
Lattices and Quadratic Forms (Summer 2024) - Solutions to Problem Set 2

1.
a) Let us start by defining

L0 := {x 2 L : x · v = 0}.

This is a sublattice of L with the symmetric bilinear form inherited from that of L. The only thing to
note is that L0 is a finitely generated free abelian group since L0 is a subgroup of L and any subgroup
of a finitely generated free abelian group is also a free abelian group with rank less than or equal to
that of the original group.
Furthermore, elements of the sublattice L0 are orhtogonal to those of the sublattice Zv and we have
L0 \ Zv = {0}. So L0 ? Zv is a sublattice of L. The only remaining thing to check is to ensure that
each elements of L is in L0 ? Zv. For this, we decompose an arbitrary element ` 2 L to its orthogonal
projection onto Rv and the plane orthogonal to that:

` =

✓
`� ` · v

v · v v
◆
+

` · v
v · v v.

Since L is an integral lattice and since v · v = ±1, we have `·v
v·v 2 Z and hence the second factor is in

Zv. Moreover, this shows that `0 := `� `·v
v·v v is an element of L that is orthogonal to v so that `0 2 L0.

b) Using part (a), we can recursively remove sublattices generated by norm 1 vectors to write L = L0 ? Zk

for some k and some sublattice L0 that contains no norm 1 vectors (that is possibly trivial). If L0 is
nontrivial, note that norm 2 vectors of L can not have nontrivial overlap with both L0 and Zk: If ` is
a norm 2 vector such that ` = `1 + `2 with `1 and `2 nonzero vectors that are orthogonal, then both of
`j ’s should have norm 1, but L0 has no norm 1 vectors. Since norm 1 and norm 2 vectors generate L,
this in turn means that the integral, positive definite sublattice L0 is generated by its norm 2 vectors
and hence is a root lattice.

2.
a) L1 and L2 are not isometric: Both L1 and L2 are integral lattices since the given Gram matrices are

integer valued. However L1 is an even lattice since the diagonal entries are even, whereas L2 is not.1

b) The lattices Zh2i ? Zh�1i and Zh�2i ? Z are isometric as can be seen from the change of coordinates

(n1, n2) 7! (n1 + n2, 2n1 + n2).

Note that the matrix ( 1 1
2 1 ) implementing the change of coordinates is in GL2(Z) (its determinant is

�1) and hence maps Z2 bijectively to itself. Moreover, it correctly changes the inner product since

2n2
1 � n2

2 = �2(n1 + n2)
2 + (2n1 + n2)

2.

3.
a) Norm 2 vectors in Zn have two entries equal to ±1 with the rest equal to zero. Since all such vectors

have the sum of their coordinates equal to 0 or ±2, they are all in Dn and hence the roots of Dn are
of the form

±"i ± "j = (0, . . . , 0,±1, 0, . . . , 0,±1, 0, . . . , 0),

where the nonzero entries are at the positions i and j with 1  i 6= j  n.2 To find the number of
roots, note that there are ( n2 ) ways to choose the positions i, j with nonzero entries and then there are
4 ways to choose the signs for each i, j pair. So the number of roots in Dn is

4

✓
n
2

◆
= 2n(n� 1).

1One can also check the associated discriminant forms and show that these lattices are not isometric. However, it is a good idea
to check easier isometry invariants first!

2Here "i 2 Zn denotes the vector that has all zeros as coordinates except for a ‘+1’ at the ith entry.

– 1 –



To show that the roots generate all the vectors in Dn, let us start with the roots

↵1 = (1,�1, 0, . . . , 0), ↵2 = (0, 1,�1, 0, . . . , 0), . . . ,↵n�1 = (0, . . . , 0, 1,�1), ↵n = (0, . . . , 0, 1, 1)

introduced in part (b) and consider an arbitrary element (k1, k2, . . . , kn) 2 Dn. Then note that

k1↵1 + (k1 + k2)↵2 + . . .+ (k1 + . . .+ kn�1)↵n�1 = (k1, k2, . . . , kn�1,�k1 � k2 � . . .� kn�1)

so that we can add 1
2 (k1 + . . .+ kn)(↵n � ↵n�1) to correct the last coordinate, where we note

↵n � ↵n�1 = (0, . . . , 0, 2)

and 1
2 (k1 + . . .+ kn) 2 Z by the definition of Dn. So overall we have

(k1, . . . , kn) = k1↵1 + (k1 + k2)↵2 + . . .+ (k1 + . . .+ kn�2)↵n�2

+
k1 + . . .+ kn�1 � kn

2
↵n�1 +

k1 + . . .+ kn�1 + kn
2

↵n.

b) The vectors ↵1, . . . ,↵n are linearly independent in Rn and as we have already found in part (a), they
span the lattice Dn. So they form a basis for Dn and the only thing we need to check to ensure that
they form a fundamental system of roots is to check whether each root in Dn can be decomposed into
↵1, . . . ,↵n with all nonnegative or all nonpositive coe�cients.
In part (a) we found all the roots in Dn as well as the decomposition of an arbitrary element
(k1, . . . , kn) 2 Dn to ↵1, . . . ,↵n. We use these to show that half of the roots can be decomposed
into ↵1, . . . ,↵n with all nonnegative coe�cients (so that they would constitute the positive roots and
the other half, which consist of their negations, would decompose with all nonpositive coe�cients). In
particular, we consider the roots "i ± "j with 1  i < j  n.

• For 1  i < j  n we have
"i � "j = ↵i + ↵i+1 + . . .+ ↵j�1.

• For 1  i < j  n� 2 we have

"i + "j = (↵i + ↵i+1 + . . .+ ↵j�1) + (2↵j + 2↵j+1 + . . .+ 2↵n�2) + ↵n�1 + ↵n.

• For 1  i < j = n� 1 we have

"i + "n�1 = ↵i + ↵i+1 + . . .+ ↵n�2 + ↵n�1 + ↵n.

• For 1  i < j = n we have

"i + "n = ↵i + ↵i+1 + . . .+ ↵n�2 + ↵n.

c) In class, we found that if L0 is a sublattice of a lattice L of the same dimension, then we have

det(L0) = |L/L0|2 det(L).

We would like to apply this with L = Zn and L0 = Dn. First note tat Dn is an index 2 sublattice of
Zn since we have

Zn = Dn [ (e+Dn),

where the coset e+Dn with e := (1, 0, . . . , 0) consists of Zn elements whose sum of coordinates is odd.
So |Zn/Dn| = 2 and det(Zn) = 1 yields

det(Dn) = 4.
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d) The discriminant groupD]
n/Dn has | det(Dn)| = 4 elements. For an arbitrary element k = (k1, . . . , kn) 2

Dn  Zn, all three of

k · v =
k1 + . . .+ kn

2
, k · w =

k1 + . . .+ kn
2

� k1, k · e = k1

are integers since k1 + . . .+ kn is even for elements of Dn. So v, w and e are all elements of the dual
lattice D]

n. It is clear that v, w, e are not in Dn so the corresponding cosets

[v] = v +Dn, [w] = w +Dn, and [e] = e+Dn

are nontrivial elements of D]
n/Dn. Moreover, all these three cosets are di↵erent and hence give the

three nontrivial elements of D]
n/Dn since none of

v � w = (1, 0, . . . , 0), v � e =

✓
�1

2
,
1

2
, . . . ,

1

2

◆
, and w � e =

✓
�3

2
,
1

2
, . . . ,

1

2

◆

are in Dn. This finally confirms that

D]
n/Dn = {[0], [v], [e], [w]}.

To identify this group in more detail, note that there are two groups of order 4 up to isomorphism,
namely Z/4Z and Z/2Z� Z/2Z. Since 2e 2 Dn, the coset [e] has order two in D]

n/Dn. However

2v = (1, 1, . . . , 1) and 2w = (�1, 1, . . . , 1)

are in Dn if and only if n is even.
• So if n is even, all three of [v], [e], [w] have order two and we have

D]
n/Dn ' Z/2Z� Z/2Z.

• If n is odd, on the other hand, 2[v] and 2[w] are not trivial, so [v] and [w] have order four instead
(in fact is easy to see that 4v and 4w are in Dn) and either one of them generates D]

n/Dn as a
cyclic group:

D]
n/Dn ' Z/4Z.

To find the discriminant form, we compute the inner products

v · v =
n

4
, w · w =

n

4
, e · e = 1

and

v · w =
n� 2

4
, v · e = 1

2
, w · e = �1

2

Reducing these modulo 1, we find the following possibilities for

0

BB@

([0], [0]) ([0], [v]) ([0], [e]) ([0], [w])
([v], [0]) ([v], [v]) ([v], [e]) ([v], [w])
([e], [0]) ([e], [v]) ([e], [e]) ([e], [w])
([w], [0]) ([w], [v]) ([w], [e]) ([w], [w])

1

CCA :

• If n is even and hence D]
n/Dn ' Z/2Z� Z/2Z, the discriminant form is

0

BB@

0 0 0 0
0 0 1

2
1
2

0 1
2 0 1

2

0 1
2

1
2 0

1

CCA if n ⌘ 0mod 4 and

0

BB@

0 0 0 0
0 1

2
1
2 0

0 1
2 0 1

2

0 0 1
2

1
2

1

CCA if n ⌘ 2mod 4.
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• If n is odd and hence D]
n/Dn ' Z/4Z, the discriminant form is

0

BB@

0 0 0 0
0 1

4
1
2

3
4

0 1
2 0 1

2

0 3
4

1
2

1
4

1

CCA if n ⌘ 1mod 4 and

0

BB@

0 0 0 0
0 3

4
1
2

1
4

0 1
2 0 1

2

0 1
4

1
2

3
4

1

CCA if n ⌘ 3mod 4.

e) The linear mapping
f : (k1, k2, . . . , kn) 7! (�k1, k2, . . . , kn)

is an involution that bijectively maps Dn to itself (note that the mapping preserves k1 + . . . kn mod2)
while preserving the underlying Euclidean norm on Zn. So this is an automorphism of Dn that maps
v to w and hence [v] to [w].

f) Firstly, since n is even we have 2v 2 Dn so that D+
n := Dn [ (v + Dn) is a subgroup and hence a

sublattice of D]
n.

• All elements of Dn have even norm. Similarly, for any w 2 Dn we have

(v + w)2 = v2 + 2v · w + w2 2 2Z

since v2 = n
4 2 2Z and v · w 2 Z because v 2 D]

n. Therefore, every element of v +Dn and hence
of D+

n has even norm. In other words, D+
n is an even lattice.

• Since D+
n is an even and hence integral lattice, it is a sublattice of its dual lattice (D+

n )
]. Our next

goal is to compute the size of the discriminant group (D+
n )

]/D+
n by computing det(D+

n ). For this
purpose, we use the relation (for L0 a sublattice of L of the same rank)

det(L0) = |L/L0|2 det(L)

with L0 = Dn and L = D+
n . Since |D+

n /Dn| = 2 and det(Dn) = 4, this relation yields

det(D+
n ) = 1.

So the discriminant group is trivial and we have (D+
n )

] = D+
n , i.e. D

+
n is self-dual.

g) The smallest norm possible in the cosets [v] and [w] come from elements which have all of their entries
equal to ± 1

2 like v and w. So the minimal norm in [v] and [w] is n
4 (which are realized by 2n�1 vectors

in each coset). In the coset [e] however, the smallest possible norm come from vectors which have a
single ±1 entry with the rest equal to zero like e (so there are 2n such vectors).

• For n > 4, the fact that the minimum norms are di↵erent implies that there can not be a Dn

automorphism mapping [v] or [w] to [e].
• This argument fails for n = 4, since the minimal norm in [v], [w], and [e] are all 1. In fact even
the numbers of the vectors realizing this minimal norm are the same since both 2n�1 and 2n are
equal to 8 in this case.

h) First let us check that the linear transformations U and V bijectively map D4 to itself (so they are
isomorphisms of the underlying abelian group). For this, we first check that they map D4 into D4:

• This is obvious in the case of V , which maps

(k1, k2, k3, k4) 7! (k1, k2, k3,�k4),

since k1 + k2 + k3 + k4 and k1 + k2 + k3 � k4 are equal modulo 2.
• In the case of U , which maps

k := (k1, k2, k3, k4) 7!

k0 :=

✓
k1 + k2 + k3 + k4

2
,
k1 + k2 � k3 � k4

2
,
k1 � k2 + k3 � k4

2
,
�k1 + k2 + k3 � k4

2

◆
,

– 4 –



first note that k0 2 Z4 since k1 + k2 + k3 + k4 is even for k 2 D4 and consequently so are
k1 + k2 � k3 � k4, k1 � k2 + k3 � k4, and �k1 + k2 + k3 � k4. Moreover, we have

k01 + k02 + k03 + k04 = k1 + k2 + k3 � k4

equal to k1 + k2 + k3 + k4 modulo 2, i.e. it is even. So k0 is also in D4.
Since U3 = I4 and V 2 = I4, these transformations have orders 3 and 2, respectively. This, in turn,
shows that U and V map D4 ! D4 bijectively. Moreover, we have UTU = I4 and V TV = I4, so both
U and V are orthogonal transformations on R4 preserving the underlying Euclidean inner product.
Consequently, these are both automorphisms of D4.
Since U has order three, V has order two, and UV = V U2, an arbitrary element of the subgroup G of
Aut(D4) generated by U and V can be written of the form

V jUk with j 2 {0, 1} and k 2 {0, 1, 2}.

Moreover, we can compute all these six possibilities and see that they lead to di↵erent matrices. So
the subgroup in question has order six.
In fact, we can see this more explicitly and also identify the group along the way: For this purpose,
consider that the group action of G on the set {[v], [w], [e]} (note that the cosets [v], [w], and [e] can
not be mapped to the trivial coset [0] = D4). Since

Uv ⌘ e (modD4), Uw ⌘ v (modD4), Ue ⌘ w (modD4),

and
V v ⌘ w (modD4), V w ⌘ v (modD4), V e ⌘ e (modD4),

labeling [v], [w], [e] as µ1, µ2, µ3, respectively we find that

U : µj 7! µ�(j) with � := (132) 2 S3 and V : µj 7! µ�0(j) with �0 := (12) 2 S3.

Since (12) and (132) generate the symmetric group S3, these results show that G is isomorphic to S3

and it permutes the cosets [v], [w], [e].
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