing in G0 can be treated as in [11] by following
a similar strategy to Propositions 5.4 and 5.5 and using the regularized integral defined there. Its
quantum modularity can be studied by a slight adjustment of the argument in [11, Theorem 1.5].

6. Generic Parafermionic Characters of type B2

6.1. Expression in terms of false functions. Our next goal is to study parafermionic characters
associated to the affine Lie algebra of type B2, which has the positive roots{

α1 =

(
1
0

)
, α2 =

(
0
1

)
, α1 + α2, 2α1 + α2

}
.

In particular, specializing equations (1.1) and (1.2) to the case of B2, so that g = so5, we study the
constant term of

F (ζ) := q
10k

24(k+3) (q; q)2
∞ch[Vk(so5)](ζ; q) =

1(
ζ1q, ζ

−1
1 q, ζ2q, ζ

−1
2 q, ζ1ζ2q, ζ

−1
1 ζ−1

2 q, ζ2
1ζ2q, ζ

−2
1 ζ−1

2 q; q
)
∞
.

Using equation (2.1) we obtain

F (ζ) = q
1
3 η4 ζ

−2
1 ζ

− 3
2

2 (1− ζ1)(1− ζ2)(1− ζ1ζ2)
(
1− ζ2

1ζ2

)
ϑ(z1)ϑ(z2)ϑ(z1 + z2)ϑ(2z1 + z2)

.

Now, to state our main result for the associated character, we first require some notation. Using
the quadratic form QB(n) := 3

2n
2
1 + 3n1n2 + 3n2

2, we define

Φ(τ) := Φ1(τ) + Φ2(τ),

where

Φ1(τ) :=
∑

n∈Z2+( 1
3
, 1
6)

(−1)n1− 1
3 (sgn(n2) + sgn(n1 + n2)) sgn(n1)

(
(n1 + 2n2)2 − E2(τ)

18

)
qQB(n),

Φ2(τ) :=
∑

n∈Z2+( 1
3
, 1
6)

(−1)n1− 1
3 sgn(n1 + n2)sgn(n2)n1(n1 + 2n2)qQB(n).
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Then for a ∈ Z2, we let

Λa(τ) :=
∑

n∈Z2+( 1
3
,
a1
2

+ 1
6)

(−1)(a2+1)(n1− 1
3)sgn(n1)sgn(n1 + 2n2)qQB(n).

We also need the following one-dimensional false theta functions:

φr(τ) :=
∑

n∈Z+ r
6

sgn(n)q3n2
and ωr(τ) :=

∑
n∈Z+ r

3
+ 1

2

(−1)n−
r
3
− 1

2 sgn(n)q
3n2

2

to define

F0(τ) :=
E2(τ) + 2

4
+

η(τ)6

ϑ
(

1
2 ; τ
)2 + 6q−

1
24D 1

2
(ω1(τ))− 6q−

3
8D 1

2
(ω0(τ))

+ q−
1
12

(
6D 1

2
− η(τ)6

ϑ
(

1
2 ; τ
)2 + q−

1
2

η(τ)6

ϑ
(
τ
2 ; τ
)2 − q− 1

2
η(τ)6

ϑ
(
τ+1

2 ; τ
)2
)

(φ1(τ))

− q−
1
3

(
6D 1

2
+

η(τ)6

ϑ
(

1
2 ; τ
)2 +

η(τ)6

ϑ
(
τ
2 ; τ
)2 +

η(τ)6

ϑ
(
τ+1

2 ; τ
)2
)

(φ2(τ)).

With these definitions at hand, we can give our result.

Proposition 6.1. In the range |q| < |ζ2
1 |, |ζ2|, |ζ1ζ2|, |ζ2

1ζ2| < 1, we have

CT[ζ](F (ζ)) =
q

1
3

η(τ)8
F0(τ) +

9q−
1
12

2η(τ)8
Φ(τ) +

q−
1
12

η(τ)2

(
Λ0,1(τ)

ϑ
(

1
2 ; τ
)2 +

q−
1
4 Λ1,0(τ)

ϑ
(
τ
2 ; τ
)2 − q−

1
4 Λ1,1(τ)

ϑ
(
τ+1

2 ; τ
)2
)

= 1 + 4q2 + 12q3 + 38q4 + 100q5 + 276q6 + 688q7 + 1709q8 + 4020q9 +O
(
q10
)
.

To prove Proposition 6.1, we require several preliminary results based on Lemmas 4.2 and 4.3.
The first of these is an auxiliary statement that helps us study various limits of the two lemmas
and it follows from equation (2.4) and the identity ϑ(3)(0) = 2π3η3E2.

Lemma 6.2. For a function F that is holomorphic in a neighborhood of w = 0 and for a, b ∈ R
we have, as w → 0

F (w)

ϑ(aw)ϑ(bw)
=

1

4π2abη6

(
F (0)

w2
+
F ′(0)

w

)
+

(
a2 + b2

ab

E2

24η6
F (0) +

F ′′(0)

8π2abη6

)
+O(w).

The next two results are then two particular limits of Lemmas 4.2 and 4.3, respectively, that
appear in the proof of Proposition 6.1. Taking w = (w,−w) in Lemma 4.2 and then letting w → 0
using Lemma 6.2, yields the following statement.

Lemma 6.3. For r ∈ Z + 1
2 we have

ζr

ϑ(z)3
= − i

η9

∑
n∈Z

(−1)nq
3n2

2
−rn

(
4(3n− r − 1)2 − E2

8(1− ζqn)
+

6n− 2r − 3

2(1− ζqn)2
+

1

(1− ζqn)3

)
.

Plugging in w = (w,−w) in Lemma 4.3 and taking w → 0 using Lemma 6.2, we obtain the
following result.
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Lemma 6.4. For r ∈ Z we have

ζr

ϑ(z)2ϑ(2z)
= − i

η9

∑
n∈Z

q3n2−rn

2 (6n− r − 1)2 − E2

8 (1− ζqn)
+

12n− 2r − 3

4(1− ζqn)2
+

1

2(1− ζqn)3

−η
6

2

∑
`1,`2∈{0,1}
`6=(0,0)

1

ϑ
(
`1τ+`2

2

)2

(−1)`1+`2+r`2q
`1(`1−r)

2
+3`1n

1− (−1)`2ζqn+
`1
2

 .

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1. Let for r1 ∈ Z, r2 ∈ Z + 1
2 and TB defined in (2.5)

C(r) := CT[ζ]

(
TB(z)η12ζr11 ζ

r2
2

)
.

Using Lemma 4.2 with (r, z, w1, w2) 7→ (r2, z2, z1, 2z1), Lemma 6.4 with (z, r) 7→ (z1, r1 − 3k) and
(z, r) 7→ (z1, r1 − 2r2 + 3k), and Lemma 6.3 with (z, r) 7→ (z1, r1 − r2) we obtain

TB(z)η12ζr11 ζ
r2
2

=
∑
n∈Z2

(−1)n1q
3n2

1
2

+3n1n2+3n2
2−r2n1−r1n2

1− ζ2qn1

2 (3n1 − r1 + 6n2 − 1)2 − E2

8 (1− ζ1qn2)
+

6n1 + 12n2 − 2r1 − 3

4 (1− ζ1qn2)2

+
1

2 (1− ζ1qn2)3 −
∑

`1,`2∈{0,1}
`6=(0,0)

η6

2ϑ
(
`1τ+`2

2

)2

(−1)`1+`2+(1+r1+n1)`2q
`1(`1+3n1−r1)

2
+3`1n2

1− (−1)`2ζ1q
n2+

`1
2



+
∑
n∈Z2

(−1)n1q
3n2

1
2
−3n1n2+3n2

2−r2n1+(2r2−r1)n2

1− ζ2
1ζ2qn1

2 (3n1 − 6n2 + r1 − 2r2 + 1)2 − E2

8 (1− ζ1qn2)

−6n1 − 12n2 + 2r1 − 4r2 + 3

4 (1− ζ1qn2)2 +
1

2(1− ζ1qn2)3

−
∑

`1,`2∈{0,1}
` 6=(0,0)

η6

2ϑ
(
`1τ+`2

2

)2

(−1)`1+`2+(1+r1+2r2+n1)`2q
`1(`1−3n1−r1+2r2)

2
+3`1n2

1− (−1)`2ζ1q
n2+

`1
2


−
∑
n∈Z2

(−1)n1+n2q
3n2

1
2

+
3n2

2
2
−r2n1+(r2−r1)n2

1− ζ1ζ2qn1

×
(

4(3n2 − r1 + r2 − 1)2 − E2

8(1− ζ1qn2)
+

6n2 − 2r1 + 2r2 − 3

2(1− ζ1qn2)2
+

1

(1− ζ1qn2)3

)
.
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In the range |q|
1
2 < |ζ1| < 1, |q| < |ζ2|, |ζ1ζ2|, |ζ2

1ζ2| < 1, we use (5.2) to find the constant term as

C(r) =
6∑
`=1

C`(r) +
∑

`1,`2∈{0,1}
` 6=(0,0)

(C7,`(r) + C8,`(r)) ,

where

C1(r) :=
1

4

∑
n∈N2

0

(−1)n1(6n2 + 3n1 − r1)2q
3n2

1
2

+3n1n2+3n2
2−r2n1−r1n2 ,

C2(r) :=
1

4

∑
n∈N2

0

(−1)n1(6n2 − 3n1 + 2r2 − r1)2q
3n2

1
2
−3n1n2+3n2

2−r2n1+(2r2−r1)n2 ,

C3(r) := −1

2

∑
n∈N2

0

(−1)n1+n2(3n2 + r2 − r1)2q
3n2

1
2

+
3n2

2
2
−r2n1+(r2−r1)n2 ,

C4(r) := −E2

8

∑
n∈N2

0

(−1)n1q
3n2

1
2

+3n1n2+3n2
2−r2n1−r1n2 ,

C5(r) := −E2

8

∑
n∈N2

0

(−1)n1q
3n2

1
2
−3n1n2+3n2

2−r2n1+(2r2−r1)n2 ,

C6(r) :=
E2

8

∑
n∈N2

0

(−1)n1+n2q
3n2

1
2

+
3n2

2
2
−r2n1+(r2−r1)n2 ,

C7,`(r) := −η
6(−1)`1+(r1+1)`2

2ϑ
(
`1τ+`2

2

)2 q
`1(`1−r1)

2

∑
n∈N2

0

(−1)(`2+1)n1q
3n2

1
2

+3n1n2+3n2
2+

(
3`1
2
−r2

)
n1+(3`1−r1)n2 ,

C8,`(r) := −η
6(−1)`1+r1`2

2ϑ
(
`1τ+`2

2

)2 q
`1(`1−r1)

2
+`1r2

∑
n∈N2

0

(−1)(1+`2)n1q
3n2

1
2
−3n1n2+3n2

2−
(

3`1
2

+r2
)
n1+(3`1+2r2−r1)n2 .

Then we may write

CT[ζ](F (ζ)) =
q

1
3

η8

∑
r∈SB

εB(r)C(r),

where

SB :=

{(
−2,−3

2

)
,

(
−1,

1

2

)
,

(
1,−1

2

)
,

(
2,

3

2

)
,

(
−1,−3

2

)
,

(
−2,−1

2

)
,

(
1,

3

2

)
,

(
2,

1

2

)}
,

εB(r) :=

{
1 if r ∈

{(
−2,−3

2

)
,
(
−1, 1

2

)
,
(
1,−1

2

)
,
(
2, 3

2

)}
,

−1 if r ∈
{(
−1,−3

2

)
,
(
−2,−1

2

)
,
(
1, 3

2

)
,
(
2, 1

2

)}
.

Next, we simplify the individual terms in the decomposition of C(r). We start with

C6(r) =
E2

8
q−

1
6(r2

1−2r1r2+2r2
2)
∑
n∈N2

0

(−1)n1+n2q
3
2(n1− r23 )

2
+ 3

2

(
n2− r1−r23

)2

.
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Note that the sum in C6(r) is invariant if n1 and n2 are interchanged together with their respective
shifts. The terms C6(r) cancel in pairs and we have

∑
r∈SB

εB(r)C6(r) = 0.

For the remaining pieces, the details are quite lengthy. Therefore, we carry them out only for
one of the terms and leave the remaining ones to the reader. We focus on

C3(r) = −9

2
q−

1
6(r2

1−2r1r2+2r2
2)
∑
n∈N2

0

(−1)n1+n2

(
n2 +

r2 − r1

3

)2

q
3
2(n1− r23 )

2
+ 3

2

(
n2+

r2−r1
3

)2

.

We have

C3

(
1,−1

2

)
− C3

(
−2,−1

2

)
= −9

2
q−

5
12

∑
n∈N2

0

(−1)n1+n2q
3
2(n1+ 1

6)
2

((
n2 −

1

2

)2

q
3
2(n2− 1

2)
2

−
(
n2 +

1

2

)2

q
3
2(n2+ 1

2)
2

)

= −9

8
q−

1
24

∞∑
n1=0

(−1)n1q
3
2(n1+ 1

6)
2

+ 9q−
5
12

∑
n∈N2

0

(−1)n1+n2

(
n2 +

1

2

)2

q
3
2(n1+ 1

6)
2
+ 3

2(n2+ 1
2)

2

,

where for the last equality we split off the n2 = 0 contribution from the first term and then shift
n2 7→ n2 + 1 there.

Next, we have

C3

(
−1,

1

2

)
− C3

(
2,

1

2

)
= −9

2
q−

5
12

∑
n∈N2

0

(−1)n1+n2q
3
2(n1− 1

6)
2

((
n2 +

1

2

)2

q
3
2(n2+ 1

2)
2

−
(
n2 −

1

2

)2

q
3
2(n2− 1

2)
2

)

=
9

8
q−

1
24

∞∑
n1=0

(−1)n1q
3
2(n1− 1

6)
2

− 9q−
5
12

∑
n∈N2

0

(−1)n1+n2

(
n2 +

1

2

)2

q
3
2(n1− 1

6)
2
+ 3

2(n2+ 1
2)

2

,

where for the last equality we split off the n2 = 0 part from the second term and then shift
n2 7→ n2 + 1 there. Splitting off the terms with n1 = 0 from the second sum and then changing
n1 7→ −n1 and n2 7→ −n2 − 1 we get

C3

(
−1,

1

2

)
− C3

(
2,

1

2

)
=

9

8
q−

1
24

∞∑
n1=0

(−1)n1q
3
2(n1− 1

6)
2

− 9q−
3
8

∞∑
n2=0

(−1)n2

(
n2 +

1

2

)2

q
3
2(n2+ 1

2)
2

+ 9q−
5
12

∑
n∈−N2

(−1)n1+n2

(
n2 +

1

2

)2

q
3
2(n1+ 1

6)
2
+ 3

2(n2+ 1
2)

2

.

19



Next, we study

C3

(
−2,−3

2

)
− C3

(
1,

3

2

)
= −9

2
q−

5
12

∑
n∈N2

0

(−1)n1+n2

(
n2 +

1

6

)2

q
3
2(n2+ 1

6)
2 (
q

3
2(n1+ 1

2)
2

− q
3
2(n1− 1

2)
2)

=
9

2
q−

1
24

∞∑
n2=0

(−1)n2

(
n2 +

1

6

)2

q
3
2(n2+ 1

6)
2

− 9q−
5
12

∑
n∈N2

0

(−1)n1+n2

(
n2 +

1

6

)2

q
3
2(n1+ 1

2)
2
+ 3

2(n2+ 1
6)

2

,

where for the last equality we split off the n1 = 0 contribution from the second term and then shift
n1 7→ n1 + 1 there. Finally, we study

C3

(
2,

3

2

)
− C3

(
−1,−3

2

)
= −9

2
q−

5
12

∑
n∈N2

0

(−1)n1+n2

(
n2 −

1

6

)2

q
3
2(n2− 1

6)
2 (
q

3
2(n1− 1

2)
2

− q
3
2(n1+ 1

2)
2)

= −9

2
q−

1
24

∞∑
n2=0

(−1)n2

(
n2 −

1

6

)2

q
3
2(n2− 1

6)
2

+ 9q−
5
12

∑
n∈N2

0

(−1)n1+n2

(
n2 −

1

6

)2

q
3
2(n1+ 1

2)
2
+ 3

2(n2− 1
6)

2

,

where for the last equality we split off the n1 = 0 part from the first term and then shift n1 7→ n1 +1
there. Splitting off the n2 = 0 contribution from the double sum and then changing n2 7→ −n2 and
n1 7→ −n1 − 1 we get

C3

(
2,

3

2

)
− C3

(
−1,−3

2

)
= −9

2
q−

1
24

∞∑
n2=0

(−1)n2

(
n2 −

1

6

)2

q
3
2(n2− 1

6)
2

+
1

4
q−

3
8

∞∑
n1=0

(−1)n1q
3
2(n1+ 1

2)
2

− 9q−
5
12

∑
n∈−N2

(−1)n1+n2

(
n2 +

1

6

)2

q
3
2(n1+ 1

2)
2
+ 3

2(n2+ 1
6)

2

.

Therefore, the two-dimensional contribution in
∑
r∈SB εB(r)C3(r) is

9q−
5
12

2

∑
n∈Z2+( 1

2
, 1
6)

(−1)n1− 1
2

+n2− 1
6 (1 + sgn(n1)sgn(n2))

(
n2

1 − n2
2

)
q

3n2
1

2
+

3n2
2

2 .

Under n1 7→ −n1 the contribution of the “1” in parentheses picks a minus sign (note that (−1)2n1 =
−1) and hence vanishes. Then we can rewrite the two-dimensional part as

9q−
5
12

2

∑
n∈Z2+( 1

2
, 1
6)

(−1)n1− 1
2

+n2− 1
6 sgn(n1)sgn(n2)

(
n2

1 − n2
2

)
q

3n2
1

2
+

3n2
2

2 .

Mapping n 7→ (−n1 − n2, n2) we get

9q−
5
12

2

∑
n∈Z2+( 1

3
, 1
6)

(−1)n1− 1
3 sgn(n1 + n2)sgn(n2)n1(n1 + 2n2)qQB(n).
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The one-dimensional pieces are

− 9

8
q−

1
24

∑
n1∈Z

(−1)n1sgn(n1)q
3
2(n1+ 1

6)
2

+
1

8
q−

3
8

∑
n1∈Z

(−1)n1sgn

(
n1 +

1

2

)
q

3
2(n1+ 1

2)
2

+
9

2
q−

1
24

∑
n2∈Z

(−1)n2sgn(n2)

(
n2 +

1

6

)2

q
3
2(n2+ 1

6)
2

− 9

2
q−

3
8

∑
n2∈Z

(−1)n2sgn

(
n2 +

1

2

)(
n2 +

1

2

)2

q
3
2(n2+ 1

2)
2

.

We next consider the remaining pieces following similar computations.
• Firstly, we have

∑
r∈SB

εB(r)C1(r)

=
9

4
q−

5
12

 ∑
n∈Z2+( 1

3
, 1
6)

−
∑

n∈Z2+( 1
3
, 1
2)

 (−1)n1− 1
3 (1 + sgn(n1)sgn(n2))(n1 + 2n2)2qQB(n)

− 9

4

∑
n2∈Z

sgn(n2)

(
2n2 +

2

3

)2

q3n2
2+2n2 +

9

4

∑
n2∈Z

sgn(n2)

(
2n2 +

1

3

)2

q3n2
2+n2

− 9

2

∞∑
n1=0

(−1)n1

(
n1 +

1

3

)2

q
3n2

1
2

+
3n1

2 − 9

4

∞∑
n1=0

(−1)n1

(
n1 −

2

3

)2

q
3n2

1
2
−n1

2

+
9

4

∞∑
n1=0

(−1)n1

(
n1 −

1

3

)2

q
3n2

1
2

+
n1
2 ,

∑
r∈SB

εB(r)C2(r)

=
9

4
q−

5
12

 ∑
n∈Z2+( 1

3
, 1
2)

−
∑

n∈Z2+( 1
3
, 1
6)

 (−1)n1− 1
3 (1− sgn(n1)sgn(n2))(n1 + 2n2)2qQB(n)

+
9

4

∑
n2∈Z

sgn(n2)

(
2n2 +

1

3

)2

q3n2
2+n2 − 9

4

∑
n2∈Z

sgn(n2)

(
2n2 +

2

3

)2

q3n2
2+2n2

− 9

4

∞∑
n1=1

(−1)n1

(
n1 +

1

3

)2

q
3n2

1
2
−n1

2 +
9

4

∞∑
n1=1

(−1)n1

(
n1 +

2

3

)2

q
3n2

1
2

+
n1
2

− 9

2

∞∑
n1=0

(−1)n1

(
n1 +

2

3

)2

q
3n2

1
2

+
3n1

2 .
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Combining the contributions from C1, C2, and C3, we then find that∑
r∈SB

εB(r) (C1(r) + C2(r) + C3(r))

=
9

2
q−

5
12

∑
n∈Z2+( 1

3
, 1
6)

(−1)n1− 1
3 sgn(n1) (sgn(n2) + sgn(n1 + n2)) (n1 + 2n2)2qQB(n)

+
9

2
q−

5
12

∑
n∈Z2+( 1

3
, 1
6)

(−1)n1− 1
3 sgn(n1 + n2)sgn(n2)n1(n1 + 2n2)qQB(n)

+
1

2
+ 18q−

1
12

∑
n∈Z+ 1

6

sgn(n)n2q3n2 − 18q−
1
3

∑
n∈Z+ 1

3

sgn(n)n2q3n2

+ 9q−
1
24

∑
n∈Z+ 1

6

(−1)n−
1
6 sgn(n)n2q

3n2

2 − 9q−
3
8

∑
n∈Z+ 1

2

(−1)n−
1
2 sgn(n)n2q

3n2

2 .

• Next, we have∑
r∈SB

εB(r)C4(r) =
∑
r∈SB

εB(r)C5(r)

= −E2

8
q−

5
12

∑
n∈Z2+( 1

3
, 1
6)

(−1)n1− 1
3 sgn(n1) (sgn(n2) + sgn(n1 + n2)) qQB(n)

+
E2

8
− E2

8
q−

1
12

∑
n∈Z+ 1

6

sgn(n)q3n2
+
E2

8
q−

1
3

∑
n∈Z+ 1

3

sgn(n)q3n2

− E2

8
q−

1
24

∑
n∈Z+ 1

6

(−1)n−
1
6 sgn(n)q

3n2

2 +
E2

8
q−

3
8

∑
n∈Z+ 1

2

(−1)n−
1
2 sgn(n)q

3n2

2

so that we get ∑
r∈SB

εB(r) (C4(r) + C5(r) + C6(r)) = 2
∑
r∈SB

εB(r)C4(r).

• We next consider the contributions from C7,(0,1) and C8,(0,1) to find that

−
2ϑ
(

1
2

)2
η6

∑
r∈SB

εB(r)C7,(0,1)(r) = −q−
5
12

∑
n∈Z2+( 1

3
, 1
6)

sgn(n1) (sgn(n2) + sgn(n1 + n2)) qQB(n)

− 1 + q−
1
12

∑
n∈Z+ 1

6

sgn(n)q3n2
+ q−

1
3

∑
n∈Z+ 1

3

sgn(n)q3n2
+ q−

1
24

∑
n∈Z+ 1

6

q
3n2

2 − q−
3
8

∑
n∈Z+ 1

2

q
3n2

2 ,

−
2ϑ
(

1
2

)2
η6

∑
r∈SB

εB(r)C8,(0,1)(r) = −q−
5
12

∑
n∈Z2+( 1

3
, 1
6)

sgn(n1) (sgn(n2) + sgn(n1 + n2)) qQB(n)

− 1 + q−
1
12

∑
n∈Z+ 1

6

sgn(n)q3n2
+ q−

1
3

∑
n∈Z+ 1

3

sgn(n)q3n2
+ q−

3
8

∑
n∈Z+ 1

2

q
3n2

2 − q−
1
24

∑
n∈Z+ 1

6

q
3n2

2 .
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They combine as

ϑ
(

1
2

)2
η6

∑
r∈SB

εB(r)
(
C7,(0,1)(r) + C8,(0,1)(r)

)
= q−

5
12

∑
n∈Z2+( 1

3
, 1
6)

sgn(n1) (sgn(n2) + sgn(n1 + n2)) qQB(n)

+ 1− q−
1
12

∑
n∈Z+ 1

6

sgn(n)q3n2 − q−
1
3

∑
n∈Z+ 1

3

sgn(n)q3n2
.

• Finally, we consider the case ` = (1, `2) (`2 ∈ {0, 1}) and determine

2ϑ
(
τ+`2

2

)2

η6

∑
r∈SB

εB(r)C7,(1,`2)(r) =
2ϑ
(
τ+`2

2

)2

η6

∑
r∈SB

εB(r)C8,(1,`2)(r)

= (−1)`2q−
2
3

∑
n∈Z2+( 1

3
, 2
3)

(−1)(`2+1)(n1− 1
3)sgn(n1) (sgn(n2) + sgn(n1 + n2)) qQB(n)

− q−
1
3

∑
n∈Z+ 1

3

sgn(n)q3n2
+ (−1)`2q−

7
12

∑
n∈Z+ 1

6

sgn(n)q3n2
.

The claim of the theorem now follows by a direct calculation using the following sign-identity
on the two-dimensional contributions from C7 and C8 together with the change of variables n 7→
(−n1 − 2n2, n2) which leaves both QB and the respective lattice shifts invariant:

sgn(n1)(sgn(n2)+sgn(n1+n2))−sgn(n1+2n2)(sgn(n2)−sgn(n1+n2)) = 2sgn(n1+2n2)sgn(n1). �

6.2. Modular properties of the vacuum character.
As in the case of parafermionic characters of type A2, we focus on the rank two contributions

Φ(τ) and Λa(τ). For Λa(τ), the two vectors determining the factors inside the sign functions are
orthogonal with respect to the quadratic form QB. Therefore, Λa(τ) can be written in terms of
products of two rank one false theta functions. This leaves us with Φ(τ) as the only nontrivially
rank two piece in the decomposition, which we study next. We start by defining

f0(w) := ϑ
[1]
3,1(w1)ϑ

[1]
3,2(w2)− ϑ[1]

3,2(w1)ϑ
[1]
3,1(w2), f1(w) := ϑ

[1]
3,1(w1)ϑ

[3]
3,2(w2)− ϑ[1]

3,2(w1)ϑ
[3]
3,1(w2),

g0(w) := ϑ
[1]
3
2
,1

(w1)ϑ
[1]
3
2
,0

(w2)− ϑ[1]
3
2
,0

(w1)ϑ
[1]
3
2
,1

(w2), g1(w) := ϑ
[1]
3
2
,1

(w1)ϑ
[3]
3
2
,0

(w2)− ϑ[1]
3
2
,0

(w1)ϑ
[3]
3
2
,1

(w2).

A direct calculation, using Lemma 3.1 then gives:

Lemma 6.5. We have

Φ(τ) =
2

3

∫ τ+i∞

τ

∫ w1

τ

72f1(w)− E2(τ)f0(w)√
i(w1 − τ)

√
i(w2 − τ)

dw2dw1

+
1

6

∫ τ+i∞

τ

∫ w1

τ

36g1(w)− E2(τ)g0(w)√
i(w1 − τ)

√
i(w2 − τ)

dw2dw1.

Using integration by parts, while noting that ϑ
[3]
m,r(τ) = 1

2πim
∂
∂τ ϑ

[1]
m,r(τ) and f0(w1, w1) = g0(w1, w1) =

0, we obtain the following:
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Proposition 6.6. We have

Φ(τ) =
1

π

∫ τ+i∞

τ

∫ w1

∗ τ

(4f0(w) + g0(w))
(
1− πi

6 (w2 − τ)E2(τ)
)√

i(w1 − τ)(i(w2 − τ))
3
2

dw2dw1.

In parallel with Section 5.2, we define the completion of Φ as

Φ̂(τ, w) :=
1

π

∫ w

τ

∫ w1

∗ τ

(4f0(w) + g0(w))
(
1− πi

6 (w2 − τ)E2(τ)
)√

i(w1 − τ)(i(w2 − τ))
3
2

dw2dw1.

The following proposition shows the transformation law of Φ̂.

Proposition 6.7. For M =
(
a b
c d

)
∈ SL2(Z), we have

Φ̂

(
aτ + b

cτ + d
,
aw + b

cw + d

)
= νη(M)10(cτ + d)3 Φ̂(τ, w).

Proof. It is enough to verify the claim for translation and inversion, in which case it reads

Φ̂(τ + 1, w + 1) = e
5πi
6 Φ̂(τ, w), Φ̂

(
−1

τ
,− 1

w

)
= −iτ3Φ̂(τ, w).

As in Proposition 5.5, these transformations follow from the following modular transformations for
f0 and g0:

f0(w + (1, 1)) = e
5πi
6 f0(w), f0

(
− 1

w1
,− 1

w2

)
= −iw

3
2
1 w

3
2
2 f0(w),

g0(w + (1, 1)) = e
5πi
6 g0(w), g0

(
− 1

w1
,− 1

w2

)
= −iw

3
2
1 w

3
2
2 g0(w). �

7. Higher rank false theta functions from Schur indices and Ẑ-invariants

In this section, we study further examples of rank two false theta functions coming from Schur’s
indices [13, 16] and Ẑ-invariants [24].

7.1. False theta functions from Schur indices. A remarkable correspondence (or duality)
between four-dimensional N = 2 superconformal field theories (SCFTs) and vertex operator al-
gebras was recently found in [4]. According to [4], the Schur index of a N = 2 SCFT agrees
with the character of a vertex operator algebra. As mentioned above, the Schur index of the
(A1, D2k+2) Argyres–Douglas theory is a meromorphic Jacobi form of negative index in two vari-
ables z = (z1, z2). It was demonstrated in [13, 16] that the index agrees with the character of a
certain affine W -algebra. Up to some Euler factors and change of variables, this character is given
by the Jacobi form Tk(z; τ) defined in Section 2 (see [16]). Here we analyze its Fourier coefficients.
For k ∈ N, letting

Fk(τ) :=
1

2

∑
n∈Z2+(0, 1

2)

(−1)n1sgn(n1)sgn (n2) q
n2

1
2

+n1n2+(k+1)n2
2 ,

it is not hard to prove the following result using slight adjustments of [7, Lemma 3.5].

Proposition 7.1. For |q| < |ζ1|, |ζ2|, |ζ1ζ2| < 1 and r ∈ Z2, the r-th Fourier coefficient of
η(τ)3η( k+1

2
τ)2

η((k+1)τ) Tk(z; τ) equals

q
k+1

4
(2r2+1)

∑
n∈Z2

(−1)n1%n1,n2+r1%n2+r2,n2q
n1(n1+1)

2
+n1(n2+r1)+(k+1)n2

2+(k+1)(r2+1)n2 ,
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where %m,n := 1
2(sgn(m+ 1

2) + sgn(n+ 1
2)). In particular,

Fk(τ) =
η(τ)3η

(
k+1

2 τ
)2

η((k + 1)τ)
CT[ζ](Tk(z; τ)).

Proof. We first let

h(z; τ) := − iη((k + 1)τ)3ζ−1
2 q−

k+1
2 ϑ(z1; (k + 1)τ)

ϑ
(
z2 + k+1

2 τ ; (k + 1)τ
)
ϑ
(
z1 + z2 + k+1

2 τ ; (k + 1)τ
) .

As in the proof of [7, Lemma 3.5], we obtain an expansion

h(z; τ) =
∑

(n3,n4)∈Z2

%n3,n4q
(k+1)n3n4+ k+1

2
n3+ k+1

2
n4ζ−n4

1 ζn3−n4
2 .

This combined with the well-known formula (see [3, formula (2.1)])

− iζ
− 1

2
1 η(τ)3

ϑ(z1; τ)
=
∑
n∈Z2

%n1,n2(−1)n1q
n1(n1+1)

2
+n1n2ζn1

1 ,

easily implies the statement. �

A direct calculation using Lemma 3.1 then shows the following.

Proposition 7.2. We have

2Fk(τ)√
2k + 1

=

∫ τ+i∞

τ

η((2k + 1)w1)3√
i(w1 − τ)

∫ w1

τ

η(w2)3√
i(w2 − τ)

dw2dw1

+ 2(k + 1)
2k+1∑
j=0

(−1)j
∫ τ+i∞

τ

ϑ
[1]
k+1,j((2k + 1)w1)√

i(w1 − τ)

∫ w1

τ

ϑ
[1]
k+1,j+k+1(w2)√
i(w2 − τ)

dw2dw1.

We now specialize to k = 1. This recovers the A2 false theta function entering the character
formula of the W 0(2)A2 vertex algebra studied in [1, 6, 7]. In this case, the right-hand side in
Proposition 7.2 simplifies and we obtain an elegant integral representation

F1(τ) =
3
√

3

4

∫ τ+i∞

τ

η(3w1)3√
i(w1 − τ)

∫ w1

τ

η(w2)3√
i(w2 − τ)

dw2dw1,

as a consequence of the identity

3∑
j=0

(−1)jϑ
[1]
2,j(3w1)ϑ

[1]
2,j+2(w2) =

1

8
η(3w1)3η(w2)3.

This integral admits a modular completion F̂1(τ, w) (see Section 5) whose modular transformation
properties under SL2(Z) can be easily analyzed.

7.2. Ẑ-invariants of 3-manifolds from unimodular H-graphs. The methods of this paper
can also be used in analyzing the modular properties of Ẑ-invariants or homological blocks of
3-manifolds. These are certain q-series with integer coefficients proposed by [24] as a new class
of 3-manifold invariants. Remarkably, these q-series, which are convergent on the unit disk, are
designed and expected to produce the WRT (Witten–Reshetikhin–Turaev) invariants of the relevant
manifolds through the radial limits of the parameter q to the roots of unity.

More concretely, we restrict our attention to plumbed 3-manifolds whose plumbing graphs are
trees. The vertices of the plumbing graph, which we label by {vj}1≤j≤N , are decorated with a set
of integers mjj for 1 ≤ j ≤ N . This data then determines the linking matrix M = (mjk)1≤j,k≤N by
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setting the off-diagonal entries mjk to −1 if the associated vertices vj and vk are connected by an

edge in the graph and by setting it to 0 otherwise.5 We further restrict to cases in which the matrix
M is positive definite. Finally, we define the shift vector δ := (δj)1≤j≤N where δj ≡ deg(vj) (mod 2)

and deg(vj) denotes the degree of the vertex vj . Then the Ẑ-invariant is defined for each equivalence
class a ∈ 2coker(M) + δ by

Ẑa(q) :=
q
−3N+tr(M)

4

(2πi)N
P.V.

∫
|w1|=1

. . .

∫
|wN |=1

N∏
j=1

(
wj − w−1

j

)2−deg(vj) Θ−M,a(q;w)
dwN
wN

. . .
dw1

w1
,

where

Θ−M,a(q;w) :=
∑

`∈2MZN+a

q
1
4
`TM−1`w`

and the integrals are defined using the Cauchy principal value (as indicated by the notation P.V.)
and performed in counterclockwise direction. If more specifically the linking matrix is invert-
ible (unimodular), in which case we also call the associated plumbing graph unimodular, then

coker(M) = 0 and there is only one Ẑ-invariant.

Figure 1. The H-graph

The Ẑ-invariants are conjectured to yield quantum modular forms, which for example can be verified
in the case of unimodular, 3-star plumbing graphs for which the relevant invariants can be written
in terms of unary false theta functions [23, Proposition 4.8] (see also [9, 14]) The simplest plumbing
graph for which the corresponding homological block can not be written in terms of one-dimensional
false theta functions is the H-graph (see Figure 1). For unimodular H-graph, two of the authors and

Mahlburg computed the Ẑ-invariants and studied their higher depth quantum modular properties
in [9]. We explain how the method of Section 3 can be used to analyze their modular properties.

As demonstrated in [9], the relevant Ẑ-invariants can be expressed as a difference of two series of
the form

FS,Q,ε(τ) :=
∑
α∈S

ε(α)
∑
n∈N2

0

qKQ(n+α).

Here Q(n) =: σ1n
2
1 + 2σ2n1n2 + σ3n

2
2 with σ1, σ2, σ3 ∈ Z defines a positive definite quadratic

form and S ⊂ Q2
>0 is a finite set with the property that (1, 1) − α, (1 − α1, α2) ∈ S for α ∈ S,

ε(α) = ε((1, 1)−α) = ε((1−α1, α2)), and K ∈ N is minimal such that A := KS ⊂ N2. For explicit
formulas for Q and S see [9]. We can use the symmetry in the sum over α to obtain that

FS,Q,ε(τ) =
1

4

∑
α∈S

ε(α)
∑

n∈Z2+α

sgn(n1) (sgn(n1) + sgn(n2)) qKQ(n).

The contribution from sgn(n1)sgn(n1) = 1 yields a theta function which is a modular form. For

the contribution from sgn(n1)sgn(n2) we proceed as in Section 3 to obtain a representation of Ẑ in
terms of double integrals and ordinary theta functions.

5Here we follow the conventions of [9] and switch the sign of the linking matrix M compared to [24].
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Proposition 7.3. We have

FS,Q,ε(τ)

=
Kσ3

√
D

2

∑
α∈S,

r (modσ3)

ε(α)

∫ τ+i∞

τ

ϑ
[1]
KDσ3,2KD(α1+r)(w1)√

i(w1 − τ)

∫ w1

τ

ϑ
[1]
Kσ3,2K(σ2(α1+r)+σ3α2)(w2)√

i(w2 − τ)
dw2dw1

+
Kσ1

√
D

2

∑
α∈S,

r (modσ1)

ε(α)

∫ τ+i∞

τ

ϑ
[1]
KDσ1,2KD(α2+r)(w1)√

i(w1 − τ)

∫ w1

τ

ϑ
[1]
Kσ1,2K(σ2(α2+r)+σ1α1)(w2)√

i(w2 − τ)
dw2dw1

+
1

4

(
1− 2

π
arctan

(
σ2√
D

)) ∑
α∈S,

r (modσ3)

ε(α)ϑKDσ3,2KD(α1+r)(τ)ϑKσ3,2K(σ2(α1+r)+σ3α2)(τ),

where D := σ1σ3 − σ2
2.

8. Conclusion and future work

In this paper, modular properties of rank two false theta functions are studied following the
recent developments in depth two mock modular forms. These results are then used to study
characters of parafermionic vertex algebras of type A2 and B2. A natural question is then how
our results extend to parafermions associated to other simple Lie algebras. The only remaining
rank two simple Lie algebra G2 is a natural setting where our approach would directly apply. A
more interesting problem is the extension to higher rank Lie algebras such as A3. The approach
we use in Sections 5 and 6 to compute the constant term of meromorphic Jacobi forms would still
be applicable, albeit becoming computationally more expensive as the number of roots increases.
Although being straightforward, computations of the linear combinations that give the characters
of parafermionic vertex algebras were a particularly strenuous part of the calculations. Therefore,
it would be desirable to streamline this part of the computation ahead of the generalizations.

The modular properties for these higher rank cases, on the other hand, can in principle be studied
again following the corresponding structure for mock modular forms. The details on higher depth
mock modular forms are developed in [2, 22, 28, 31, 34] and we leave it as future work to form this
connection. Another interesting prospect would be to understand and make predictions on these
modular behaviors (weights, multiplier systems, etc.) through either physical or algebraic methods.

A slightly different direction would be studying the modular properties of Fourier coefficients of
the character of Vk(sl3) at the boundary admissible levels k = −3+ 3

j , where j ≥ 2 and gcd(j, 3) = 1,

generalizing the results for j = 2 obtained in [7] (see also Section 7). This problem essentially
requires analyzing the Fourier coefficients of the Jacobi form (see [26])

ϑ(z1; jτ)ϑ(z2; jτ)ϑ(z1 + z2; jτ)

ϑ(z1; τ)ϑ(z2; τ)ϑ(z1 + z2; τ)
,

which can be handled using the methods of this paper.
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