Lattices and Quadratic Forms (Summer 2024) - Solutions to Problem Set 5

1. Given representatives m € L/cL, we can uniquely write any element n € L + p as n = r + m + p where
r € cL. Therefore,
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proving the asserted identity. Here we also note that /cL is a positive-definite, integral lattice and \[(m +
p) € (y/cL)f. Further note that the summands © VL, (mp) (1) are independent of the representatives

chosen from L/cL elements and this is why we can view the sum as one over L/cL.
2. We start with the (7, 2) — (7 + 1, 2) transformation. For 6y, we have
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Since (—1)"e™™ = (—=1)™m+1) = 1 we find
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For 619 and 611, the transformation produces the e™(m+3) factor within the summands. Since
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we find
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For the (7,z) — (-1, 2) transformation, we start with the general expression
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This Gaussian function is a Schwartz function and we use Poisson summation (on the self-dual lattice Z)
while noting that the Fourier transform® of f,(z — r) is /=i e™™** =2mikT 4 find2
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2This is including the case where r is complex as can be confirmed by performing the relevant Gaussian integrals.

1The Fourier transform f(k) of f(z) is



Taking k — —k, we rewrite this as
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Since a € {0, 1}, we have e~ 2"*¢ = 1 for k € Z and this leads to
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and hence
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In particular,
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. Under 7 — 7+ 1 we have
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Now note that for n =m + pu + % with m € L we have
67ri(m+p+§)2 _ eﬂ'i(qug)2+7Ti(m2+m~£)+27rim-u.

Since u € L' we have m - p € Z and since £ is a characteristic vector in the integral lattice L we have
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m? 4+ m - £ € 27Z. Therefore, emi(mtuts)” — omi(htE)" factors out as an overall factor and we get
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To study the behavior under the inversion 7 —% we first rewrite
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This Gaussian function is a Schwartz function and we use Poisson summation while noting that the Fourier
transform of f(x +r) is (—i7)"/? emiTk’ +2mikr (also when r is complex) to find
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Letting k — —k and then writing the sum Ekem as ZueLﬁ/L > ker4 We find
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Now note that
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Moreover, for any k € L + v, which we can write ask =m+v withm € L, we have k- £ = (m+v)- L € Z
since m - £ € Z for m, £ € L with L an integral lattice and since v - £ € Z because v is in the dual lattice.
Therefore,
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Consequently, we find
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and hence
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. Let us consider the one dimensional integral lattice L ~ Z with the symmetric bilinear form B(n, m) = 3nm
for n,m € Z. We have det L = 3 with representatives of the discriminant group L*/L given by p = 0, —&—%, —%
Also noting that £ = 1 is a characteristic vector for this lattice (since 3n? + 3n € 2Z), the corresponding
theta functions ¥, (7) (of the form we considered in Problem 3) are
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Importantly, we note that
V_1/3(7) = in(r).
Moreover, by letting n — —n — 1 we find
Uo(r) =0 and Wy,3(7)=—in(7).
Therefore, the corresponding transformation in Problem 3 implies
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This yields

in(—1/r) = z(_”\/%m (ie= " n(r) = ie*Fn(r)).
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Since ie~ 5 —ie3" = /3, we finally find

n(=1/7) = V=it n(r)

as claimed.



