
Lattices and Quadratic Forms (Summer 2024) - Solutions to Problem Set 6

1. a) Recalling the realization of Dn as the lattice

Dn := {k ∈ Zn : k1 + k2 + . . .+ kn even}

we have
ΘDn(τ) =

∑

k∈Zn

k1+...+kn∈2Z

eπiτ(k
2
1+...+k2

n).

We can implement the condition k1 + . . . + kn ∈ 2Z by extending the sum to all elements of Zn and
then inserting a factor of 1

2

(
1 + (−1)k1+...+kn

)
. This leads to

ΘDn(τ) =
1

2

(
∑

k∈Z
eπiτk

2

)n

+
1

2

(
∑

k∈Z
(−1)keπiτk

2

)n

,

which can be expressed in terms of Jacobi theta functions

θab(τ) :=
∑

m∈Z+ a
2

eπiτm
2+πibm

as
ΘDn(τ) =

1

2
(θ00(τ)

n + θ01(τ)
n) .

For v = (1, 0, . . . , 0), the theta function for the corresponding coset v +Dn is similarly given by

ΘDn,v(τ) =
∑

k∈Zn

k1+...+kn∈2Z

eπiτ((k1+1)2+k2
2+k2

3+...+k2
n).

Shifting k #→ k − 1, we can rewrite this as
∑

k∈Zn

k1+...+kn∈2Z+1

eπiτ(k
2
1+k2

2+k2
3+...+k2

n) =
1

2

∑

k∈Zn

(
1− (−1)k1+...+kn

)
eπiτ(k

2
1+...+k2

n)

and then express it in terms of Jacobi theta functions as

ΘDn,v(τ) =
1

2
(θ00(τ)

n − θ01(τ)
n) .

Next we consider the coset for s =
(
1
2 , . . . ,

1
2

)
and find

ΘDn,s(τ) =
∑

k∈Zn

k1+...+kn∈2Z

eπiτ((k1+ 1
2 )

2+(k2+ 1
2 )

2+...+(kn+ 1
2 )

2)

=
1

2

∑

k∈Zn

(
1 + (−1)k1+...+kn

)
eπiτ((k1+ 1

2 )
2+(k2+ 1

2 )
2+...+(kn+ 1

2 )
2).

The sum over each kj can now be performed separately as above. The contribution of the second term
is zero since

−iθ11(τ) =
∑

k∈Z
(−1)keπiτ(k+

1
2 )

2

= 0

as can be seen by taking k #→ −k − 1. From the first term we then find

ΘDn,s(τ) =
1

2
θ10(τ)

n.
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Finally, for c =
(
− 1

2 ,
1
2 , . . . ,

1
2

)
we have

ΘDn,c(τ) =
∑

k∈Zn

k1+...+kn∈2Z

eπiτ((k1− 1
2 )

2+(k2+ 1
2 )

2+...+(kn+ 1
2 )

2)

=
1

2

∑

k∈Zn

(
1 + (−1)k1+...+kn

)
eπiτ((k1− 1

2 )
2+(k2+ 1

2 )
2+...+(kn+ 1

2 )
2).

Letting k1 #→ k1 + 1, this is equal to

1

2

∑

k∈Zn

(
1− (−1)k1+...+kn

)
eπiτ((k1+ 1

2 )
2+(k2+ 1

2 )
2+...+(kn+ 1

2 )
2)

and the second term again gives a vanishing contribution as discussed above to yield

ΘDn,c(τ) =
1

2
θ10(τ)

n.

Remark. The equality of ΘDn,s(τ) and ΘDn,c(τ) is of course expected since there is an automorphism
of Dn that maps s to c, namely (k1, k2, . . . , kn) #→ (−k1, k2, . . . , kn).

b) Since E8 = D8 ∪ (D8 + s) we have

ΘE8(τ) = ΘD8(τ) +ΘD8,s(τ),

which according to part (a) yields

ΘE8(τ) =
1

2

(
θ00(τ)

8 + θ01(τ)
8 + θ10(τ)

8
)
.

Plugging the q-expansions of θ00(τ), θ01(τ), and θ10(τ) in up to order q20 we get

ΘE8(τ) =
1

2

(
1 + 2q

1
2 + 2q2 + 2q

9
2 + 2q8 + 2q

25
2 + 2q18 + . . .

)8

+
1

2

(
1− 2q

1
2 + 2q2 − 2q

9
2 + 2q8 − 2q

25
2 + 2q18 + . . .

)8

+
1

2

(
2q

1
8 + 2q

9
8 + 2q

25
8 + 2q

49
8 + 2q

81
8 + 2q

121
8 + . . .

)8

which can be summed to

ΘE8(τ) = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 + 60480q6 + 82560q7

+ 140400q8 + 181680q9 + 272160q10 + 319680q11 + 490560q12

+ 527520q13 + 743040q14 + 846720q15 + 1123440q16

+ 1179360q17 + 1635120q18 + 1646400q19 + 2207520q20 +O
(
q21
)
.

In particular, E8 has 2207520 vectors of norm 40.
c) Since there is an automorphism of D4 that maps v to s, we have the identity

ΘD4,v(τ) = ΘD4,s(τ).

In terms of Jacobi theta functions this gives the “Riemann theta relation”

θ00(τ)
4 = θ01(τ)

4 + θ10(τ)
4.
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d) By part (b) we have ΘE8⊥E8(τ) = ΘE8(τ)
2 equal to

ΘE8⊥E8(τ) =
1

4

(
θ00(τ)

8 + θ01(τ)
8 + θ10(τ)

8
)2

.

Also as in part (b) we can compute the theta function for D+
16 = D16∪(D16+s) as ΘD16(τ)+ΘD16,s(τ)

to get
ΘD+

16
(τ) =

1

2

(
θ00(τ)

16 + θ01(τ)
16 + θ10(τ)

16
)
.

Using the Riemann theta relation from part (c), we can simplify these expressions by eliminating
θ10(τ)4 = θ00(τ)4 − θ01(τ)4. This leads to

ΘE8⊥E8(τ) =
1

4

(
θ00(τ)

8 + θ01(τ)
8 +

(
θ00(τ)

4 − θ01(τ)
4
)2)2

=
(
θ00(τ)

8 − θ00(τ)
4θ01(τ)

4 + θ01(τ)
8
)2

and

ΘD+
16
(τ) =

1

2

(
θ00(τ)

16 + θ01(τ)
16 +

(
θ00(τ)

4 − θ01(τ)
4
)4)

= θ00(τ)
16 − 2θ00(τ)

12θ01(τ)
4 + 3θ00(τ)

8θ01(τ)
8 − 2θ00(τ)

4θ01(τ)
12 + θ01(τ)

16,

which are equal.
2. The functions θ400, θ401, θ410 are holomorphic functions on the upper half-plane. For their modular transfor-

mations, we first recall from class that Γ(2) is generated by −I2, T 2 = ( 1 2
0 1 ) , U

2 = ( 1 0
2 1 ). So we simply

check next that θ400, θ401, θ410 transform like weight 2 modular forms under T 2 and U2 (−I2 acts trivially).
For this, we also recall from the previous problem set the behavior of θ00, θ01, θ10 under translation and
inversion:

θ00(τ + 1) = θ01(τ), θ00(−1/τ) =
√
−iτ θ00(τ),

θ01(τ + 1) = θ00(τ), θ01(−1/τ) =
√
−iτ θ10(τ),

θ10(τ + 1) = eπi/4θ10(τ), θ10(−1/τ) =
√
−iτ θ01(τ).

This then implies

θ400(τ + 1) = θ401(τ), θ400(−1/τ) = −τ2 θ400(τ),

θ401(τ + 1) = θ400(τ), θ401(−1/τ) = −τ2 θ410(τ),

θ410(τ + 1) = −θ410(τ), θ410(−1/τ) = −τ2 θ401(τ).

• Under T 2 we have

θ400(τ + 2) = θ400(τ), θ401(τ + 2) = θ401(τ), and θ410(τ + 2) = θ410(τ),

which does conform to the pattern f
(

aτ+b
cτ+d

)
= (cτ + d)2f(τ) for

(
a b
c d

)
:= T 2.

• Under U2 we have (for ab equal to 00, 01, or 10)

θ4ab

(
τ

2τ + 1

)
= −

(
−2τ + 1

τ

)2

θ4ba

(
−2τ + 1

τ

)

= −
(
−2τ + 1

τ

)2

θ4ba

(
−1

τ

)
=

(
−2τ + 1

τ

)2

τ2 θ4ab(τ),

where we apply inversion, translation by two, and inversion again in succession to obtain these equal-
ities. Consequently, we have

θ4ab

(
τ

2τ + 1

)
= (2τ + 1)2 θ4ab(τ),

which conforms to the pattern f
(

aτ+b
cτ+d

)
= (cτ + d)2f(τ) for

(
a b
c d

)
:= U2.
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So in summary we have confirmed that

θ4ab

(
aτ + b

cτ + d

)
= (cτ + d)2 θ4ab(τ) where

(
a b
c d

)
∈ Γ(2).

Our final task is to confirm that θ4ab
∣∣
2
γ is bounded as τ → i∞ for all γ ∈ SL2(Z). Now recall from class

that Γ(2) is a normal subgroup of SL2(Z) and SL2(Z)/Γ(2) is of order 6 with representatives from each
coset given by

I2 =

(
1 0
0 1

)
, T =

(
1 1
0 1

)
, STS =

(
−1 0
1 −1

)
,

S =

(
0 −1
1 0

)
, ST =

(
0 −1
1 1

)
, TS =

(
1 −1
1 0

)
.

So we simply need to check the boundedness condition for these six SL2(Z) elements.1
• For γ = I2, the boundedness as τ → i∞ follows from the q-expansions

θ400(τ) = 1 + 8q1/2 + 24q + 32q3/2 + 24q2 + 48q5/2 + 96q3 + . . . ,

θ401(τ) = 1− 8q1/2 + 24q − 32q3/2 + 24q2 − 48q5/2 + 96q3 + . . . ,

θ410(τ) = 16q1/2 + 64q3/2 + 96q5/2 + 128q7/2 + 208q9/2 + . . . ,

which are all bounded as q tends to zero.
• For γ = T , this follows from the fact that

θ4ab
∣∣
2
T = (−1)a θ4ab′ with b′ = 1− a− b

and that the right hand side is bounded as τ → i∞ as we have already found out above with q-
expansions.

• For γ = S, this follows from the fact that

θ4ab
∣∣
2
S = −θ4ba.

• Since the three functions θ400, θ401, θ410 transform among themselves under S and T transformations, the
results above also confirm boundedness of θ4ab

∣∣
2
γ as τ → i∞ for the remaining three SL2(Z) elements

above (which are generated by S and T ).
3. First we make sure that Pk,m is well-defined by showing that for each of the summands in

Pk,m(τ) :=
1

2

∑

(c,d)∈Z2\{0}
gcd(c,d)=1

e2πim
aτ+b
cτ+d

(cτ + d)k

there do exist integers a, b ∈ Z as described in the problem and the summand is independent of the choice:
Given any (c, d) ∈ Z2 \ {0} with gcd(c, d) = 1, there do exist a, b ∈ Z with ad − bc = 1 and hence(
a b
c d

)
∈ SL2(Z). Furthermore, for any other such integers a′, b′ ∈ Z we have a′ = a + nc and b′ = b + nd

for some n ∈ Z so that
e2πim

a′τ+b′
cτ+d = e2πim(n+

aτ+b
cτ+d ) = e2πim

aτ+b
cτ+d

since m ∈ Z, which proves that the summand is independent of the choice of a, b. Furthermore, we have
∣∣∣e2πim

aτ+b
cτ+d

∣∣∣ = e−2πm Im( aτ+b
cτ+d ) ≤ 1,

1Any γ ∈ SL2(Z) is of the form γ = γ2γ′ with γ2 ∈ Γ(2) and γ′ is one of the six SL2(Z) elements above. Since θ4ab
∣∣
2
γ2 = θ4ab as

we found above, it is enough to check the boundedness condition for γ′.
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where the final inequality follows from the assumption m > 0 and that Im
(

aτ+b
cτ+d

)
= Im(τ)

|cτ+d|2 > 0. So we
have ∣∣∣∣∣

e2πim
aτ+b
cτ+d

(cτ + d)k

∣∣∣∣∣ ≤
1

|cτ + d|k

and the arguments we have given for Eisenstein series immediately apply to show that for k > 2 the series
here is absolutely and uniformly convergent over the sets

SA,B := {τ ∈ H : |τ1| ≤ A and τ2 ≥ B}

and hence locally uniformly convergent over H. Consequently, Pk,m(τ) is holomorphic on H (the summands
are holomorphic).
Next we check that this holomorphic function transforms like a weight k modular form by computing its
translation and inversion properties. For this we will be more careful about our summands and write ac,d
and bc,d instead of a and b to emphasize their dependence on c and d:

Pk,m(τ) =
1

2

∑

(c,d)∈Z2\{0}
gcd(c,d)=1

e2πim
ac,dτ+bc,d

cτ+d

(cτ + d)k

• For translation we have

Pk,m(τ + 1) =
1

2

∑

(c,d)∈Z2\{0}
gcd(c,d)=1

e2πim
ac,dτ+ac,d+bc,d

cτ+c+d

(cτ + c+ d)k

The change of variables (c, d) #→ (c′, d′) := (c, c + d) preserves the set of (c, d) we are summing over
and furthermore (

ac,d ac,d + bc,d
c c+ d

)
∈ SL2(Z)

so that
(ac,d, ac,d + bc,d) = (ac′,d′ , bc′,d′) + n(c′, d′)

for some n ∈ Z. Accordingly, we have

e2πim
ac,dτ+ac,d+bc,d

cτ+c+d

(cτ + c+ d)k
=

e2πim
ac′,d′τ+bc′,d′

c′τ+d′

(c′τ + d′)k

and hence
Pk,m(τ + 1) = Pk,m(τ).

• For inversion we have

Pk,m(−1/τ) = τk
1

2

∑

(c,d)∈Z2\{0}
gcd(c,d)=1

e2πim
bc,dτ−ac,d

dτ−c

(dτ − c)k

As above we can change variables (c, d) #→ (c′, d′) := (d,−c), which preserves the set of (c, d) we are
summing over and furthermore (

bc,d −ac,d
d −c

)
∈ SL2(Z)

so that
(bc,d,−ac,d) = (ac′,d′ , bc′,d′) + n(c′, d′)
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for some n ∈ Z. Consequently, we have

e2πim
bc,dτ−ac,d

dτ−c

(dτ − c)k
=

e2πim
ac′,d′τ+bc′,d′

c′τ+d′

(c′τ + d′)k

and hence
Pk,m(τ + 1) = τk Pk,m(τ).

Now we checked the modular transformations, we finally check that Pk,m(τ) tends to zero as τ → i∞ to
ensure we have a cusp form. Let us assume τ2 ≥ 1. Since Pk,m(τ + 1) = Pk,m(τ), let us also assume
|τ1| ≤ 1

2 . Separating the contributions of the c = 0 terms and noting that the summands are invariant
under (c, d) #→ −(c, d) we have

Pk,m(τ) = e2πimτ +
∑

c∈Z+, d∈Z
gcd(c,d)=1

e2πim
aτ+b
cτ+d

(cτ + d)k

The first term here tends to zero as τ → i∞ since |e2πimτ | = e−2πmτ2 and m > 0. Moreover, each of the
summands in the second sum tend to zero as τ → i∞ because of the denominator. Since the convergence
is uniform over S 1

2 ,1
, the sum then also tends to zero.

4. As discussed in class, Γ(2) is the kernel of the onto homomorphism ϕ : SL2(Z) → SL2(Z/2Z) that reduces
entries modulo 2. In particular, the quotient group SL2(Z)/Γ(2) is isomorphic to

SL2(Z/2Z) =
{(

1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)}
,

where the elements
(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
have order two and

(
1 1
1 0

)
,

(
0 1
1 1

)
have order three.

By the correspondence theorem, the subgroups of SL2(Z) that contain Γ(2) correspond to the subgroups
of SL2(Z)/Γ(2). In particular, these subgroups are given by the inverse images of subgroups of SL2(Z/2Z)
under the homomorphism described above. Aside from the trivial subgroup G1 and the full subgroup
G6 := SL2(Z/2Z), the other subgroups (which have order 2 or 3) are the cyclic subgroups:

• Three order 2 subgroups generated by each one of the three order two elements:

G2 =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
, G3 =

{(
1 0
0 1

)
,

(
1 1
0 1

)}
, G4 =

{(
1 0
0 1

)
,

(
1 0
1 1

)}
.

• The order 3 subgroup

G5 =

{(
1 0
0 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)}
.

So there are six subgroups of SL2(Z) that contain Γ(2):

ϕ−1(Gj) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ γ (mod 2) for some γ ∈ Gj

}
for j ∈ {1, 2, . . . , 6}.

In more detail, we can describe these subgroups as follows:
• SL2(Z) itself corresponding to SL2(Z/2Z).
• Γ(2) corresponding to the trivial subgroup of SL2(Z/2Z).
• Since ϕ(S) = ( 0 1

1 0 ), the subgroup ϕ−1(G2) is Γ(2) ∪ S Γ(2) and this is the subgroup Γϑ := ⟨S, T 2⟩
discussed in class.
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• For G3, the subgroup ϕ−1(G3) is

Γ1(2) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
1 ∗
0 1

)
(mod 2)

}

Note that the conditions a ≡ 1 (mod 2) and d ≡ 1 (mod 2) do in fact follow as a consequence of
c ≡ 0 (mod 2). So this subgroup is also equal to

Γ0(2) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod 2)

}
.

One can define Γ0(N) and Γ1(N) for other values of N as well, but when N > 2, they are not equal.
• Similarly, ϕ−1(G4) is the subgroup

Γ0(2) :=

{(
a b
c d

)
∈ SL2(Z) : b ≡ 0 (mod 2)

}
.

• Finally, the subgroup ϕ−1(G5) is the index two subgroup of SL2(Z) given by
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
1 0
0 1

)
or

(
1 1
1 0

)
or

(
0 1
1 1

)
or (mod 2)

}
.

– 7 –


