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Abstract. In 2015, Lovejoy and Osburn discovered twelve q-hypergeometric series and proved
that their Fourier coefficients can be understood as counting functions of ideals in certain quadratic
fields. In this paper, we study their modular and quantum modular properties and show that they
yield three vector-valued quantum modular forms on the group Γ0(2).

1. Introduction and statement of results

Starting with the work of Andrews, Dyson, and Hickerson [1] and of Cohen [4], a surprising
interplay has been uncovered between q-hypergeometric series, real-quadratic fields, and classical
Maass forms. They discovered this interplay by exploring the now famous function

σ(q) :=
∞∑
n=0

q
n(n+1)

2

(−q; q)n
, (1.1)

which was first studied by Ramanujan in his lost notebook [11]. Here and throughout (a; q)n =

(a)n :=
∏n−1
j=0 (1−aqj) for n ∈ N0∪{∞}. A key step in the analysis of [1] is the use of Bailey chains

to rewrite σ(q) as a “false-indefinite theta function”:

σ(q) =
∑
n≥0

−n≤j≤n

(−1)n+j
(
1− q2n+1

)
q
n(3n+1)

2
−j2 .

This representation allowed the authors of [1] to relate the Fourier coefficients of σ(q) to the arith-
metic of the real-quadratic field Q(

√
6) and to prove many interesting properties for these Fourier

coefficients, which are not obvious from the combinatorial interpretation of the q-hypergeometric
series in equation (1.1). Through this arithmetic interpretation, it was also possible to extend the
Fourier coefficients of σ(q) in

σ(q) =

∞∑
n=0

T (24n+ 1)qn,

to a sequence T (24n + 1) defined for all n ∈ Z. This led the authors of [1] and [4] to a partner
q-series

σ∗(q) :=

∞∑
n=1

T (1− 24n)qn = 2
∑
m≥0

2k≥3m+1

(−1)m+kqk
2−m(3m+1)

2

(
1 + q2(k−m)

)
,

which also has a representation as a q-hypergeometric series:

σ∗(q) = 2
∞∑
n=1

(−1)nqn
2

(q; q2)n
.
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Now the remarkable fact discovered by [4] is that the Fourier coefficients of σ(q) and σ∗(q) are
those of a Maass form defined as

u(τ) :=
√
τ2

∑
n∈Z+ 1

24

T (24n)K0(2π|n|τ2)e2πinτ1 for τ = τ1 + iτ2 ∈ H,

where Kν denotes the K-Bessel function of order ν. As reviewed in Section 2, Maass forms are
invariant under modular transformations and this forms the number theoretical aspect of the three-
piece interplay with the combinatorial and algebraic aspects mentioned above.

Building upon these results, Zagier showed in [12] that1

f(x) := e
πix
12 lim

t→0+
σ
(
e2πi(x+it)

)
= −e

πix
12 lim

t→0+
σ∗
(
e−2πi(x−it)

)
is a so-called quantum modular form, which further elaborates the relation discussed above. Recall
that in the simplest case, a quantum modular form of weight k and with quantum set Q ⊂ Q is a
function g : Q → C whose obstruction to modularity

g(x)− (cx+ d)−kg

(
ax+ b

cx+ d

)
for

(
a b
c d

)
∈ Γ ⊂ SL2(Z)

is analytically “nice”, e.g. it extends real-analytically to R \ {−d
c}. More generally, one can discuss

vector-valued generalizations with nontrivial multiplier systems (as in Theorem 2.8) and require
stronger analytic properties from the obstructions to modularity such as holomorphicity (as in
Proposition 2.3 and Remark 2.4).

At this point we should note that the discussion we have had so far is not a peculiar property
of the functions σ(q) and σ∗(q). Since the work of [1] and [4], a number of generalizations have
been investigated in [2, 3, 6, 9]. In fact, the main focus of this paper is on such a generalization
developed by Lovejoy and Osburn [10]. They studied twelve q-hypergeometric series defined as

L1(q) :=
∑

1≤k≤n

(−1)n+k(q)n−1q
n(n+1)

2
+
k(k+1)

2

(1− q2k−1) (q)n−k(q)k−1
, L2(q) :=

∑
0≤k≤n

(−1)n+k(q)nq
n(n+1)

2
+
k(k+1)

2

(1− q2k−1) (q)n−k(q)k
,

L3(q) := q
∑

1≤k≤n

(−1)n+k(q)n−1q
n(n+1)

2
+
k(k−1)

2

(1− q2k−1) (q)n−k(q)k−1
, L4(q) := −1 +

∑
0≤k≤n

(−1)n+k(q)nq
n(n+1)

2
+
k(k−1)

2

(1− q2k+1) (q)n−k(q)k
,

L5(q) := q
∑

1≤k≤n

(−1)n+k(−1)n(q)n−1q
n+k2−k

(1− q2k−1) (q)n−k (q2; q2)k−1

, L6(q) :=
∑

1≤k≤n

(−1)n+k(−1)n(q)n−1q
n+k2

(1− q2k−1) (q)n−k (q2; q2)k−1

,

L7(q) := 2
∑

0≤k≤n

∗ (−1)n+k
(
q2; q2

)
n
qk

2+k

(1− q2k+1) (q)n−k (q2; q2)k
, L8(q) := −1 + 2

∑
0≤k≤n

∗ (−1)n+k
(
q2; q2

)
n
qk

2

(1− q2k+1) (q)n−k (q2; q2)k
,

L9(q) :=
∑

1≤k≤n

(−1)n+k(−1)n(q)n−1q
n+

k(k+1)
2

(1− q2k−1) (q)n−k(q)k−1
, L10(q) := q

∑
1≤k≤n

(−1)n+k(−1)n(q)n−1q
n+

k(k−1)
2

(1− q2k−1) (q)n−k(q)k−1
,

L11(q) := 2
∑

0≤k≤n

∗ (−1)n+k
(
q2; q2

)
n
q
k(k+1)

2

(1− q2k+1) (q)n−k(q)k
, L12(q) := −2 + 2

∑
0≤k≤n

∗ (−1)n+k
(
q2; q2

)
n
q
k(k−1)

2

(1− q2k+1) (q)n−k(q)k
,

where the symbol * indicates that we take the average of even and odd partial sums (in n) to
obtain convergence. They then showed that these functions are also related to the arithmetic of

1The expressions for σ(q) and σ∗(q) as q-hypergeometric series are related to each other under the transformation
q 7→ q−1 as noted by Cohen (see [4]). This relation was employed to define the function f(x) through their common
limits to the roots of unity as shown.
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real-quadratic fields. In particular, L1, . . . , L4 count ideals in the ring of integers OQ(
√

2) of the real-

quadratic field Q(
√

2), L5, . . . , L8 count ideals in OQ(
√

3), and L9, . . . , L12 count ideals in OQ(
√

6).

In this work, we investigate the modular aspect of these functions and prove the following result.

Theorem 1.1. The limits

lim
t→0+


e−

17πix
16 L1

(
e2πi(x+it)

)
e

7πix
16 L2

(
e2πi(x+it)

)
e−

33πix
16 L3

(
e2πi(x+it)

)
e−

9πix
16 L4

(
e2πi(x+it)

)
 , lim

t→0+


e−

9πix
8 L9

(
e2πi(x+it)

)
e−

17πix
8 L10

(
e2πi(x+it)

)
e

5πix
24 L11

(
e2πi(x+it)

)
e−

19πix
24 L12

(
e2πi(x+it)

)
 ,

as well as the finite part of
e−2πixL5

(
e2πi(x+it)

)
− 2

π arctanh
(

1√
3

)
e−πixL6

(
e2πi(x+it)

)
e
πix
3 L7

(
e2πi(x+it)

)
e−

2πix
3 L8

(
e2πi(x+it)

)

 as t→ 0+

all form vector-valued quantum modular forms over the group Γ0(2).

More precise statements are given in Propositions 4.5, 5.5, and 6.5. The quantum modular
forms fj , gj , and hj referenced in these propositions are related to the functions Lj given above by
Lemmas 4.2, 5.2, 6.2 and equations (4.4), (5.3), and (6.3).

To prove these results, we relate the functions Lj to Maass waveforms with the technology of mock
Maass theta functions developed by Zwegers in [14]. These objects give a rare and precious glimpse
into the behavior of false-indefinite theta functions under modular transformations. As reviewed
in Figure 1, mock Maass theta functions are certain theta functions that are eigenfunctions of the
hyperbolic Laplacian that are in general not modular. Their construction ensures that they give
rise to false-indefinite theta functions under certain “Eichler-type integrals” following the work of
Lewis and Zagier [7]. The one-form appearing in the integral is closed thanks to the hyperbolic
Laplacian eigenfunction property of the mock Maass theta function. If it is further true that the
mock Maass theta function is modular invariant, then we can find the obstruction to modularity
for the corresponding false-indefinite theta function as a period function of the aforementioned one-
form. The question of modularity, on the other hand, can be studied through Zwegers’ modular
completions for these mock Maass theta functions. In the special cases where the completing
“shadow contributions” cancel each other thanks to symmetry, the mock Maass theta function
becomes a Maass waveform itself and the modular properties of the false-indefinite theta function
then follows.

Figure 1
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If the functions Lj are rewritten as false-indefinite theta functions, such cancellations indeed
occur as we show below and the corresponding mock Maass theta functions are modular. That in
turn implies corresponding modular properties for the functions Lj on H as discussed above. For the
case of L1, . . . , L4 and L9, . . . , L12, these Maass forms do not have constant terms in their Fourier
expansion and the arguments of Zagier [12] immediately apply to give the quantum modularity
results stated above. However, for the functions L5, . . . , L8, the corresponding vector-valued Maass
form does have a nonvanishing constant term and as a result the corresponding Lj(e

2πi(x+it))’s
have divergent pieces as t → 0+ depending on j and x. So a novel technical aspect of this work
is the handling of these divergent pieces to show that the remaining finite pieces lead to quantum
modular forms.

This paper is organized as follows. In Section 2, we review and expand on the relation between
Maass forms and quantum modular forms, with a particular emphasis on the aspects needed if
the Maass form in question has nonvanishing constant terms. In Section 3, we review the work of
Zwegers on mock Maass theta functions and their relation to false-indefinite theta functions that
appear in this work. Then in Sections 4, 5, 6, we analyze the functions L1, . . . , L4, L5, . . . , L8, and
L9, . . . , L12, respectively, and prove the results asserted in Theorem 1.1. Finally, in an appendix
we display various numerical results that exemplify our discussion in the body of this paper.
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2. Maass Forms and Quantum Modular Forms

In this section we consider quantum modular forms related to Maass forms. First we recall the
definition of a (vector-valued) Maass form.

Definition 2.1. A set of smooth functions Uj : H→ C with j ∈ {1, . . . , N} is called a vector-valued
Maass (wave) form for the group Γ ⊂ SL2(Z) if it satisfies the following conditions:

1) For all M =
(
a b
b c

)
∈ Γ we have

Uj

(
aτ + b

cτ + d

)
=

N∑
k=1

ΨM (j, k)Uk(τ), (2.1)

where ΨM is a suitable multiplier system.2

2) There exists a λ ∈ C such that ∆ (Uj) = λUj for each j, where ∆ := −τ2
2 ( ∂2

∂τ21
+ ∂2

∂τ22
) is the

hyperbolic Laplace operator on H.
3) The functions Uj have at most polynomial growth near the cusps.

The Maass forms Uj with Laplace eigenvalue λ = 1
4 −ν

2 (where ν ∈ C) have a Fourier expansion
of the form

Uj(τ) =
∑

n∈Z+αj

aj(τ2;n)e2πinτ1 ,

where, for some constants dj(n), bj , cj ,

aj(τ2;n) = dj(n)
√
τ2Kν(2π|n|τ2) if n 6= 0 and aj(τ2; 0) =

{
bj log(τ2)

√
τ2 + cj

√
τ2 if ν = 0,

bjτ
1
2
−ν

2 + cjτ
1
2

+ν

2 if ν 6= 0.

2Here and throughout we assume that ΨM is diagonal on Γ∞ := Γ ∩ {± ( 1 n
0 1 ) : n ∈ Z}.
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In this paper, our interest is on Maass forms with Laplace eigenvalue 1
4 . More specifically, we

study functions Uj : H → C, j ∈ {1, . . . , N} forming a vector-valued Maass form for Γ ⊂ SL2(Z)
with Fourier expansion

Uj(τ) = cj
√
τ2 +

√
τ2

∑
n∈Z+αj
n6=0

dj(n)K0(2π|n|τ2)e2πinτ1 , (2.2)

where the coefficients dj(n) have polynomial growth in n. Following [7] we then define3

Rτ (z) :=

√
z2√

(z − τ) (z − τ)
and [Uj(z), Rτ (z)] := ∂Uj(z)Rτ (z)dz + Uj(z)∂Rτ (z)dz,

where ∂f(z) := ∂f(z)
∂z and ∂f(z) := ∂f(z)

∂z . For each j, the one-form [Uj(z), Rτ (z)] is closed thanks to

the fact that both Rτ and Uj have eigenvalue 1
4 under the Laplacian. Using these closed one-forms,

we define uj : H→ C and Uj,% : C \ (%+ iR)→ C by4,5

uj(τ) := − 2

π

∫ i∞

τ
[Uj(z), Rτ (z)] and Uj,%(τ) :=

2

π

∫ i∞

%
[Uj(z), Rτ (z)], (2.3)

for any

% ∈ QΓ :=

{
x ∈ Q : there exists Mx :=

(
ax bx
cx dx

)
∈ Γ with x = −dx

cx

}
. (2.4)

The integrals are independent of the integration path, but for concreteness we assume throughout
that the integrals are taken along vertical paths. Now the results of Lewis and Zagier in [7] and
of Zagier in [12] show that if the Uj ’s form a Maass form with cj = 0 for all j, then the limits
limt→0+ uj(x+ it) exist for all x ∈ QΓ and they form a quantum modular form for Γ.

Among the functions we study, L1, . . . , L4 and L9, . . . , L12 indeed fit into this framework. The
functions L5, . . . , L8, on the other hand, are related to a vector-valued Maass form with a nontrivial
constant term. So in this section we develop the technical details for how the results of [7] and [12]
extend to this case.6

We start with an elementary result that relates the Maass waveforms discussed here to q-series.

Proposition 2.2. The functions uj for j ∈ {1, . . . , N} are holomorphic on H and they satisfy

uj(τ) = −cj
π

+
∑

n∈Z+αj
n>0

dj(n)qn.

Proof. This basically follows from the results of [7]. A detailed exposition for the case cj = 0
can be found in Proposition 3.5 of [8]. The contribution of the constant terms cj follow from a
straightforward computation. �

Next we note the analytic properties of the functions Uj,%.

3Throughout this paper we use the principal branch of the logarithm to define the square-roots.
4We also define Uj,i∞(τ) := 0.
5The latter function is a period function that can be analytically continued in τ to a cut complex plane and that

satisfies a functional equation under modular transformations. The correspondence between Maass cusp forms and
their period functions was first elucidated by Lewis and Zagier in [7], where they also recognized its role similar to
that of period polynomials for holomorphic cusp forms.

6In [7], a discussion of noncuspidal SL2(Z) Maass forms was given (see equations (4.4) and (4.5) there with

s = 1
2
− ν). However, note that the constant term bjτ

1
2
−ν

2 + cjτ
1
2
+ν

2 degenerates for ν = 0, which is the case of
interest in this paper, and we have not found an interpretation for the constant term given in (4.5) of [7] (that would
correspond to the constant term of uj) to reproduce our result in Proposition 2.2.
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Proposition 2.3. For j ∈ {1, . . . , N} and % ∈ QΓ, the integral defining Uj,%(z) is convergent for
all z ∈ C \ (%+ iR) and defines a holomorphic function there.

Proof. Again this result basically follows from [7]. Here we give details both for reference and also
to point out the new ingredients that appear in the presence of constant Fourier coefficients. We
start by writing

Uj,%(τ) =
1

2π

∫ ∞
0

(
4it∂Uj(%+ it)− t+ i(τ − %)

t− i(τ − %)
Uj(%+ it)

)
dt

√
t
√
t2 + (τ − %)2

.

Then letting % = −d
c for M =

(
a b
c d

)
∈ Γ, we can use the modular transformations (2.1) to write

(for any T > 0)

Uj,%(τ) =
1

2π

∫ ∞
T

(
4it∂Uj

(
−d
c

+ it

)
−
t+ i

(
τ + d

c

)
t− i

(
τ + d

c

)Uj (−d
c

+ it

))
dt

√
t

√
t2 +

(
τ + d

c

)2 (2.5)

− 1

2π

N∑
k=1

ΨM−1(j, k)

∫ T

0

(
4i

c2t
∂Uk

(
a

c
+

i

c2t

)
+
t+ i

(
τ + d

c

)
t− i

(
τ + d

c

)Uk (a
c

+
i

c2t

))
dt

√
t

√
t2 +

(
τ + d

c

)2 .
Now looking at the Fourier expansion in (2.2), we find that for any ε > 0 we have constants
Cε, D > 0 such that for all τ2 ≥ ε and for all j ∈ {1, . . . , N} we have

|Uj(τ)− cj
√
τ2| ,

∣∣∣∣4i∂Uj(τ)− cj√
τ

∣∣∣∣ ≤ Cεe−Dτ2 (2.6)

thanks to the exponential decay of K-Bessel functions towards infinity. So separating the constant
terms of U and ∂U ’s, it is easy to see that their contribution to (2.5) is convergent and yields a
holomorphic function. The contribution of the constant terms can then be separately checked to
be convergent and to be holomorphic for all z ∈ C \ (%+ iR). �

Remark 2.4. Here it is also useful to note that by deforming the path of integration and the
cut associated with the square-roots as in Figure 2, one can analytically continue Uj,%(z) from the
half-plane Re(z) > % to the entire cut-plane C \ (−∞, %].7

Figure 2

Now we are ready to state the modular transformations of uj on H.

Proposition 2.5. For M :=
(
a b
c d

)
∈ Γ and τ ∈ H with τ1 6= −d

c we have

uj

(
aτ + b

cτ + d

)
= sgn(cτ1 + d)(cτ + d)

N∑
k=1

ΨM (j, k)
(
uk(τ) + Uk,− d

c
(τ)
)
.

7Similarly we can continue Uj,%(z) from the half-plane Re(z) < % to the entire cut-plane C \ [%,∞).
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Proof. The statement is trivial for c = 0, so we assume that c 6= 0. We start with the definition in
equation (2.3) for uj(

aτ+b
cτ+d) and make a change of variable z 7→ az+b

cz+d to write

uj

(
aτ + b

cτ + d

)
= − 2

π

∫ − d
c

τ

[
Uj

(
az + b

cz + d

)
, Raτ+b

cτ+d

(
az + b

cz + d

)]
,

where the integral is taken over a piece of hyperbolic geodesic from τ to −d
c . Now we note that

Raτ+b
cτ+d

(
az + b

cz + d

)
= χM (τ, z)(cτ + d)Rτ (z),

where

χM (τ, z) :=

√
(cτ + d)2

(z − τ) (z − τ)

√
(z − τ) (z − τ)

cτ + d
∈ {±1}.

Since we are using the principal values of the logarithm to define square roots, Rτ (z) is discontinuous
on the z-plane along the vertical cut from τ to τ . Then following the modular transformation,
the sign factor χM (τ, z) is discontinuous along this vertical line and along another piece of a
hyperbolic geodesic emanating from τ (to which the vertical cut of Rτ (z) transforms). Moreover,
on these discontinuity cuts themselves, the sign factor χM (τ, z) takes a constant value (since Rτ (z)
is continuous if it is restricted to its vertical cut). In particular, χM (τ, z) is constant along our
integration line, which itself is a hyperbolic geodesic from τ to −d

c . We can determine this sign to

be sgn(cτ1 + d) by setting z = −d
c . Then using the modular transformation in (2.1) and using our

freedom to deform the path of integration to write
∫ − d

c
τ =

∫ i∞
τ −

∫ i∞
− d
c

we obtain the result. �

Our next goal is to define a function on rationals by taking vertical limits of uj(τ) and removing
the growing pieces.

Proposition 2.6. For any M :=
(
a b
c d

)
∈ Γ with c 6= 0, the limit

lim
t→0+

(
uj

(
−d
c

+ it

)
− 1

π|c|t

N∑
k=1

ΨM−1(j, k)ck

)
(2.7)

exists. Moreover, the same limit is obtained for any element of Γ in the same equivalence class as
M in Γ∞\Γ. Using this limit we can define the functions uj : QΓ → C by

uj(x) := lim
t→0+

(
uj(x+ it)− γj,x

πt

)
with γj,x :=

1

|cx|

N∑
k=1

ΨM−1
x

(j, k)ck.

Here x = −dx
cx

and Mx =
(
ax bx
cx dx

)
∈ Γ as in the definition of QΓ in (2.4).

Proof. We start by explicitly writing the expression for uj(τ) in (2.3) as

uj(τ) =
1

2π

∫ ∞
0

(
−4i∂Uj(τ + iv)

√
v + τ2√

v
√
v + 2τ2

+ Uj(τ + iv)

√
v

√
v + τ2(v + 2τ2)

3
2

)
dv. (2.8)

Inserting τ = −d
c + it and separating the integral into two pieces as

∫ 1
0 and

∫∞
1 , we easily find that

the limit t → 0+ exists for the latter piece and can be computed by setting t = 0 thanks to the

bounds in (2.6). For the integral
∫ 1

0 , on the other hand, we use the modular transformations in
(2.1) and separate the constant term to rewrite this contribution as

− 1

2πc2

N∑
k=1

ΨM−1(j, k)

∫ 1

0

(
−4i∂Uk

(
a

c
+

i

c2(v + t)

)
+ ck|c|

√
v + t

)
1

√
v
√
v + 2t(v + t)

3
2

dv
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+
1

2π

N∑
k=1

ΨM−1(j, k)

∫ 1

0

(
Uk

(
a

c
+

i

c2(v + t)

)
− ck

|c|
√
v + t

) √
v

√
v + t(v + 2t)

3
2

dv

+
1

π|c|

N∑
k=1

ΨM−1(j, k)ck

∫ 1

0

dv
√
v(v + 2t)

3
2

.

Next we use a looser version of the bound in (2.6), namely that for any ε > 0 we have a constant
Bε > 0 such that for all τ2 ≥ ε and for all j ∈ {1, . . . , N} we have

|Uj(τ)− cj
√
τ2| ,

∣∣∣∣4i∂Uj(τ)− cj√
τ2

∣∣∣∣ ≤ Bε
τ2

2

. (2.9)

Using these two bounds, we find that for t, v ≤ 1 the integrands in the first and second lines can be
bounded by C√

v
and C

√
v, respectively, for an appropriate constant C > 0. Thanks to these upper

bounds and to the fact that the integrands are continuous at t = 0, for those two terms, the limit
t→ 0+ exists and they can simply be taken by explicitly setting t = 0. The third line, on the other
hand, can be explicitly evaluated and we find that the piece of it that grows as t→ 0+ is removed
by the term 1

π|c|t
∑N

k=1 ΨM−1(j, k)ck in (2.7).

Finally, the fact that the same limit is obtained for any
(
a+rc b+rd
c d

)
∈ Γ (with r ∈ Z) follows

from the diagonality of the multiplier system over Γ∞. �

Now the functions uj are defined through vertical limits in H, we show how the same functions
are obtained when we slightly deform the path through which we take the limit.

Lemma 2.7. For any x ∈ QΓ and for any smooth function X : R+ → R that satisfies X(t) =
Bt2 + o(t2) as t→ 0+ we have

uj(x) = lim
t→0+

(
uj (x+ it+X(t))− γj,x

π(t− iX(t))

)
.

Proof. We prove the equivalent statement

lim
t→0+

(uj (x+ it+X(t))− uj (x+ it)) =
iBγj,x
π

. (2.10)

We start by using equation (2.8) to write

uj(x+ it+X(t))− uj(x+ it)

=
1

2π

∫ ∞
0

(−4i∂Uj(x+X(t) + i(v + t)) + 4i∂Uj(x+ i(v + t)))

√
v + t

√
v
√
v + 2t

dv

+
1

2π

∫ ∞
0

(Uj(x+X(t) + i(v + t))− Uj(x+ i(v + t)))

√
v

√
v + t(v + 2t)

3
2

dv.

As in Proposition 2.6, we separate the integrals into two pieces as
∫ 1

0 and
∫∞

1 . For the contributions

from
∫∞

1 , the same argument that we use there can be employed to show that the limit t → 0+

can be computed by explicitly setting t = 0 inside the integrands. In particular, this shows that
the contributions from

∫∞
1 do not contribute to the limit in (2.10).

To study the contributions from
∫ 1

0 , we let M =
(
a b
c d

)
∈ Γ be such that x = −d

c and use modular

transformations by M−1 to rewrite them as

1

2πc2

N∑
k=1

ΨM−1(j, k)

∫ 1

0
4i∂Uk

(
a

c
+

i

c2(v + t− iX(t))

) √
v + t

√
v
√
v + 2t(v + t− iX(t))2

dv

8



− 1

2πc2

N∑
k=1

ΨM−1(j, k)

∫ 1

0
4i∂Uk

(
a

c
+

i

c2(v + t)

)
1

√
v
√
v + 2t(v + t)

3
2

dv

+
1

2π

N∑
k=1

ΨM−1(j, k)

∫ 1

0
Uk

(
a

c
+

i

c2(v + t− iX(t))

) √
v

√
v + t(v + 2t)

3
2

dv

− 1

2π

N∑
k=1

ΨM−1(j, k)

∫ 1

0
Uk

(
a

c
+

i

c2(v + t)

) √
v

√
v + t(v + 2t)

3
2

dv.

Now we choose T ≤ 1 to be small enough that |X(t)| ≤ t for all t ∈ [0, T ]. Then for v ∈ (0, 1)

Im

(
a

c
+

i

c2 (v + t− iX(t))

)
≥ 1

4c2
.

As in the proof of Proposition 2.6, this allows us to use the bounds in (2.9) to show that once
we remove the constant terms of Uk and ∂Uk’s we can take t → 0+ by setting t = 0 inside the
integrands and hence we get no contribution to the limit in (2.10) from such terms. This leaves us
the contribution from the constant terms:

1

2π|c|

N∑
k=1

ΨM−1(j, k)ck

∫ 1

0

( √
X(t)2 + (v + t)2

√
v
√
v + 2t (v + t− iX(t))2 −

1
√
v
√
v + 2t(v + t)

+

√
v√

X(t)2 + (v + t)2(v + 2t)
3
2

−
√
v

(v + t)(v + 2t)
3
2

)
dv

=
γj,x
πt

∫ 1
t

0

1
√
v(v + 2)

3
2


 (v + 1)3(

X(t)2

t2
+ (v + 1)2

) 3
2

− 1

(1 +
iX(t)

t

v + 2

(v + 1)2

)

− X(t)2

t2
1(

X(t)2

t2
+ (v + 1)2

) 3
2

+
iX(t)

t

v + 2

(v + 1)2

 dv,

from which it is easy to see that the first two terms in the outer parentheses give vanishing contri-

butions as t → 0+, whereas the contribution of iX(t)
t

v+2
(v+1)2

gives the right-hand side of (2.10) and

thereby concludes our proof. �

We are now ready to state the quantum modular transformation properties of the functions uj .

Theorem 2.8. For any M :=
(
a b
c d

)
∈ Γ and x ∈ QΓ \ {−d

c} we have the quantum modular
transformation property

uj

(
ax+ b

cx+ d

)
= |cx+ d|

N∑
k=1

ΨM (j, k)
(
uk(x) + Uk,− d

c
(x)
)
.

Proof. We start by noting that ΨM is a multiplier system for a weight zero modular object (see
equation (2.1)). Therefore, it forms a genuine representation of the modular group Γ (as opposed
to a projective one) and this leads to the identity

N∑
k=1

ΨM (j, k)γk,x = |cx+ d|γj,ax+b
cx+d

. (2.11)
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So plugging in τ = x + it (with t > 0) to the modular transformation worked out in Proposition
2.5 and using (2.11) we obtain

uj

(
ax+ b

cx+ d
+

it

(cx+ d)(cx+ cit+ d)

)
−
γj,ax+b

cx+d

πt
(cx+ d)(cx+ cit+ d)

= sgn(cx+ d)(cx+ cit+ d)
N∑
k=1

ΨM (j, k)
(
uk(x+ it)−

γk,x
πt

+ Uk,− d
c
(x+ it)

)
.

By Propositions 2.3 and 2.6, the right-hand side tends to the right-hand side of the claim as t→ 0+.
Finally, we note that the left-hand side tends to uj(

ax+b
cx+d) as t→ 0+ by Lemma 2.7. �

3. Mock Maass Theta functions

In the following sections, we see that the functions L1, . . . , L12 can all be expressed in terms of
certain theta functions of the form8∑

n∈Zd+µ

(1− sgn(B(n, c1))sgn(B(n, c2)))qQ(n), (3.1)

whereQ is a quadratic form of indefinite signature and the vectors c1 and c2 of negative norm ensure
convergence. Such functions are not as well-studied as similar looking indefinite theta functions of
the shape ∑

n∈Zd+µ

(sgn(B(n, c1))− sgn(B(n, c2)))qQ(n),

which are known to yield mock modular forms thanks to the ground-breaking work of Zwegers [13].
The functions in equation (3.1), which are hybrids of indefinite and false theta functions, do not
easily fit into a modular framework; but they are still interestingly related to the so-called mock
Maass theta functions developed by Zwegers in [14]. In this section, we review the properties of
such functions for our later use.

First, we restrict ourselves to 2-dimensional lattices and let Q be a binary quadratic form of
signature (1, 1). Throughout the paper we assume that Q(n) is integral for all n = (n1 n2)T ∈ Z2

(in which case we call the quadratic form even) and that Q(n) = 1
2n

TAn, where A is a symmetric

2× 2 matrix. Finally, we let B denote the bilinear form associated to Q as B(n,m) = nTAm.
Next, we recall that the set of vectors c ∈ R2 with Q(c) = −1 splits into two connected com-

ponents. Fixing a vector c0 in one of the components, all the vectors in the same component are
characterized by

CQ :=
{
c ∈ R2 : Q(c) = −1, B(c, c0) < 0

}
.

In particular, if B(c1, c2) < 0, then c1 and c2 belong to the same component. Similarly, the set of
vectors c ∈ R2 with Q(c) = 1 splits into two components, as well. Choosing c⊥0 as one of the two
unit vectors that are orthogonal to c0, all the unit vectors in the same component are given by

C⊥Q :=
{
c ∈ R2 : Q(c) = 1, B

(
c, c⊥0

)
> 0
}
.

It is convenient to parametrize CQ and C⊥Q by using the reference quadratic form Q0(x) = x2
1−x2

2.

For this, we let P ∈ GL2(R) be such that

A = P T
(

2 0
0 −2

)
P, P−1

(
0
1

)
∈ CQ, and P−1

(
1
0

)
∈ C⊥Q .

8Note that throughout we write vectors in bold letters.
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Then we parametrize the vectors in CQ and C⊥Q by letting

c(t) := P−1

(
sinh(t)
cosh(t)

)
∈ CQ and c⊥(t) := P−1

(
cosh(t)
sinh(t)

)
∈ C⊥Q for t ∈ R. (3.2)

Also, when we consider a number of vectors cj ∈ CQ below, it is convenient to let tj ∈ R be such

that c(tj) = cj and let c⊥j = c⊥(tj).

Remark 3.1. The reference quadratic form we choose here is convenient since the quadratic forms
in all of our examples are of the form Q(n) = α1n

2
1−α2n

2
2 with α1, α2 ∈ N. We then choose CQ as

the set of c ∈ R2 with Q(c) = −1 and c2 > 0, whereas C⊥Q as the set of c ∈ R2 with Q(c) = 1 and

c1 > 0. Finally, note that we fix P in all such examples by selecting P =
(√

α1 0
0
√
α2

)
to satisfy the

conditions in (3.2).9

With this background at hand, we follow the Definition 2.3 of [14] and define the completed
mock Maass theta function (with µ ∈ R2 and c1, c2 ∈ CQ)

Θ̂µ(τ) = Θ̂
[c1,c2]
µ (τ) :=

√
τ2

∑
n∈Z2+µ

qQ(n)

∫ t2

t1

e−πB(n,c(t))2τ2dt. (3.3)

Note that it satisfies the basic properties

Θ̂−µ(τ) = Θ̂µ(τ) and Θ̂µ+λ(τ) = Θ̂µ(τ) for all λ ∈ Z2.

More importantly, such functions are covariant under modular transformations as shown in [14].

Theorem 3.2 (Zwegers). Let Q(n) = 1
2n

TAn be an even quadratic form of signature (1, 1) on Z2

and let µ ∈ A−1Z2/Z2. Then we have the following transformations:

Θ̂µ(τ + 1) = e2πiQ(µ)Θ̂µ(τ), Θ̂µ

(
−1

τ

)
=

1√
| det(A)|

∑
ν∈A−1Z2/Z2

e−2πiB(µ,ν)Θ̂ν(τ).

The multipliers in Theorem 3.2 agree with the Weil representation associated to Q, so we can
just as easily state the modular transformation under any element of SL2(Z) (see e.g. [5] for further
details on Weil representations). We state this result more explicitly for later reference.

Theorem 3.3. Let Q(n) = 1
2n

TAn be an even quadratic form of signature (1, 1) on Z2 and let

µ ∈ A−1Z2/Z2. Then, for any M =
(
a b
c d

)
∈ SL2(Z) we have

Θ̂µ

(
aτ + b

cτ + d

)
=

∑
ν∈A−1Z2/Z2

ψM (µ,ν)Θ̂ν(τ),

where

ψM (µ,ν) :=


e2πiabQ(µ)δµ,sgn(d)ν if c = 0,

1

|c|
√
|det(A)|

∑
m∈Z2/cZ2

e
2πi
c

(aQ(m+µ)−B(m+µ,ν)+dQ(ν)) if c 6= 0.

9In [14], Q0(x) = x1x2 was used as the reference quadratic form and one picks a matrix P ∈ GL2(R) such that
A = PT ( 0 1

1 0 )P and P−1
(

1
−1

)
∈ CQ to parametrize CQ. By letting P =

(
1 1
1 −1

)
P , we can see the equivalence of the

two definitions up to the extra requirement P−1 ( 1
0 ) ∈ C⊥Q here. To see why this extra condition is included here,

note that one can multiply any P as defined in [14] on the left by
(

0 −1
−1 0

)
. This preserves both of the conditions

A = PT ( 0 1
1 0 )P and P−1

(
1
−1

)
∈ CQ. However, this changes the parameter t on CQ as t 7→ −t (and in particular

tj 7→ −tj) while also changing c⊥j 7→ −c⊥j . Consequently, this transformation changes the overall sign of the mock

Maass theta functions defined in [14], whereas the extra condition here eliminates this ambiguity.
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The functions Θ̂µ are closely related to the mock Maass theta functions defined by [14]10,11

Θµ(τ) :=
1

2
sgn(t2 − t1)

√
τ2

∑
n∈Z2+µ
n 6=0

(
1− sgn(B(n, c1))sgn(B(n, c2))K0(2πQ(n)τ2)e2πiQ(n)τ1

+
1

2
sgn(t2 − t1)

√
τ2

∑
n∈Z2+µ
n 6=0

(
1− sgn

(
B
(
n, c⊥1

))
sgn
(
B
(
n, c⊥2

)))
K0(−2πQ(n)τ2)e2πiQ(n)τ1

+ (t2 − t1)
√
τ2δµ∈Z2 . (3.4)

These mock Maass theta functions are eigenfunctions of hyperbolic Laplacian with eigenvalue 1
4

and hence are related to the theta functions we encounter in equation (3.1) through equation (2.3)
and Proposition 2.2. More specifically,

ϑµ(τ) := − 2

π

∫ i∞

τ
[Θµ(z), Rτ (z)]

satisfies

ϑµ(τ) :=− t2 − t1
π

δµ∈Z2 +
sgn(t2 − t1)

2

∑
n∈Z2+µ
n 6=0

(
1− sgn(B(n, c1))sgn(B(n, c2))

)
qQ(n). (3.5)

Our first step towards understanding the relation between the mock Maass theta functions Θµ
and their completions Θ̂µ is the following result (following from Lemma 4.1 of [14]).

Proposition 3.4. Let Q(n) = 1
2n

TAn be an even quadratic form of signature (1, 1) on Z2 and let

µ ∈ A−1Z2/Z2. Also assume that Q(n) = 0 has no solutions on Q2 except for n = 0. Then

Θ̂µ(τ) = Θµ(τ) + ϕ
[c1]
µ (τ)− ϕ[c2]

µ (τ),

where

ϕ
[c0]
µ (τ) :=

√
τ2

∑
n∈Z2+µ

αt0 (n
√
τ2) qQ(n)

with

αt0(n) :=


∫∞
t0
e−πB(n,c(t))2dt if B(n, c0)B

(
n, c⊥0

)
> 0,

−
∫ t0
−∞ e

−πB(n,c(t))2dt if B(n, c0)B
(
n, c⊥0

)
< 0,

0 otherwise.

In summary, we can follow the nomenclature for mock modular forms and refer to ϕ
[c1]
µ and ϕ

[c2]
µ

as shadow contributions that correct the modular behavior of the mock Maass theta function Θµ.
They do however break the property of being a Laplacian eigenfunction (in a way similar to the
breaking of holomorphy property by completions of mock modular forms).

Now for our purposes, the property of being a Laplacian eigenfunction is crucial for making
contact with q-series such as (3.5) that appear in our treatment of the functions L1, . . . , L12. In
turn, to prove modular properties for (linear combinations of) ϑµ as in Section 2, we need the

corresponding shadow contributions to Θ̂µ to vanish. One criterion that can be used to prove such

10The exclusion of n = 0 from the sums and the addition of the final term (t2− t1)
√
τ2δµ∈Z2 differs from [14], but

this is an appropriate definition in view of Proposition 3.4 below.
11Here and throughout the paper sgn(x) := x

|x| for x ∈ R \ {0} and sgn(0) := 0.
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a statement is given by Lemma 5.1 of [14]. It states that if γ ∈ GL2(Z) is such that γTAγ = A,
det(γ) = +1, and γCQ = CQ, then we have

ϕ
[γc]
γa (τ) = ϕ

[c]
a (τ).

In our work, we need a modified version of this criterion, which we state and prove next.

Lemma 3.5. Let Q(n) = 1
2n

TAn be an even quadratic form of signature (1, 1), let c3, c4 ∈ CQ,

and let γ ∈ GL2(Z) be such that γTAγ = A, det(γ) = −1, and γc3 = ±c4. Then

ϕ
[c4]
γa (τ) = −ϕ[c3]

a (τ).

Proof. We first assume that γc3 = −c4 and note that it is not hard to see that

γc(t) = −c(t3 + t4 − t). (3.6)

Then we have (by changing variables as t 7→ t3 + t4 − t and using (3.6) and that γTAγ = A)∫ ∞
t4

e−πB(γn,c(t))2τ2dt =

∫ t3

−∞
e−πB(γn,c(t3+t4−t))2τ2dt =

∫ t3

−∞
e−πB(n,c(t))2τ2dt.

Similarly, we have∫ t4

−∞
e−πB(γn,c(t))2τ2dt =

∫ ∞
t3

e−πB(γn,c(t3+t4−t))2τ2dt =

∫ ∞
t3

e−πB(n,c(t))2τ2dt.

Using these identities with the fact that

B(γn, c4)B
(
γn, c⊥4

)
= B(γn,−γc3)B

(
γn, γc⊥3

)
= −B(n, c3)B

(
n, c⊥3

)
,

we immediately see that αt4(γn
√
τ2) = −αt3(n

√
τ2) and hence that ϕ

[c4]
γa (τ) = −ϕ[c3]

a (τ).
For the case γc3 = c4, we can write γ = (−γ)(−I2), where −γ satisfies the hypotheses of the

lemma with (−γ)c3 = −c4. Then the first part of the lemma, together with the trivial identity

ϕ
[c3]
−a (τ) = ϕ

[c3]
a (τ) (see Lemma 5.1 of [14]) implies the result. �

4. The functions L1–L4

In this section, we begin our investigation of the twelve functions introduced by Lovejoy and
Osburn [10]. We start with the functions L1, . . . , L4 that count ideals in the ring of integers of
Q(
√

2).

4.1. Rewriting as theta functions. We start with the following lemma, which rewrites L1, . . . , L4

in terms of theta functions as in equation (3.1).

Lemma 4.1. We have

q−
17
32L1(q) =

1

2

 ∑
n∈Z2+( 1

16
3
8)
T

+
∑

n∈Z2+( 7
16

1
8)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q8n2
1−4n2

2 ,

q
7
32L2(q) =

1

2

 ∑
n∈Z2+( 3

16
1
8)
T

+
∑

n∈Z2+( 5
16

3
8)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q8n2
1−4n2

2 ,

q−
33
32L3(q) =

1

2

 ∑
n∈Z2+( 1

16
1
8)
T

+
∑

n∈Z2+( 7
16

3
8)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q8n2
1−4n2

2 ,

13



q−
9
32L4(q) =

1

2

 ∑
n∈Z2+( 3

16
3
8)
T

+
∑

n∈Z2+( 5
16

1
8)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q8n2
1−4n2

2 .

Proof. We start with the following identity given in the proof of Theorem 1.1 of [9]

q−17L1

(
q32
)

=
∑
n≥1

−n≤j≤n−1

(
q(16n−1)2−2(8j+3)2 + q(16n+1)2−2(8j+3)2

)

+
∑
n≥0

−n≤j≤n

(
q(16n+7)2−2(8j+1)2 + q(16n+9)2−2(8j+1)2

)
.

First note that the conditions n ≥ 1 and n ≥ 0 can be dropped with the understanding that we
are summing over all pairs (n, j) ∈ Z2 satisfying the conditions −n ≤ j ≤ n − 1 and −n ≤ j ≤ n,
respectively. We then change n 7→ −n in the first sum and n 7→ −n− 1 in the forth sum to obtain
the claim for L1(q).

As the proof of the remaining identities are similar, we just state the related identities from the
proof of Theorem 1.1 of [9]:

q7L2

(
q32
)

=
∑
n≥0

−n≤j≤n

(
q(16n+3)2−2(8j+1)2 + q(16n+13)2−2(8j+1)2

)

+
∑
n≥0

−n−1≤j≤n

(
q(16n+21)2−2(8j+3)2 + q(16n+11)2−2(8j+3)2

)
,

q−33L3

(
q32
)

=
∑
n≥1

−n≤j≤n−1

(
q(16n−1)2−2(8j+1)2 + q(16n+1)2−2(8j+1)2

)

+
∑
n≥0

−n≤j≤n

(
q(16n+7)2−2(8j+3)2 + q(16n+9)2−2(8j+3)2

)
,

q−9L4

(
q32
)

=
∑
n≥0

−n≤j≤n−1

q(16n+3)2−2(8j+3)2 +
∑
n≥0

−n−1≤j≤n

q(16n+13)2−2(8j+3)2

+
∑
n≥−1

−n−1≤j≤n+1

q(16n+21)2−2(8j+1)2 +
∑
n≥0

−n≤j≤n

q(16n+11)2−2(8j+1)2 . �

To express these functions more compactly, we define the quadratic form

Q(n) := 8n2
1 − 4n2

2 (4.1)

and the vectors

c1 :=
1

2
√

2
(−1 2)T and c2 :=

1

2
√

2
(1 2)T (4.2)

in CQ (as defined in Remark 3.1). For these choices, the theta function in equation (3.5) is

ϑµ(τ) =
1

2

∑
n∈Z2+µ

(1 + sgn(n1 + n2)sgn(n1 − n2))q8n2
1−4n2

2 for µ 6∈ Z2.

We can now express the theta functions found in Lemma 4.1 in terms of these ϑµ’s.
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Lemma 4.2. We have

q−
17
32L1(q) = f3(τ), q

7
32L2(q) = f1(τ), q−

33
32L3(q) = f0(τ), q−

9
32L4(q) = f2(τ),

where

fj(τ) := ϑµj (τ) + ϑµj+λ(τ) with µj :=

(
2j + 1

16

1

8

)T
and λ :=

(
1

2

1

2

)T
.

Proof. The claim follows from the relations

ϑµ = ϑ−µ = ϑ(µ1 −µ2)T . �

4.2. The corresponding Maass forms. Next we follow (3.4) and define the mock Maass theta
functions Θµ for the quadratic form Q in (4.1) and vectors c1, c2 in (4.2). Noting that the vectors

in C⊥Q corresponding to c1 and c2 are c⊥1 = 1
2(1 − 1)T and c⊥2 = 1

2(1 1)T , we find (for µ 6∈ Z2)

Θµ(τ) =

√
τ2

2

∑
n∈Z2+µ

(1 + sgn(n1 + n2)sgn(n1 − n2))K0

(
2π
(
8n2

1 − 4n2
2

)
τ2

)
e2πi(8n2

1−4n2
2)τ1

+

√
τ2

2

∑
n∈Z2+µ

(1− sgn(2n1 + n2)sgn(2n1 − n2))K0

(
−2π

(
8n2

1 − 4n2
2

)
τ2

)
e2πi(8n2

1−4n2
2)τ1 .

We also have their modular completions given by equation (3.3) and Proposition 3.4:

Θ̂µ = Θµ + ϕ
[c1]
µ − ϕ[c2]

µ .

In the following it is also useful to note the trivial identities

Θµ = Θ−µ = Θ(−µ1 µ2)T = Θ(µ1 −µ2)T , Θ̂µ = Θ̂−µ = Θ̂(−µ1 µ2)T = Θ̂(µ1 −µ2)T . (4.3)

Our main interest is of course on the linear combinations of ϑµ’s given in Lemma 4.2. So for

j ∈ {0, 1, 2, 3} we form the corresponding linear combinations of the Θµ’s and Θ̂µ’s to define

Fj := Θµj + Θµj+λ and F̂j := Θ̂µj + Θ̂µj+λ.

With the next lemma, we show that the shadow contributions to F̂j do in fact vanish and hence
the Fj ’s constitute a Maass form.12

Lemma 4.3. For j ∈ {0, 1, 2, 3} we have

Fj = F̂j .

Proof. Suppose that γ ∈ GL2(Z) is an automorphism such that γTAγ = A, det(γ) = −1, and
γc = ±c for some c ∈ CQ. Suppose moreover that γλ ≡ λ

(
modZ2

)
and that γ transforms µ to

±µ or ±(µ+ λ) modulo Z2. Then the identity ϕ
[c]
−a = ϕ

[c]
a and Lemma 3.5 yield

ϕ
[c]
µ + ϕ

[c]
µ+λ = 0.

12Under any element of SL2(Z), the functions F̂j transform into a linear combination of completed mock Maass

theta functions Θ̂µ according to Theorem 3.3. According to the Section 3 of [14], we have∣∣∣∣qQ(n)

∫ t2

t1

e−πB(n,c(t))2τ2dt

∣∣∣∣ ≤ |t2 − t1|e−Cτ2(n2
1+n

2
2)

for any n, with a constant C depending on c1 and c2. So the infinite series in equation (3.3) can be bounded from

above with an ordinary theta function and this ensures that each F̂j has at most polynomial growth at the cusps.

This allows Fj = F̂j to satisfy the growth condition required from Maass forms in Definition 2.1. The same argument
also applies to the relevant functions for L5, . . . , L8 and L9, . . . , L12 cases below.
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We use this fact with the automorphisms γ1 :=
(−3 −2

4 3

)
and γ2 :=

(
3 −2
4 −3

)
, which both satisfy

det(γj) = −1 and γTAγ = A, as well as γ1c1 = c1 and γ2c2 = −c2. Since

γ1µj =
(−6j−7

16
4j+5

8

)T
, γ2µj =

(
6j−1

16
4j−1

8

)T
, γ1λ ≡ γ2λ ≡ λ

(
modZ2

)
,

we also find that γ1 and γ2 transform µj to ±µj or ±(µj + λ) modulo Z2 to conclude that

F̂j − Fj =
(
ϕ

[c1]
µj + ϕ

[c1]
µj+λ

)
−
(
ϕ

[c2]
µj + ϕ

[c2]
µj+λ

)
= 0 for all j. �

We next state the details of modular transformations for the Fj ’s under the modular group Γ0(2),

which is generated by T := ( 1 1
0 1 ), R := ( 1 0

2 1 ), and −I. Here and throughout we use ζn := e
2πi
n .

Proposition 4.4. The functions Fj for j ∈ {0, 1, 2, 3} transform like a vector-valued modular
function under Γ0(2):

Fj

(
aτ + b

cτ + d

)
=

3∑
k=0

ΛM (j, k)Fk(τ) for all M ∈ Γ0(2),

where the multiplier system Λ is as follows for T = ( 1 1
0 1 ) and R = ( 1 0

2 1 ):

ΛT =


ζ31

32 0 0 0
0 ζ7

32 0 0
0 0 ζ23

32 0
0 0 0 ζ15

32

 , ΛR =
1√
2


ζ31

32 cos
(

3π
16

)
ζ3

32 cos
(
π
16

)
ζ11

32 sin
(
π
16

)
ζ23

32 sin
(

3π
16

)
ζ3

32 cos
(
π
16

)
ζ23

32 sin
(

3π
16

)
ζ31

32 cos
(

3π
16

)
ζ11

32 sin
(
π
16

)
ζ11

32 sin
(
π
16

)
ζ31

32 cos
(

3π
16

)
ζ23

32 sin
(

3π
16

)
ζ3

32 cos
(
π
16

)
ζ23

32 sin
(

3π
16

)
ζ11

32 sin
(
π
16

)
ζ3

32 cos
(
π
16

)
ζ31

32 cos
(

3π
16

)

 .

Proof. The behavior under translation follows from Theorem 3.3 and the fact that Q(µj + λ) =
Q(µj) + j + 1. We next consider the transformation τ 7→ τ

2τ+1 . By Theorem 3.3, we have

Θ̂µ

(
τ

2τ + 1

)
=

∑
ν∈A−1Z2/Z2

ψ(µ,ν)Θ̂ν(τ),

where

ψ(µ,ν) =
1

2
√
| det(A)|

∑
m∈Z2/2Z2

eπi(Q(m+µ)−B(m+µ,ν)+Q(ν)).

Since Q(m+µ)−B(m+µ,ν)+Q(ν) = Q(m)+B(m,µ−ν)+Q(µ−ν) and Q(m) = 8m2
1−4m2

2

is even we get

ψ(µ,ν) =
eπiQ(µ−ν)

16
√

2

∑
m∈Z2/2Z2

eπiB(m,µ−ν).

The elements ofA−1Z2/Z2 are of the form ( r116
r2
8 )T with r1 ∈ {0, 1, 2 . . . , 15} and r2 ∈ {0, 1, 2 . . . , 7}.

Letting µ = (2r1+1
16

2r2+1
8 )T and ν = (2s1+`1

16
2s2+`2

8 )T , where r1, s1 ∈ {0, 1, . . . , 7}, r2, s2 ∈
{0, 1, 2, 3}, and `1, `2 ∈ {0, 1}, we find∑

m∈Z2/2Z2

eπiB(m,µ−ν) = 4δ`1,1δ`2,1.

In particular, this shows that the Θ̂µ’s with µ of the form (2r1+1
16

2r2+1
8 )T transform among

each other. Moreover, because of equation (4.3), changing µ1 from 1
16 ,

3
16 ,

5
16 ,

7
16 to 15

16 ,
13
16 ,

11
16 ,

9
16 ,

respectively, (or vice versa), or changing µ2 from 1
8 ,

5
8 to 7

8 ,
3
8 , respectively, does not change Θ̂µ.

So we can combine the contributions of cosets corresponding to µ,−µ, (−µ1 µ2)T , (µ1 − µ2)T by
restricting µ to

S := {µ0,µ1,µ2,µ3,µ0 + λ,µ1 + λ,µ2 + λ,µ3 + λ},
16



and by combining the corresponding factors in the transformation as

ρ(µ,ν) := ψ(µ,ν) + ψ(µ,−ν) + ψ(µ, (ν1,−ν2)) + ψ(µ, (−ν1, ν2)) and ψ(µ,ν) =
eπiQ(µ−ν)

4
√

2
.

This yields

Θ̂µ

(
τ

2τ + 1

)
=
∑
ν∈S

ρ(µ,ν)Θ̂ν(τ) for µ ∈ S,

where we simplify ρ as

ρ(µ,ν) =
eπi(Q(µ)+Q(ν))

√
2

cos(16πµ1ν1) cos(8πµ2ν2).

Since our ultimate goal is to study the transformation of F̂j , we write

Θ̂µ

(
τ

2τ + 1

)
+ Θ̂µ+λ

(
τ

2τ + 1

)
=
∑
ν∈S

λ(µ,ν)Θ̂ν(τ),

where

λ(µ,ν) := ρ(µ,ν) + ρ(µ+ λ,ν).

Since Q(λ) = 1, B(µ,λ) = 8µ1 − 4µ2, µ2 ∈ {1
8 ,

5
8} for µ ∈ S, we find the identity

eπiQ(µ+λ) = ieπiQ(µ)e8πiµ1 for µ ∈ S,

which we can use to show

λ(µ,ν + λ) = λ(µ,ν).

So we finally get

Θ̂µj

(
τ

2τ + 1

)
+ Θ̂µj+λ

(
τ

2τ + 1

)
=

3∑
k=0

λ(µj ,µk)
(

Θ̂µk(τ) + Θ̂µk+λ(τ)
)

and hence

Fj

(
τ

2τ + 1

)
=

3∑
k=0

λ(µj ,µk)Fk(τ).

Computing the explicit values of λ(µj ,µk) gives the stated transformation. �

4.3. Quantum modularity. To summarize our findings so far, we know from Proposition 4.4
that the functions Fj for j ∈ {0, 1, 2, 3} form a vector-valued Maass form for Γ0(2). Our next goal
is to apply the results of Section 2 on these functions. Firstly, we note that thanks to equation
(2.3) and Proposition 2.2, the functions fj (which are basically equal to the functions L1, . . . , L4

thanks to Lemma 4.2) are related to the Fj ’s as

fj(τ) = − 2

π

∫ i∞

τ
[Fj(z), Rτ (z)].

Then thanks to Proposition 2.5, they satisfy the following modular transformation for any M :=(
a b
c d

)
∈ Γ0(2) and τ ∈ H with τ1 6= −d

c :

fj

(
aτ + b

cτ + d

)
= sgn(cτ1 + d)(cτ + d)

3∑
k=0

ΛM (j, k)
(
fk(τ) + Fk,− d

c
(τ)
)
.

17



Here the obstruction to modularity Fk,− d
c

is a holomorphic function on C \ (−d
c + iR) (thanks to

Proposition 2.3) defined as in equation (2.3):

Fj,%(τ) :=
2

π

∫ i∞

%
[Fj(z), Rτ (z)].

Next, following Proposition 2.6 we define the functions fj : QΓ0(2) → C with j ∈ {0, 1, 2, 3} by

fj(x) := lim
t→0+

fj(x+ it). (4.4)

Then finally by Theorem 2.8 we find the quantum modular properties for the rational limits of
L1, . . . , L4.

Proposition 4.5. The functions fj : QΓ0(2) → C with j ∈ {0, 1, 2, 3} form a vector-valued quantum

modular form transforming as follows for any M :=
(
a b
c d

)
∈ Γ0(2) and x ∈ QΓ0(2) \ {−d

c}:

fj

(
ax+ b

cx+ d

)
= |cx+ d|

3∑
k=0

ΛM (j, k)
(
fk(x) + Fk,− d

c
(x)
)
.

Here the multiplier system Λ is as given in Proposition 4.4.

5. The functions L5–L8

We continue in this section with the functions L5, . . . , L8 that count ideals in the ring of integers
of Q(

√
3). This is possibly the most interesting family of functions among our examples since its

discussion requires the novel features studied in Section 2 due to the presence of constant terms.

5.1. Rewriting as theta functions. We begin as in Section 4.1 by rewriting our functions in
terms of theta functions.

Lemma 5.1. We have

q−1L5(q) =
1

2

 ∑
n∈Z2\{0}

+
∑

n∈Z2+( 1
2

1
2)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−2n2

2 ,

q−
1
2L6(q) =

1

2

 ∑
n∈Z2+(0 1

2)
T

+
∑

n∈Z2+( 1
2

0)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−2n2

2 ,

q
1
6L7(q) =

1

2

 ∑
n∈Z2+( 1

3
1
2)
T

+
∑

n∈Z2+( 1
6

0)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−2n2

2 ,

q−
1
3L8(q) =

1

2

 ∑
n∈Z2+( 1

6
1
2)
T

+
∑

n∈Z2+( 1
3

0)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−2n2

2 .

Proof. As the proof is analogous to that of Lemma 4.1 we only state the identities used from
Theorem 1.2 of [9]. These are

q−2L5

(
q2
)

= 2
∑
n≥1

−n≤j≤n−1

q3(2n)2−(2j)2 + 2
∑
n≥0

−n≤j≤n

q3(2n+1)2−(2j+1)2 ,

18



q−1L6

(
q2
)

= 2
∑
n≥1

−n≤j≤n−1

q3(2n)2−(2j+1)2 + 2
∑
n≥0

−n≤j≤n

q3(2n+1)2−(2j)2 ,

qL7

(
q6
)

=
∑
n≥0

−n−1≤j≤n

(
q(6n+8)2−3(2j+1)2 + q(6n+4)2−3(2j+1)2

)

+
∑
n≥0

−n≤j≤n

(
q(6n+1)2−3(2j)2 + q(6n+5)2−3(2j)2

)
,

q−2L8

(
q6
)

=
∑
n≥0

−n≤j≤n−1

q(6n+1)2−3(2j+1)2 +
∑
n≥0

−n−1≤j≤n

q(6n+5)2−3(2j+1)2

+
∑
n≥−1

−n−1≤j≤n+1

q(6n+8)2−3(2j)2 +
∑
n≥0

−n≤j≤n

q(6n+4)2−3(2j)2 . �

To rewrite these expressions more compactly, we define the quadratic form

Q(n) := 6n2
1 − 2n2

2 (5.1)

and the vectors

c1 :=
1

2
√

3
(−1 3)T and c2 :=

1

2
√

3
(1 3)T (5.2)

in CQ (as defined in Remark 3.1). The parameters t1 and t2 that describe these vectors according
to (3.2) are

t1 = − arctanh

(
1√
3

)
and t2 = arctanh

(
1√
3

)
.

According to these values, the theta function given in equation (3.5) becomes

ϑµ(τ) = − 2

π
arctanh

(
1√
3

)
δµ∈Z2 +

1

2

∑
n∈Z2+µ
n 6=0

(1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−2n2

2 .

We can now rewrite the expressions in Lemma 5.1 in terms of these ϑµ’s.

Lemma 5.2. We have

q−1L5(q)− 2

π
arctanh

(
1√
3

)
= g0(τ), q−

1
2L6(q) = g3(τ), q

1
6L7(q) = g1(τ), q−

1
3L8(q) = g2(τ),

where

gj(τ) := ϑµj (τ) + ϑµj+λ(τ) with µj :=

(
j

6
0

)T
and λ :=

(
1

2

1

2

)T
.

5.2. The corresponding Maass forms. We next follow equation (3.4) and define the mock
Maass theta functions Θµ given the quadratic form Q in (5.1) and vectors c1, c2 in (5.2). For this

purpose, we first find the vectors in C⊥Q that correspond to c1 and c2 as c⊥1 = 1
2(1 − 1)T and

c⊥2 = 1
2(1 1)T . Then we get

Θµ(τ) =

√
τ2

2

∑
n∈(Z2+µ)\{0}

(1 + sgn(n1 + n2)sgn(n1 − n2))K0

(
2π
(
6n2

1 − 2n2
2

)
τ2

)
e2πi(6n2

1−2n2
2)τ1

+

√
τ2

2

∑
n∈(Z2+µ)\{0}

(1− sgn(3n1 + n2)sgn(3n1 − n2))K0

(
−2π

(
6n2

1 − 2n2
2

)
τ2

)
e2πi(6n2

1−2n2
2)τ1
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+ 2 arctanh

(
1√
3

)
√
τ2δµ∈Z2 .

We also have the corresponding modular completion given by equation (3.3) and Proposition 3.4:

Θ̂µ = Θµ + ϕ
[c1]
µ − ϕ[c2]

µ .

As before these functions satisfy the following elementary properties:

Θµ = Θ−µ = Θ(−µ1 µ2)T = Θ(µ1 −µ2)T , Θ̂µ = Θ̂−µ = Θ̂(−µ1 µ2)T = Θ̂(µ1 −µ2)T .

Since we are interested in the linear combinations of ϑµ’s given in Lemma 5.2, we make the
following definitions for j ∈ {0, 1, 2, 3}:

Gj := Θµj + Θµj+λ and Ĝj := Θ̂µj + Θ̂µj+λ.

We now proceed as in Lemma 4.3 to show that the shadow contributions to Ĝj vanish.

Lemma 5.3. For j ∈ {0, 1, 2, 3} we have

Gj = Ĝj .

Then following the arguments of Proposition 4.4, we find the modular properties of the Maass
forms Gj .

Proposition 5.4. For j ∈ {0, 1, 2, 3} the functions Gj transform like vector-valued modular func-
tion under Γ0(2):

Gj

(
aτ + b

cτ + d

)
=

3∑
k=0

ΦM (j, k)Gk(τ) for all M ∈ Γ0(2),

where the multiplier system Φ is as follows for T = ( 1 1
0 1 ) and R = ( 1 0

2 1 ):

ΦT =


1 0 0 0
0 ζ6 0 0
0 0 ζ2

3 0
0 0 0 −1

 and ΦR =
1√
3


0 2ζ12 0 ζ3

4

ζ12 0 ζ11
12 0

0 ζ11
12 0 ζ12

ζ3
4 0 2ζ12 0

 .

5.3. Quantum modularity. In summary, from Proposition 5.4 we know that Gj for j ∈ {0, 1, 2, 3}
form a vector-valued Maass waveform for Γ0(2). We next apply the findings of Section 2 on these
functions. First, we note that equation (2.3) and Proposition 2.2 imply that the functions gj (which
are basically equal to the functions L5, . . . , L8 thanks to Lemma 5.2) are related to the Gj ’s as

gj(τ) = − 2

π

∫ i∞

τ
[Gj(z), Rτ (z)].

Then Proposition 2.5 gives their modular transformation for any M :=
(
a b
c d

)
∈ Γ0(2) and τ ∈ H

with τ1 6= −d
c :

gj

(
aτ + b

cτ + d

)
= sgn(cτ1 + d)(cτ + d)

3∑
k=0

ΦM (j, k)
(
gk(τ) + Gk,− d

c
(τ)
)
.

Here the obstruction to modularity Gk,− d
c

is a holomorphic function on C \ (−d
c + iR) (according

to Proposition 2.3) defined as in equation (2.3):

Gj,%(τ) :=
2

π

∫ i∞

%
[Gj(z), Rτ (z)].
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Next we follow Proposition 2.6 and define the functions gj : QΓ0(2) → C with j ∈ {0, 1, 2, 3} by

gj(x) := lim
t→0+

gj(x+ it)−
2 arctanh

(
1√
3

)
π|cx|t

ΦM−1
x

(j, 0)

 , (5.3)

where x = −dx
cx

and Mx =
(
ax bx
cx dx

)
∈ Γ0(2). Then finally by Theorem 2.8 we find the quantum

modular properties for (the finite parts of) the rational limits of L5, . . . , L8.

Proposition 5.5. The functions gj : QΓ0(2) → C with j ∈ {0, 1, 2, 3} form a vector-valued quantum

modular form transforming as follows for any M :=
(
a b
c d

)
∈ Γ0(2) and x ∈ QΓ0(2) \ {−d

c}:

gj

(
ax+ b

cx+ d

)
= |cx+ d|

3∑
k=0

ΦM (j, k)
(
gk(x) + Gk,− d

c
(x)
)
.

Here the multiplier system Φ is as given in Proposition 5.4.

6. The functions L9–L12

In this section we study our final family of functions from [10] with L9, . . . , L12 that count ideals
in the ring of integers of Q(

√
6).

6.1. Rewriting as theta functions. We begin like the previous two families of functions and
rewrite L9, . . . , L12 in terms of theta functions.

Lemma 6.1. We have

q−
9
16L9(q) =

1

2

 ∑
n∈Z2+(0 3

8)
T

+
∑

n∈Z2+( 1
2

7
8)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−4n2

2 ,

q−
17
16L10(q) =

1

2

 ∑
n∈Z2+(0 1

8)
T

+
∑

n∈Z2+( 1
2

5
8)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−4n2

2 ,

q
5
48L11(q) =

1

2

 ∑
n∈Z2+( 1

6
1
8)
T

+
∑

n∈Z2+( 2
3

5
8)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−4n2

2 ,

q−
19
48L12(q) =

1

2

 ∑
n∈Z2+( 1

6
3
8)
T

+
∑

n∈Z2+( 2
3

7
8)
T

 (1 + sgn(n1 + n2)sgn(n1 − n2))q6n2
1−4n2

2 .

Proof. Again the proof is similar to that of Lemma 4.1 and the identities we require are taken from
the proof of Theorem 1.3 of [9]

q−9L9

(
q16
)

=
∑
n≥1

−n≤j≤n−1

q6(4n)2−(8j+3)2 +
∑
n≥0

−n≤j≤n

q6(4n+2)2−(8j+1)2

+
∑
n≥1

−n+1≤j≤n

q6(4n)2−(8j−3)2 +
∑
n≥0

−n≤j≤n

q6(4n+2)2−(8j−1)2 ,
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q−17L10

(
q16
)

=
∑
n≥1

−n≤j≤n−1

q6(4n)2−(8j+1)2 +
∑
n≥0

−n≤j≤n

q6(4n+2)2−(8j+3)2

+
∑
n≥1

−n+1≤j≤n

q6(4n)2−(8j−1)2 +
∑
n≥0

−n≤j≤n

q6(4n+2)2−(8j−3)2 ,

q10L11

(
q96
)

=
∑
n≥0

−n≤j≤n

(
q(24n+4)2−6(8j+1)2 + q(24n+20)2−6(8j+1)2

)

+
∑
n≥0

−n−1≤j≤n

(
q(24n+32)2−6(8j+3)2 + q(24n+16)2−6(8j+3)2

)
,

q−38L12

(
q96
)

=
∑
n≥1

−n≤j≤n−1

q(24n+4)2−6(8j+3)2 +
∑
n≥0

−n−1≤j≤n

q(24n+20)2−6(8j+3)2

+
∑
n≥−1

−n−1≤j≤n+1

q(24n+32)2−6(8j+1)2 +
∑
n≥0

−n≤j≤n

q(24n+16)2−6(8j+1)2 . �

For more compact expressions, we define the quadratic form

Q(n) := 6n2
1 − 4n2

2 (6.1)

and the vectors

c1 :=
1

2
√

3
(−2, 3)T and c2 :=

1

2
√

3
(2, 3)T (6.2)

in CQ (as defined in Remark 3.1). Then the theta functions in (3.5) are

ϑµ(τ) =
1

2

∑
n∈Z2+µ

(1 + sgn(n1 + n2)sgn(n1 − n2)) q6n2
1−4n2

2 for µ 6∈ Z2.

With this expression at hand, we can rewrite the results in Lemma 6.1 as follows.

Lemma 6.2. We have

q−
9
16L9(q) = h3(τ), q−

17
16L10(q) = h0(τ), q

5
48L11(q) = h1(τ), q−

19
48L12(q) = h2(τ),

where

hj(τ) := ϑµj (τ) + ϑµj+λ(τ) with µj :=

(
j

6

1

8

)T
and λ :=

(
1

2

1

2

)T
.

6.2. The corresponding Maass forms. Our next step is to define the mock Maass theta function
Θµ as in equation (3.4) for the quadratic form Q in (6.1) and vectors c1, c2 in (6.2). We first find

the vectors in C⊥Q that correspond to c1 and c2 as c⊥1 = 1√
2
(1 − 1)T and c⊥2 = 1√

2
(1 1)T to get

(for µ 6∈ Z2)

Θµ(τ) =

√
τ2

2

∑
n∈Z2+µ

(1 + sgn(n1 + n2)sgn(n1 − n2))K0

(
2π
(
6n2

1 − 4n2
2

)
τ2

)
e2πi(6n2

1−4n2
2)τ1

+

√
τ2

2

∑
n∈Z2+µ

(1− sgn(3n1 + 2n2)sgn(3n1 − 2n2))K0

(
−2π(6n2

1 − 4n2
2)τ2

)
e2πi(6n2

1−4n2
2)τ1 .
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These mock Maass theta functions have modular completions,

Θ̂µ = Θµ + ϕ
[c1]
µ − ϕ[c2]

µ ,

as described in equation (3.3) and Proposition 3.4. Like the other two cases, these functions satisfy
the following elementary properties:

Θµ = Θ−µ = Θ(−µ1 µ2)T = Θ(µ1 −µ2)T , Θ̂µ = Θ̂−µ = Θ̂(−µ1 µ2)T = Θ̂(µ1 −µ2)T .

Since we would like to study the linear combinations of ϑµ’s given in Lemma 5.2, we define the
following for j ∈ {0, 1, 2, 3}:

Hj := Θµj + Θµj+λ and Ĥj := Θ̂µj + Θ̂µj+λ.

The shadow contributions to the Ĥj ’s vanish following the arguments of Lemma 4.3.

Lemma 6.3. For j ∈ {0, 1, 2, 3} we have

Hj = Ĥj .

Following the proof of Proposition 4.4, the Hj ’s have the following modular transformations.

Proposition 6.4. The functions Hj for j ∈ {0, 1, 2, 3} transform like vector-valued modular func-
tion under Γ0(2):

Hj

(
aτ + b

cτ + d

)
=

3∑
k=0

ΩM (j, k)Hk(τ) for all M ∈ Γ0(2),

where the multiplier system Ω is as follows for T = ( 1 1
0 1 ) and R = ( 1 0

2 1 ):

ΩT =


ζ15

16 0 0 0
0 ζ5

48 0 0
0 0 ζ29

48 0
0 0 0 ζ7

16

 ,

ΩR =

√
2−
√

2

12


ζ15

16 2
(
1 +
√

2
)
ζ48 2ζ13

48

(
1 +
√

2
)
ζ11

16(
1 +
√

2
)
ζ48 ζ5

48

(
1 +
√

2
)
ζ41

48 ζ13
48

ζ13
48

(
1 +
√

2
)
ζ41

48 ζ5
48

(
1 +
√

2
)
ζ48(

1 +
√

2
)
ζ11

16 2ζ13
48 2

(
1 +
√

2
)
ζ48 ζ15

16

 .

6.3. Quantum modularity. Summarizing the results above, we find from Proposition 5.4 that
Hj for j ∈ {0, 1, 2, 3} form a vector-valued Maass form for Γ0(2). Our next step is to apply the
results of Section 2. First, we note that (2.3) and Proposition 2.2 imply that the functions hj
(which are basically equal to L9, . . . , L12 thanks to Lemma 6.2) are related to Hj ’s as

hj(τ) = − 2

π

∫ i∞

τ
[Hj(z), Rτ (z)].

Then Proposition 2.5 gives their modular transformation for any M :=
(
a b
c d

)
∈ Γ0(2) and τ ∈ H

with τ1 6= −d
c as

hj

(
aτ + b

cτ + d

)
= sgn(cτ1 + d)(cτ + d)

3∑
k=0

ΩM (j, k)
(
hk(τ) +Hk,− d

c
(τ)
)
.

Here the obstruction to modularity Hk,− d
c

is a holomorphic function on C \ (−d
c + iR) (according

to Proposition 2.3) defined as in equation (2.3):

Hj,%(τ) :=
2

π

∫ i∞

%
[Hj(z), Rτ (z)].
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Next we follow Proposition 2.6 and define the functions hj : QΓ0(2) → C with j ∈ {0, 1, 2, 3} by

hj(x) := lim
t→0+

hj(x+ it). (6.3)

Then Theorem 2.8 implies that these functions (given by rational limits of L9, . . . , L12) form a
quantum modular form.

Proposition 6.5. The functions hj : QΓ0(2) → C with j ∈ {0, 1, 2, 3} form a vector-valued quantum

modular form transforming as follows for any M :=
(
a b
c d

)
∈ Γ0(2) and x ∈ QΓ0(2) \ {−d

c}:

hj

(
ax+ b

cx+ d

)
= |cx+ d|

3∑
k=0

ΩM (j, k)
(
hk(x) +Hk,− d

c
(x)
)
.

Here the multiplier system Φ is as given in Proposition 6.4.

Appendix: Numerical Examples

In this appendix, we provide some numeric results on the functions gj and quantum modular
forms gj associated to the family L5(q), . . . , L8(q). This example is distinguished from the other
two by the presence of a nonzero constant term for the Maass form Gj . Due to this property, for a
given x ∈ QΓ0(2) not all components of gj(x+ it) converge as t→ 0+. The quantum modular form
gj is then defined by simply removing the leading growing term from this object. With the results
below we try to exemplify various aspects of these statements.

Firstly, in Table 1 we give the approximate values of gj(τ), gj(
τ

2τ+1), and Gj,− 1
2
(τ) for various

values of τ that get close to 11
12 ∈ QΓ0(2). With these numbers one can check that the modular

transformation property in Proposition 5.4 is satisfied to the order shown.

τ gj(τ) gj(
τ

2τ+1) Gj,− 1
2
(τ)

11
12 + i

102

(
2.20152385−1.72453350i
0.60261342−1.52382165i
−1.24906564+0.76567897i
−0.69157228+1.38696416i

) (
5.73980919−2.45135588i
4.58641591+1.38204971i
−2.75333449−0.96881340i
−8.20830829−3.93452617i

) (
0.48547906−0.41384103i
−0.23702464+0.05235489i
0.07430784+0.09577127i
0.03174146+0.00641302i

)

11
12 + i

103

(
34.06349943−1.54026658i
−0.63001497−4.14866463i
−1.65163852−0.02850558i
−1.30982870+1.39636988i

) (
6.54926927−10.93296376i
48.34343745+26.91081033i
−7.53508162−4.15860747i
−7.73554006−58.91067177i

) (
0.48541322−0.41343939i
−0.23705194+0.05106932i
0.07383483+0.09621073i
0.03179379+0.00676626i

)

11
12 + i

104

(
348.48937661−1.53336988i
−0.32418957−3.49803282i
−1.72369780−0.13566295i
−1.40302668+1.41219531i

) (
6.37047977−8.44131747i

493.58357944+284.00154421i
−6.71745517−3.53610552i
−7.75436167−573.67311441i

) (
0.48540637−0.41339930i
−0.23705391+0.05094084i
0.07378727+0.09625443i
0.03179870+0.00680169i

)

11
12 + i

105

(
3492.49719898−1.53275909i
−0.30408895−3.45551296i
−1.73170057−0.14713202i
−1.41308637+1.41400914i

) (
6.36033233−8.27194978i

4947.57332454+2855.51730098i
−6.67017442−3.49755349i
−7.75743061−5716.76719430i

) (
0.48540568−0.41339529i
−0.23705410+0.05092799i
0.07378251+0.09625879i
0.03179919+0.00680523i

)
Table 1

Now we note that for the point x = 11
12 we have

γ0,x = 0.10974649141040139 . . .

with all the other components zero. So g0(x + it) is the only component of g that diverges as
t→ 0+. This is already visible in Table 1. In fact, subtracting the growing piece as in Proposition
2.6 we find the results in Table 2.
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τ g0(τ)− 1
πτ2

γ0, 11
12

11
12 + i

102
−1.2918154651 . . .− 1.7245334957 . . . i

11
12 + i

103
−0.8698937600 . . .− 1.5402665800 . . . i

11
12 + i

104
−0.8445552866 . . .− 1.5333698829 . . . i

11
12 + i

105
−0.8421200156 . . .− 1.5327590942 . . . i

Table 2

Given the integral representation of gj in (2.3) and the modular transformations of the Maass
form Gj , one can efficiently compute the values of the quantum modular form gj . In particular, we
have

g0

(
11

12

)
= −0.8418504490893569688 . . .− 1.532692070451105313 . . . i

One can check the quantum modular transformations using the approximate values in Table 3.

gj
(

11
12

)
gj
(

11
34

)
Gj,− 1

2

(
11
12

)

−0.84185045− 1.53269207i
−0.30191635− 3.45091966i
−1.73260053− 0.14841718i
−1.41421356 + 1.41421356i




6.35925312− 8.25358660i
−1.30588754− 1.76561858i
−6.66512984− 3.49340997i
−7.79812377− 2.27823717i




0.48540561− 0.41339484i
−0.23705412 + 0.05092656i
0.07378198 + 0.09625928i
0.03179924 + 0.00680562i


Table 3

Finally, in Figures 3 and 4 we display various values of g0 and its obstruction to modularity.

Figure 3. On the left we plot Re(g0(x)) and on the right we plot Im(g0(x)) for
x ∈ QΓ0(2) with −1 < x < 1 and denominator at most 40.

Figure 4. On the left we plot the real part and on the right we plot the imaginary
part of g0( x

2x+1)− |cx+ d|
∑3

k=0 ΦR(0, k)gk(x) for x ∈ QΓ0(2) with x ∈ (−1, 1) and
denominator at most 40.
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