Lattices and Quadratic Forms (Summer 2024) - Problem Set 4

- 1. In class we constructed the E_8 lattice as the lattice D_8^+ . Show that one can also construct the E_8 lattice by using the A_8 lattice and its cosets in the dual lattice $A_8^{\#}$.
- 2. Let L be a root lattice and let $\{\alpha_1, \ldots, \alpha_n\}$ be a set of simple roots. Compute the order of the elements $\sigma_{\alpha_i}\sigma_{\alpha_j}$ in the Weyl group for each $1 \leq i, j \leq n$.
- 3. In class we have defined roots as norm 2 vectors of a root lattice. There is a more general definition which defines a root system R (whose elements are called roots) as a finite subset of nonzero vectors in the Euclidean space \mathbb{R}^n obeying the following conditions:
 - Elements of R span \mathbb{R}^n .
 - The only multiples of $\alpha \in R$ that are also in R are $\pm \alpha$.
 - If $\alpha, \beta \in R$, then $2\frac{\alpha \cdot \beta}{\alpha \cdot \alpha} \in \mathbb{Z}$.
 - If $\alpha, \beta \in R$, then $\sigma_{\alpha}(\beta) = \beta 2 \frac{\alpha \cdot \beta}{\alpha \cdot \alpha} \alpha \in R$.

In particular, the roots inside a root lattice (as we defined in class) do in fact form a root system with respect to this more general definition.

Many of the notions we have introduced to study root lattices, such as positive/negative roots and simple roots, can be introduced for these more general root systems. Then following similar arguments to the ones we had in class, one can find a complete classification of irreducible root systems (i.e. those root systems that can not be partitioned into two orthogonal subsets) up to bijective mappings that leave the numbers $2\frac{\alpha \cdot \beta}{\alpha \cdot \alpha}$ invariant (so scaling a root system by a positive number gives an equivalent root system). In addition to the root systems

$$A_{n>1}, D_{n>4}, E_6, E_7, E_8$$

that we found in class, one finds the following root systems (where we are fixing an appropriate scale)

• $B_{n\geq 2}$ in \mathbb{R}^n given by

 $\{\pm \varepsilon_i \pm \varepsilon_j, \pm \varepsilon_j : 1 \le i < j \le n\}.$

• $C_{n\geq 3}$ in \mathbb{R}^n given by

$$\{\pm \varepsilon_i \pm \varepsilon_j, \pm 2\varepsilon_j : 1 \le i < j \le n\}$$

• G_2 in \mathbb{R}^3 given by

$$\{\pm(\varepsilon_2-\varepsilon_3),\pm(\varepsilon_1-\varepsilon_3),\pm(\varepsilon_1-\varepsilon_2),\pm(2\varepsilon_1-\varepsilon_2-\varepsilon_3),\pm(2\varepsilon_2-\varepsilon_1-\varepsilon_3),\pm(2\varepsilon_3-\varepsilon_1-\varepsilon_2)\}.$$

• F_4 in \mathbb{R}^4 given by

$$\{\pm \varepsilon_i \text{ for } 1 \leq i \leq 4, \ \pm \varepsilon_i \pm \varepsilon_j \text{ for } 1 \leq i < j \leq 4, \ \frac{1}{2} (\pm \varepsilon_1 \pm \varepsilon_2 \pm \varepsilon_3 \pm \varepsilon_4) \}.$$

Identify the lattices generated by these new root systems with lattices we have already constructed.

Note: You may use computational tools to help with your solutions, but describe your steps. Each problem is worth 10 points.