
Lattices and Quadratic Forms (Summer 2024) - Solutions to Problem Set 1

1.

a) Let start with the orthonormal basis

↵1 = (1, 0, 0 . . . , 0, 0), ↵2 = (0, 1, 0, . . . , 0, 0), . . . ↵n = (0, 0, 0, . . . , 0, 1)

for Zn
. Now recall that automorphisms are in bijective correspondence with n-tuples of Zn

vectors

(↵0
1, . . . ,↵

0
n) with the same Gram matrix as that of (↵1, . . . ,↵n); i.e. we are looking for norm 1 vectors

that are pairwise orthogonal.

• For ↵0
1 we have 2n candidates with a single nonzero entry (for which there are n possibilities) that

is ±1.

• Given each ↵0
1, there are 2(n�1) candidates for ↵0

2, again given by a vector with a single ±1 entry

at a position other than that of the nonzero entry of ↵0
1.

• Going on in this way for each ↵0
1, . . . ,↵

0
r, there are 2(n� r) choices for ↵0

r+1.

This shows that the order of the automorphism group is

|Aut(Zn
)| = 2

n n!.

In fact, we can explicitly find 2
n n! automorphisms by

(k1, k2, . . . , kn) 7! ("1k��1(1), "2k��1(2), . . . , "nk��1(n)) where "j 2 {±1} and � 2 Sn.

So the automorphism group is the semidirect product

Aut(Zn
) ' (Z/2Z)n o Sn,

where the semidirect product is defined by permutation action of Sn on (Z/2Z)n that implements the

sign changes.

b) First note that the vectors v1, v2, v3 are linearly independent over the reals and they are all elements of

A3 since summing their coordinates gives zero. Finally, an arbitrary element (n1, n2, n3,�n1�n2�n3)

of A3 can be expanded as n1v1+(n1+n2)v2+(n1+n2+n3)v3 with integer coe�cients. So V = (v1, v2, v3)
forms a basis for A3. The corresponding Gram matrix is

G(V) =

0

@
2 �1 0

�1 2 �1

0 �1 2

1

A .

To find the automorphism group, let us first find the candidates (v01, . . . , v
0
n) for the images of (v1, v2, v3)

under the automorphism. These are roots with the same inner products as those of (v1, v2, v3).
The roots of A3 are vectors with two nonzero entries with one equal to +1 and one equal to �1. There

are 12 such vectors:

(+1,�1, 0, 0), (+1, 0,�1, 0), (+1, 0, 0,�1), (0,+1,�1, 0, ), (0,+1, 0,�1), (0, 0,+1,�1),

(�1,+1, 0, 0), (�1, 0,+1, 0), (�1, 0, 0,+1), (0,�1,+1, 0, ), (0,�1, 0,+1), (0, 0,�1,+1).

So we have 12 candidates for v01. Given each v01, there are 4 candidates for v02:
• The +1 entry of v02 has the same position as the �1 entry of v01 and then the remaining �1 entry

of v02 is placed in one of the two positions corresponding to the 0 entries of v01.
• Alternatively, the �1 entry of v02 has the same position as the +1 entry of v01 and then the remaining

+1 entry of v02 is placed in one of the two positions corresponding to the 0 entries of v01.
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Finally, given each v01 and v02 pair, there is a unique candidate for the vector v
0
3: Since v

0
3 is orthogonal to

v01 and since it has inner product �1 with v02, if v
0
2 has the nonzero entry " at the position corresponding

to the zero entry of v01, then the corresponding entry for v03 has to be �" and the position where both

v01 and v02 have their zero has to have a " entry for v03. For example, if we have

v01 = (0,�1,+1, 0) and v02 = (0,+1, 0,�1),

then

v03 = (�1, 0, 0,+1).

So that yields the order of the automorphism group as

|Aut(A3)| = 48. (0.1)

In fact, we can find 48 di↵erent automorphisms given by

(k1, k2, k3, k4) 7! ±(k��1(1), k��1(2), k��1(3), k��1(4)) where � 2 S4

and hence the automorphism group is given by the direct product

Aut(A3) ' (Z/2Z)⇥ S4.

2. A basis V#
= (v#1 v#2 v#3 ) for L#

is given by V#
= V G(V)�1

(the basis dual to V), which yields

v#1 = �v1 + 3v2 + v3
6

, v#2 =
v3 � v1

2
, v#3 =

5v3 + 3v2 � v1
6

.

To compute the discriminant group, we find the Smith normal form of the given Gram matrix and find that

S G(V)T = D where S :=

0

@
�1 2 4

�1 0 1

�1 3 5

1

A , T :=

0

@
1 0 �5

0 1 0

0 0 1

1

A 2 GL3(Z) and D :=

0

@
1 0 0

0 2 0

0 0 6

1

A .

This shows that we can change bases to W#
= V#S�1

for L#
and W = VT for L to find them related by

W# D = W. This yields the discriminant group as

L#/L ' (Z/2Z)� (Z/6Z).

3. There are many ways to solve this problem. Here is one that employs some of the facts we proved in the

lectures (and that is not so e�cient): The Gram matrix corresponding to the basis V = (v1 v2 v3) is

G(V) =

0

@
5 12 28

12 30 65

28 65 169

1

A .

In particular, we see that the vector v1 has norm 5 (in the squared length sense we have been using in

this course) and hence the shortest nonzero norm possible within L can be at most 5. So denoting the

coordinates of a lattice element with respect to V with the integer column vector n 2 Z3
, lattice elements

with norm shorter than 5 are found by the solutions of the inequality

nT G(V)n  5.

Now we can easily check that G(V)� 1
20I3 is a positive definite matrix so that

1

20
(n2

1 + n2
2 + n2

3)  nT G(V)n.
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So solutions of nT G(V)n  5 necessarily satisfy n2
1 + n2

2 + n2
3  100 and hence |nj |  10 for all j. We can

then computationally check these finitely many possibilities to find that the smallest nonzero norm in this

lattice is 2 and only two vectors have this norm, namely ±(2v1 � v2).
Remark: In fact, since the finite set above contains all the vectors with norm  5, the same computation

shows that the norm 3 vectors in L are ±(3v1 � v2), there are no norm 4 vectors, and the norm 5 vectors

are ±v1 and ±(5v1 � 2v2).
4. The symmetric bilinear form B plays no role in this problem. Moreover, to discuss the topology on V ,

we pick a basis to identify V with Rn
and then equip Rn

with the Euclidean metric (which induces the

topology on V ). So when we discuss distances below, we will be referring to this Euclidean metric instead

of B. Moreover, we note that both statements trivially hold if L = {0} or n = 0, so we assume below that

L is nontrivial and n > 0.

• First assume that there are linearly independent vectors v1, . . . , vm 2 Rn
such that L = hv1, . . . , vmiZ.

Then as we discussed in class, given any real number r > 0, the number of vectors in L with Euclidean

square-norm less than r2 is finite. If necessary, by making r smaller to exclude these finitely many

nonzero vectors we can ensure that the only lattice element in the open ball Br(0) with radius r and

center at zero is the point 0 2 L. So the origin is an isolated point of L. Furthermore, given any other

lattice point v 2 L, if there were any lattice point w 6= v within the open ball Br(v) centered at v,
then w� v 2 L would be a nonzero lattice point in Br(0). So no such w exists and hence all the lattice

points are isolated. This means that the subspace L ⇢ Rn
is discrete.

• Conversely, assume that the subgroup L is a discrete subspace of Rn
. Let us first prove that L is a

closed set in Rn
. If not, L would have a limit point p 62 L. Then for any r > 0, there is a lattice

element v 2 L with v 2 Br(p). We can also find a lattice element w 2 L in the smaller neighborhood

Br0(p) with r0 < |p� v| < r. Since v 6= w, we then have a nonzero lattice point v �w 2 L in the open

ball B2r(0) around the origin. Since this is true for any r > 0, the origin would not be an isolated

point, contradicting the fact that L is a discrete subspace.

In particular, Rn\L is open and therefore any point in Rn\L has an open neighborhood with no points

from L. Together with discreteness of L, this means that every point in Rn
has an open neighborhood

with at most one point from L. So given any R > 0, the closed ball BR(0) can be covered with such

neighborhoods. The compactness of BR(0) means that there is a finite subcover and hence BR(0)

contains finitely many points from L.
We are finally ready to prove the converse statement and we will do this with induction over n.
– For n = 1, let v0 be a nonzero element of L, which exists because L is nontrivial. So letting

R :=
p
v0 · v0, the closed ball BR(0) contains finitely many points from L with at least one that is

nonzero (namely v0). Then among all the nonzero lattice vectors in BR(0) pick one with minimal

length, say v 2 L. So we have Zv ⇢ L. Moreover, if w 2 L is an arbitrary lattice element, then we

can write w = (n + r)v with n 2 Z and � 1
2  r < 1

2 . Since rv = w � nv 2 L, it is then required

that r = 0 as otherwise we would have a nonzero vector in L with length smaller than that of v.
This then completes the proof that L = hviZ.

– Now suppose that n > 1 and the statement holds in dimensions 1, . . . , n � 1. As in the n = 1,

case pick a nonzero vector v1 in L with minimal length. Then as above we can argue that L\Rv1
is equal to Zv1, otherwise we would obtain a shorter vector. If L = Zv1, we are done. If not,

consider the orthogonal projection ⇡ of L to the subspace U orthogonal to v1. This is a nontrivial

subgroup of the additive group U isomorphic to Rn�1
.

Now let � be an arbitrary element of L\Zv1 and write it as � = ⇡(�)+cv1 for some c 2 R. Writing

c = n+ r with n 2 Z and � 1
2  r < 1

2 , we find that ⇡(�) + rv1 = �� nv1 2 L. Since any nonzero

element of L has length at least |v1|, we find

|⇡(�)| � |�� nv1|� |rv1| �
1

2
|v1|.
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This implies that the subgroup ⇡(L) is a discrete subspace of U . Then the inductive hypothesis

yields linearly independent vectors w2, . . . , wm 2 U with ⇡(L) = hw2, . . . , wmiZ. Letting vj 2 L
be such that ⇡(vj) = wj for 2  j  m, the vectors v1, . . . , vm are linearly independent in Rn

(as

can be seen by applying ⇡ to a potential linear dependence and noting that ⇡(v1) = 0). Moreover,

if u 2 L is an arbitrary element, then we know that

⇡(u) = n2w2 + . . .+ nmwm

for some integers n2, . . . , nm. So u�n2v2 � . . .�nmvm 2 L is in the kernel of the homomorphism

⇡ : L ! U , which is nothing but L \ Rv1 = Zv1. So we have

u� n2v2 � . . .� nmvm = n1v1

for some n1 2 Z and hence L = hv1, . . . , vmiZ.
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