
Lattices and Quadratic Forms (Summer 2024) - Solutions to Problem Set 5

1. Given representatives m ∈ L/cL, we can uniquely write any element n ∈ L + µ as n = r + m + µ where
r ∈ cL. Therefore,

ΘL,µ(τ/c) =
∑

n∈L+µ

eπi
τ
c n

2

=
∑

m∈L/cL

∑

r∈cL

eπi
τ
c (r+m+µ)2 =

∑

m∈L/cL

∑

r∈
√
cL

eπi
τ
c (

√
cr+m+µ)2

and hence
ΘL,µ(τ/c) =

∑

m∈L/cL

∑

r∈
√
cL+m+µ√

c

eπiτr
2

=
∑

m∈L/cL

Θ√
cL, 1√

c
(m+µ)(τ),

proving the asserted identity. Here we also note that √cL is a positive-definite, integral lattice and 1√
c
(m+

µ) ∈ (
√
cL)♯. Further note that the summands Θ√

cL, 1√
c
(m+µ)(τ) are independent of the representatives

chosen from L/cL elements and this is why we can view the sum as one over L/cL.
2. We start with the (τ, z) #→ (τ + 1, z) transformation. For θ01, we have

θ01(τ + 1, z) =
∑

m∈Z
(−1)meπim

2

eπiτm
2+2πizm.

Since (−1)meπim
2

= (−1)m(m+1) = 1, we find

θ01(τ + 1, z) = θ00(τ, z).

For θ10 and θ11, the transformation produces the eπi(m+ 1
2 )

2 factor within the summands. Since

eπi(m+ 1
2 )

2

= eπi/4(−1)m
2+m = eπi/4 for m ∈ Z,

we find
θ10(τ + 1, z) = eπi/4θ10(τ, z) and θ11(τ + 1, z) = eπi/4θ11(τ, z).

For the (τ, z) #→
(
− 1

τ ,
z
τ

)
transformation, we start with the general expression

θab(τ, z) =
∑

m∈Z+ a
2

eπiτm
2+2πim(z+ b

2 ) = e−πi(z+b/2)2/τ
∑

m∈Z+ a
2

eπiτ(m+ z+b/2
τ )

2

so that

θab

(
−1

τ
,
z

τ

)
= eπi(z+bτ/2)2/τ

∑

m∈Z+ a
2

e−
πi
τ (m−z− bτ

2 )
2

= eπi(z+bτ/2)2/τ
∑

m∈Z
fτ

(
m− z − bτ − a

2

)
,

where
fτ (x) := e−

πi
τ x2

.

This Gaussian function is a Schwartz function and we use Poisson summation (on the self-dual lattice Z)
while noting that the Fourier transform1 of fτ (x− r) is

√
−iτ eπiτk

2−2πikr to find2

θab

(
−1

τ
,
z

τ

)
= eπi(z+bτ/2)2/τ

√
−iτ

∑

k∈Z
eπiτk

2−2πik(z+ bτ−a
2 ).

1The Fourier transform f̂(k) of f(x) is
f̂(k) =

∫

R
dx f(x) e−2πikx.

2This is including the case where r is complex as can be confirmed by performing the relevant Gaussian integrals.
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Taking k #→ −k, we rewrite this as

θab

(
−1

τ
,
z

τ

)
= eπi(z+bτ/2)2/τ

√
−iτ

∑

k∈Z
eπiτk

2+2πik(z+ bτ−a
2 )

and then note

e
πi
τ (z+bτ/2)2eπiτk

2+2πik(z+ bτ−a
2 ) = e

πi
τ z2

eπiτ(k+
b
2 )

2

e2πi(k+
b
2 )(z+ a

2 )e−2πika−πi
2 ab.

Since a ∈ {0, 1}, we have e−2πika = 1 for k ∈ Z and this leads to

θab

(
−1

τ
,
z

τ

)
= e−

πi
2 abeπiz

2/τ
√
−iτ

∑

k∈Z+ b
2

eπiτk
2+2πik(z+ a

2 )

and hence

θab

(
−1

τ
,
z

τ

)
= e−

πi
2 abeπiz

2/τ
√
−iτ θba(τ, z).

In particular,

θ01

(
−1

τ
,
z

τ

)
= eπiz

2/τ
√
−iτ θ10(τ, z), θ10

(
−1

τ
,
z

τ

)
= eπiz

2/τ
√
−iτ θ01(τ, z),

and

θ11

(
−1

τ
,
z

τ

)
= −i eπiz

2/τ
√
−iτ θ11(τ, z).

3. Under τ #→ τ + 1 we have
Ψµ(τ + 1) =

∑

n∈L+µ+ ℓ
2

eπin
2

eπiτn
2+πin·ℓ.

Now note that for n = m+ µ+ ℓ
2 with m ∈ L we have

eπi(m+µ+ ℓ
2 )

2

= eπi(µ+ ℓ
2 )

2
+πi(m2+m·ℓ)+2πim·µ.

Since µ ∈ L♯ we have m · µ ∈ Z and since ℓ is a characteristic vector in the integral lattice L we have
m2 +m · ℓ ∈ 2Z. Therefore, eπi(m+µ+ ℓ

2 )
2

= eπi(µ+ ℓ
2 )

2

factors out as an overall factor and we get

Ψµ(τ + 1) = eπi(µ+ ℓ
2 )

2

Ψµ(τ).

To study the behavior under the inversion τ #→ − 1
τ we first rewrite

Ψµ(τ) =
∑

n∈L+µ+ ℓ
2

eπiτn
2+πin·ℓ = e−πi ℓ2

4τ

∑

n∈L+µ+ ℓ
2

eπiτ(n+
ℓ
2τ )

2

= e−πi ℓ2

4τ

∑

n∈L

eπiτ(n+µ+ ℓ
2+

ℓ
2τ )

2

so that
Ψµ

(
−1

τ

)
= eπiτ

ℓ2

4

∑

n∈L

fτ

(
n+ µ+

ℓ

2
− ℓτ

2

)

where
fτ (x) := e−

πi
τ x2

.

This Gaussian function is a Schwartz function and we use Poisson summation while noting that the Fourier
transform of fτ (x+ r) is (−iτ)n/2 eπiτk

2+2πik·r (also when r is complex) to find

Ψµ

(
−1

τ

)
= eπiτ

ℓ2

4
(−iτ)n/2√

detL

∑

k∈L♯

eπiτk
2+2πik·(µ+ ℓ

2−
ℓτ
2 ).
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Letting k #→ −k and then writing the sum
∑

k∈L♯ as
∑

ν∈L♯/L

∑
k∈L+ν we find

Ψµ

(
−1

τ

)
= eπiτ

ℓ2

4
(−iτ)n/2√

detL

∑

ν∈L♯/L

∑

k∈L+ν

eπiτk
2−2πik·(µ+ ℓ

2−
ℓτ
2 ).

Now note that
eπiτ

ℓ2

4 eπiτk
2−2πik·(µ+ ℓ

2−
ℓτ
2 ) = eπiτ(k+

ℓ
2 )

2

e−πik·ℓe−2πik·µ,

where
e−2πik·µ = e−2πiν·µ for k ∈ L+ ν.

Moreover, for any k ∈ L+ ν, which we can write as k = m+ ν with m ∈ L, we have k · ℓ = (m+ ν) · ℓ ∈ Z
since m · ℓ ∈ Z for m, ℓ ∈ L with L an integral lattice and since ν · ℓ ∈ Z because ν is in the dual lattice.
Therefore,

e−πik·ℓ = e+πik·ℓ = eπi(k+
ℓ
2 )·ℓ−πi

2 ℓ2 . (0.1)
Consequently, we find

Ψµ

(
−1

τ

)
= e−

πi
2 ℓ2 (−iτ)n/2√

detL

∑

ν∈L♯/L

e−2πiµ·ν
∑

k∈L+ν+ ℓ
2

eπiτk
2+πik·ℓ

and hence

Ψµ

(
−1

τ

)
= e−

πi
2 ℓ2 (−iτ)n/2√

detL

∑

ν∈L♯/L

e−2πiµ·νΨν(τ).

4. Let us consider the one dimensional integral lattice L ≃ Z with the symmetric bilinear form B(n,m) = 3nm
for n,m ∈ Z. We have detL = 3 with representatives of the discriminant group L♯/L given by µ = 0,+ 1

3 ,−
1
3 .

Also noting that ℓ = 1 is a characteristic vector for this lattice (since 3n2 + 3n ∈ 2Z), the corresponding
theta functions Ψµ(τ) (of the form we considered in Problem 3) are

Ψ0(τ) =
∑

n∈Z
e3πiτ(n+

1
2 )

2+3πi(n+ 1
2 ) = −i

∑

n∈Z
(−1)n e3πiτ(n+

1
2 )

2

Ψ1/3(τ) =
∑

n∈Z
e3πiτ(n+

5
6 )

2+3πi(n+ 5
6 ) = i

∑

n∈Z
(−1)ne3πiτ(n+

5
6 )

2

Ψ−1/3(τ) =
∑

n∈Z
e3πiτ(n+

1
6 )

2+3πi(n+ 1
6 ) = i

∑

n∈Z
(−1)ne3πiτ(n+

1
6 )

2

.

Importantly, we note that
Ψ−1/3(τ) = i η(τ).

Moreover, by letting n #→ −n− 1 we find

Ψ0(τ) = 0 and Ψ1/3(τ) = −i η(τ).

Therefore, the corresponding transformation in Problem 3 implies

Ψ−1/3(−1/τ) = e−
3πi
2
(−iτ)1/2√

3

(
Ψ0(τ) + e−6πi(− 1

3 )(− 1
3 )Ψ−1/3(τ) + e−6πi(− 1

3 )( 1
3 )Ψ1/3(τ)

)
.

This yields

i η(−1/τ) = i
(−iτ)1/2√

3

(
ie−

2πi
3 η(τ)− ie

2πi
3 η(τ)

)
.

Since ie−
2πi
3 − ie

2πi
3 =

√
3, we finally find

η(−1/τ) =
√
−iτ η(τ)

as claimed.
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