
Lattices and Quadratic Forms (Summer 2024) - Solutions to Problem Set 4

1. Since we are trying to build the E8 lattice, which is an even, self-dual lattice, as a lattice that contains
the A8 lattice, we will be looking at lattices L such that A8  L  A]

8. Such lattices are in one-to-one
correspondence with the subgroups of the discriminant group A]

8/A8 (by the correspondence theorem). We
know that

A]
8/A8 ' Z/9Z

with the cyclic group generated by [v] := v +A8 where
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The group A]
8/A8 has three subgroups: the trivial subgroup, the full group A]

8/A8, and the order three
cyclic subgroup generated by [3v] or [6v]. The first two subgroups correspond to the lattices A8 and A]

8,
which are not self-dual. So we restrict our attention to

A8  L := A8 [ (� +A8) [ (2� +A8)  A]
8
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The lattice L is generated by the vectors � and ↵1, . . . ,↵8, where ↵j denotes the simple roots of A8 given
by

↵1 = (1,�1, 0, . . . , 0), ↵2 = (0, 1,�1, 0, . . . , 0), . . . ,↵8 = (0, . . . , 0, 1,�1).

Also note that
↵1 = �2↵2 � 3↵3 � 4↵4 � 5↵5 � 6↵6 � 4↵7 � 2↵8 � 3�

So the vectors ↵2,↵3, . . . ,↵8 and � su�ce to generate L. Moreover, these are linearly independent vectors
since they form a basis for the eight dimensional real vector space spanned by ↵1, . . . ,↵8. So (↵2,↵3, . . . ,↵8,�)
forms an ordered basis for L consisting of roots (note that �2 = 2). Since ↵6 · � = �1 with all the other
↵j · �’s zero, we find that the Gram matrix for this basis of L is the same as the one described by the E8

Dynkin diagram if we identify

↵8

�

↵7 ↵6 ↵5 ↵4 ↵3 ↵2

This proves that L is isometric to the E8 lattice.

Remark. Alternatively, we can use the following argument:
• Let ` 2 L be an arbitrary element. We can write it (uniquely) as ` = v + j� for some v 2 A8 and
j 2 {0, 1, 2}. Then we have `2 = v2 + 2jv · � + j2�2 2 2Z because v · � 2 Z and �2 = 2. So L is an
even lattice (and in particular an integral lattice).

• Using the relation det(L0) = |L/L0|2 det(L) (for L0 a sublattice of L of the same rank) with L0 = A8

so that det(L0) = 9 and |L/L0| = 3 we find det(L) = 1. So the discriminant group is trivial and L is a
self-dual lattice.

Finally, note that the integral lattice L is generated by the roots of the A8 lattice and �, which is also a
root since �2 = 2. So L is a root lattice (that is possibly reducible). However, the only self-dual root lattice
of dimension 8 is the E8 lattice since by the classification theorem, root lattices are orthogonal direct sums
of irreducible root lattices (with ADE classification) and only E8 factors can appear in the decomposition
if the resulting root lattice is self-dual (so the only self-dual root lattices are E8, E8 ? E8, . . .).
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2. Given an arbitrary element � of the lattice L, the transformation � := �↵i�↵j 2 W (L) acts as

�(�) = �↵i(�↵j (�)) = �↵i(� � (� · ↵j)↵j)

so that
�(�) = � � (� · ↵j)↵j � (� · ↵i)↵i + (� · ↵j)(↵j · ↵i)↵i

• Let us first handle the trivial case i = j where ↵i · ↵j = 2. From our computation (or from the fact
that �↵i are reflections that have order two), we find that �(�) = � and hence in this case it has order
one.

Assuming 1  i 6= j  n from now on (for which � acts nontrivially), the only possibilities for ↵i · ↵j are 0
and �1 since these are simple roots.

• If ↵i ·↵j = 0, then our expression for �↵i(�↵j (�)) becomes symmetric in i and j. So we have �↵i�↵j =
�↵j�↵i . This then immediately shows

�2 = �↵i�↵j�↵i�↵j = �↵i�↵i�↵j�↵j = 1.

So � = �↵i�↵j has order two in this case.
• Finally, we consider the case ↵i · ↵j = �1, where we have

�(�) = � � (� · ↵j)(↵i + ↵j)� (� · ↵i)↵i.

The easiest way to understand what � is doing is to restrict to the plane spanned by ↵i and ↵j (since �
acts identically on the orthogonal complement) and to pick an orthonormal basis for that plane where

↵j =
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�
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with respect to that basis. Then � = (�1, �2) (where �j are the

components with respect to this basis) is transformed as
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The transformation matrix is simply a rotation by 1200. So � in this case has order three.

– Alternatively, we can explicitly compute using �(�) · ↵j = � · ↵i and �(�) · ↵i = �� · ↵i � � · ↵j as

�2(�) = � � (� · ↵j)(↵i + ↵j)� (� · ↵i)↵i � (� · ↵i)(↵i + ↵j) + (� · ↵i + � · ↵j)↵i

= � � (� · ↵j)↵j � (� · ↵i)(↵i + ↵j).

Correspondingly, we can then use �2(�) · ↵j = �� · ↵i � � · ↵j and �2(�) · ↵i = � · ↵j to compute

�3(�) = � � (� · ↵j)↵j � (� · ↵i)(↵i + ↵j) + (� · ↵i + � · ↵j)(↵i + ↵j)� (� · ↵j)↵i = �.

3. We start with the Bn�2 root system in Rn given by

{±"i ± "j , ±"j : 1  i < j  n}.

Note that the vectors ±"j span the Euclidean lattice Zn and the vectors ±"i ± "j are contained in this
lattice. So we have (identifying the notation for the lattice and the root system)

Bn = Zn.

Next we consider the Cn�3 root system in Rn given by

{±"i ± "j , ±2"j : 1  i < j  n}.
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For n � 4, the vectors ±"i ± "j are the roots of the Dn lattice and the vectors ±2"j are already spanned by
vectors of the form ±"i ± "j . So for n � 4 we have

Cn = Dn.

If we extend the definition of the Dn lattice to n = 3 as well, then we would again see that the C3 = D3.
One thing to note however is that the D3 lattice is not a new lattice but it is equivalent to the A3 lattice.
One quick way to confirm this is to note that C3 = D3 is spanned by the vectors ↵1 = "2+ "3, ↵2 = "1� "2,
↵3 = "2 � "3 which have the same Gram matrix as that described by the A3 Dynkin diagram. So we also
note

C3 = A3.

Next we consider the G2 root system in R3 given by

{±("2 � "3),±("1 � "3),±("1 � "2),±(2"1 � "2 � "3),±(2"2 � "1 � "3),±(2"3 � "1 � "2)}.

Now note that the vectors ±(2"1 � "2 � "3),±(2"2 � "1 � "3),±(2"3 � "1 � "2) are in the linear span of
±("2 � "3),±("1 � "3),±("1 � "2) with integral coe�cients. So we can restrict our attention to the latter
set of vectors and these are nothing but the roots of A2 in its usual realization in Z3. So we have

G2 = A2.

We finally consider the F4 root system in R4 given by

{±"i for 1  i  4, ±"i ± "j for 1  i < j  4,
1

2
(±"1 ± "2 ± "3 ± "4)}.

Note that the vectors "1, "2, "3, "4 span all the vectors of the form ±"i and ±"i ± "j . Moreover, adding
� := � 1

2 ("1 + "2 + "3 + "4) to the list and noting that "1 = �2� � "2 � "3 � "4 we find that

�, "2, "3, "4

forms a basis for the lattice F4. All four of these vectors have norm 1 and we have

� · "j = �1

2
for all j 2 {2, 3, 4}

with the inner products between "2, "3, "4 equal to zero. So the corresponding Gram matrix is equal to that
described by the D4 Dynkin diagram up to a rescaling by 1

2 (with � corresponding to the trivalent node in
the diagram). So we have

F4 = D4h1/2i.
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