Lattices and Quadratic Forms (Summer 2024) - Solutions to Problem Set 6
1. a) Recalling the realization of D,, as the lattice
D,:={keZ": ki+ko+...+k,even}

we have

: 2 2
Op (= 3 emtrend

kezZ™
ki+4...+k,€2Z

We can implement the condition ki + ...+ k, € 2Z by extending the sum to all elements of Z" and
then inserting a factor of 1 (14 (—1)*+-F#) This leads to

Op,(T) = % (Z e“”k2> +% (Z(—l)ke’mk2> ;

kez kez
which can be expressed in terms of Jacobi theta functions
Oap(7) = Z eﬂ'iTm2+7ribm
meZ+g

as

O, (r) = 5 (oo()" + s (r)").

For v = (1,0, ...,0), the theta function for the corresponding coset v + D,, is similarly given by

; 2,72 ;2 2
GDW,,U(T) _ § ewzr((kﬁ»l) +k2+k3+...+kn)'

kez™
ki+4...+kn€2Z

Shifting k — k — 1, we can rewrite this as

3 ik rkg kS +a2) _ 1 S (1= (—1)Fretey i (K4 A R2)

7 kezn
ki+...+k,€2Z+1

and then express it in terms of Jacobi theta functions as

1
Op,.0(7) = 5 (Boo(7)" = bor(7)") -
Next we consider the coset for s = (3,...,1) and find
Op, (1) = Z emiT(k1+5) +(kat 3) 2+ A+ (knt+3)?)
kezZ™
ki+4...+kn€2Z

:% S 1+ (= 1yt ) mir((eat )+ (bt D) et (ke )7),
kezm

The sum over each k; can now be performed separately as above. The contribution of the second term
is zero since
—if11(7) = Z:(*l)kem*(’”%)2 =0
kEZ

as can be seen by taking k — —k — 1. From the first term we then find

1
@Dms(’r) == 5910(7’)”.




Finally, for ¢ = (—%, %,,%) we have

Op, (1) = Z emiT (k1= 3)* +(ka+5)*+. 4 (kn+3)%)

kez™
kit 4k, €27
1 .
= 5 Z (1 + (_1)k1+-.~+kn) BWZT((kl_%)2+(k2+%)2+...+(kn+%)2).

kezZm
Letting k1 — k1 + 1, this is equal to
% 37 (1= (—ayfethay emin(lhact 55 et )5 Gt 50
kezn

and the second term again gives a vanishing contribution as discussed above to yield

1
@Dn,c(T) = 5910(7’)”.

Remark. The equality of Op, (1) and ©p, .(7) is of course expected since there is an automorphism
of D,, that maps s to ¢, namely (k1, ko, ..., kn) — (—k1, ko, ... kn).

Since Eg = Dg U (Dg + s) we have
GES (T) = GDS (T) + ®D8,8(7->7

which according to part (a) yields

O (1) = 5 (Boo(r)® + Boa(1)° + 10(7)®)

Plugging the g-expansions of 0y (7), 8o1(7), and 610(7) in up to order ¢*° we get

1 8
Op (1) = 5 (1 27 +2¢° +2¢% +2¢° +2¢% +2¢"° + .. )
1 : 8
+3 (1—2q% 202 — 2% +24° — 2% +2q18+...)
1 1 o 25 19 81 121 8
+§ (2q8 +2q8 +2g% +2qg +2q% +2¢°8 +)
which can be summed to
Op, (T) = 14 240q + 2160¢> + 6720¢> + 17520¢* + 30240¢° + 60480¢° + 82560¢"
+140400¢° + 181680¢° + 272160¢'° + 319680¢'" + 49056042

+ 527520¢" + 743040¢* + 846720¢° + 11234404¢*°
+1179360¢"" + 1635120¢™® + 1646400¢"? + 2207520¢°° + O (¢**) .

In particular, Fg has 2207520 vectors of norm 40.
Since there is an automorphism of D4 that maps v to s, we have the identity

@D4,U(T) = ®D47S(T)'

In terms of Jacobi theta functions this gives the “Riemann theta relation”

Bo0(7)* = o1 (7)* + O10(7)™.




d) By part (b) we have Og, | g, (7) = Og, (7)? equal to

1 2
Op, 18, (T) = 1 (600(T)® + 001 (1)® + 010(7)®) "
Also as in part (b) we can compute the theta function for Dfﬁ = D16U(D16+5) as Op,,(7) +Op,e.s(7)

to get
1
Opz, (1) = 5 (fo0(7)" + 001 (7)° + 010(7)") .

Using the Riemann theta relation from part (c), we can simplify these expressions by eliminating

010(7)* = 0oo(7)* — Op1(7)*. This leads to

1
Ops 1Es(T) = 1

and

1
Opy (1) =35

(900(7)8 + 601 (7)% + (900(7)4 - 901(7)4)2>

’ = (900(7)8 — 0o (1) 001 (7)* + 901(7)8)2

(900(7)16 + 001 ()8 + (B0 (7)* — 901(7)4)4)

= 900(7’)16 — 2900(7‘)12001(7')4 + 3900(7’)8901 (7')8 — 2000(7’)4001 (7’)12 + 901 (7')16,

which are equal.

2. The functions 63,, 03,, 01, are holomorphic functions on the upper half-plane. For their modular transfor-

12

mations, we first recall from class that I'(2) is generated by —I, 7% = (33), U? = (19). So we simply
check next that 03, 05,, 01, transform like weight 2 modular forms under 72 and U? (—I5 acts trivially).
For this, we also recall from the previous problem set the behavior of 6o, 0p1, 610 under translation and

inversion:
oo (T + 1) = Oo1(7),
Oo1 (7 + 1) = bo(7),
910(7’ =+ 1) = €7Ti/4910(7),

Ooo(—1/7) = v/—iT Opo(7),
901(—1/7’) = \/—72'7010(7'),
910(—1/7’) = \/—7i7'901(T).

This then implies

O0(T + 1) = 05,(7), O0(—1/7) = =77 05 (7),
931(7 +1) = 930(7')7 931(_1/7) =77 G%O(T)v
O1o(T + 1) = —01y(7), 01o(—1/7) = =72 05, (1)
e Under T? we have
Oo0(T +2) = 000(7), 05,(T+2) =03, (r), and 60 (1 +2) = 03y(7),

which does conform to the pattern f(g:jg) = (cT +d)*f(7) for (2}) :=T".

e Under U? we have (for ab equal to 00, 01, or 10)

g (T N _ ([ 2+l 294 27 +1
ab\ or 11 T ba T
2r +1\2 1 2r +1\2
—— () (1) - () e

where we apply inversion, translation by two, and inversion again in succession to obtain these equal-

ities. Consequently, we have

-
931;(27_ n 1) = (27 4+ 1)%05,(7),

which conforms to the pattern f(g:ig) = (cT +d)*f(7) for (24) := U2



So in summary we have confirmed that

4 (aT+b\ 9 4 ab
aab(CT-i-d) =(ct+d)* 0, (r)| where (c d) e I'(2).

Our final task is to confirm that 03b|27 is bounded as 7 — ioo for all v € SLy(Z). Now recall from class
that I'(2) is a normal subgroup of SLy(Z) and SLy(Z)/I'(2) is of order 6 with representatives from each

coset given by
10 11 -1 0
I, = T = TS =
=) =) e (00)

0 -1 0-1 1-1
s=(1) sr=(0). ms=(1)):

So we simply need to check the boundedness condition for these six SLy(Z) elements.

e For v = I, the boundedness as 7 — ico follows from the g-expansions

050(7) = 1+ 8¢"/% + 24q + 32¢%/ + 24¢ + 48¢°/% + 96¢° + . ..,
05,(7) =1 — 8¢"/% + 24q — 32¢%/ + 24¢* — 48¢°/* + 96¢° + . ..,
9‘110(7') = 16(]1/2 + 64q3/2 + 96q5/2 + 128(]7/2 +208¢%% + ...,

which are all bounded as g tends to zero.
e For v =T, this follows from the fact that

eib‘QT = (_1)0. 93[)/ Wlth b/ =1— a — b

and that the right hand side is bounded as 7 — ico as we have already found out above with g¢-
expansions.
e For v =9, this follows from the fact that

04y], 5 = 6,

o Since the three functions 63, 03, 67, transform among themselves under S and T transformations, the
results above also confirm boundedness of 931)’2 v as T — too for the remaining three SLy(Z) elements
above (which are generated by S and T').
3. First we make sure that P ,, is well-defined by showing that for each of the summands in

. ar4b
627mm -

1 cr+d
Pi (7)== -_—
ko () 2 Z (cT + d)*

(c,d)ez*\{0}
ged(e,d)=1

there do exist integers a,b € Z as described in the problem and the summand is independent of the choice:
Given any (c,d) € Z? \ {0} with ged(c,d) = 1, there do exist a,b € Z with ad — bc = 1 and hence

(a Z) € SL(Z). Furthermore, for any other such integers a’, b’ € Z we have ' = a + nc and ¥ = b+ nd
c

for some n € Z so that

.o’ r4b . at+b . at+b
627rzm ol — e27rzm(n+m) _ eQﬂ'zm o td

since m € Z, which proves that the summand is independent of the choice of a,b. Furthermore, we have

at+b
ct+d

) +b
eQ‘mm 6727Tm1m(z7’:+d) < 1,

LAny v € SLa(Z) is of the form v = y2v' with v2 € T'(2) and +/ is one of the six SL2(Z) elements above. Since 0;117 22 = 031; as
we found above, it is enough to check the boundedness condition for +'.



where the final inequality follows from the assumption m > 0 and that Im (‘”"‘b> = ™~ 0. So we

ct+d ) T |er+d|?
have "
. aT
ezﬂ—lm cT+d 1
<
(et +d)F ler + d|*

and the arguments we have given for Eisenstein series immediately apply to show that for k£ > 2 the series
here is absolutely and uniformly convergent over the sets

Sap:={r€eH: |rn| < Aand 72 > B}

and hence locally uniformly convergent over H. Consequently, Py ., (7) is holomorphic on H (the summands
are holomorphic).

Next we check that this holomorphic function transforms like a weight & modular form by computing its
translation and inversion properties. For this we will be more careful about our summands and write a. g4
and b. 4 instead of a and b to emphasize their dependence on c and d:

1 27rim7ac’dr+zc’d
e cT+
P (1) = = E -
kom(7) 2 (cT + d)*
(c,d)eZ’\{0}
ged(e,d)=1
o For translation we have
1 2mim ac,d7+”'c,d;'bc,d
e ct+c+
Py 1) = -
b (7 + 1) 2 Z (et +c+d)k

(c,d)€Z*\{0}
ged(e,d)=1
The change of variables (¢,d) — (¢/,d') := (¢, ¢ + d) preserves the set of (¢,d) we are summing over

and furthermore
Qc,d Qc,d + bc,d
c c+d

) € SLy(2)

so that
(ac,d; Qc.d + bc,d) - (ac’,d’ s bc/,d’) + n(clv d/)

for some n € Z. Accordingly, we have

ae gT+ac q+b RGPV Tauk L VAR
2¢,d7T%,dTc,d omim -4~ cld’

e2ﬂ'im T Tord e Trrdl

(et +c+d)k - (dT+d)Fk

and hence

| Pen(T+1) = Pin(7). |

o For inversion we have
i bedT—Ac.d
M=

1 e
Pom(—=1/7)=7F= § ,
k, ( /T) T 2 < (dT—C)k
(c,d)€Z°\{0}
ged(e,d)=1

As above we can change variables (¢,d) — (¢/,d’) := (d, —c), which preserves the set of (c,d) we are

(bzd _“C*d) € SLy(2)

summing over and furthermore

so that
(bc,d7 _ac,d) = (ac/,d’a bc’,d’) + n(clv d/)



for some n € Z. Consequently, we have

b — .oa gT+b s g
(dr —c)F (dT+d)k

and hence

Pion (T + 1) = 7% Py (7).

Now we checked the modular transformations, we finally check that Py ,,,(7) tends to zero as 7 — oo to
ensure we have a cusp form. Let us assume 75 > 1. Since Py (7 + 1) = Pj (1), let us also assume
|| < % Separating the contributions of the ¢ = 0 terms and noting that the summands are invariant
under (¢,d) — —(c,d) we have

at+b

e27r'im ortd

Pk,m(T) _ 62mim~r + Z
ceZt, dez
ged(e,d)=1
The first term here tends to zero as T — ico since [e*™™7| = ¢=2™™72 and m > 0. Moreover, each of the
summands in the second sum tend to zero as 7 — 700 because of the denominator. Since the convergence
is uniform over Sy ;, the sum then also tends to zero.
. As discussed in class, I'(2) is the kernel of the onto homomorphism ¢ : SLa(Z) — SL3(Z/2Z) that reduces
entries modulo 2. In particular, the quotient group SLo(Z)/I'(2) is isomorphic to

sz -0 02).C)-C)

11 10 01 11 01
where the elements (0 1) , (1 1) , (1 O) have order two and <1 0) , <1 1) have order three.

By the correspondence theorem, the subgroups of SLo(Z) that contain I'(2) correspond to the subgroups
of SL2(Z)/T'(2). In particular, these subgroups are given by the inverse images of subgroups of SLy(Z/2Z)
under the homomorphism described above. Aside from the trivial subgroup G; and the full subgroup
Ge := SLa(Z/27Z), the other subgroups (which have order 2 or 3) are the cyclic subgroups:

o Three order 2 subgroups generated by each one of the three order two elements:

a {0 00) - {00} @ {(9)C)
IV NS

So there are six subgroups of SLy(Z) that contain I'(2):

o Gy = {(Z Z) € SLy(Z) : (Z Z) = v (mod 2) for some v € Gj} for j € {1,2,...,6}.

In more detail, we can describe these subgroups as follows:
o SLo(Z) itself corresponding to SLa(Z/27Z).
o T'(2) corresponding to the trivial subgroup of SLy(Z/27Z).
o Since ¢(S) = (9}), the subgroup »~!(Gz) is I'(2) U ST(2) and this is the subgroup I'y := (S,T?)
discussed in class.



« For G3, the subgroup ¢~ 1(G3) is

Ty (2) = {(Z Z) € SLy(2) - (Z Z) = ((1) D (mod2)}

Note that the conditions ¢ = 1 (mod2) and d = 1 (mod2) do in fact follow as a consequence of
¢ =0 (mod2). So this subgroup is also equal to

To(2) := {(‘CL Z) €SLy(Z): ¢c=0 (m0d2)}.

One can define T'g(N) and T’y (IV) for other values of N as well, but when N > 2, they are not equal.
o Similarly, ¢~1(Gy) is the subgroup

r0(2) := {(CC‘ Z) €SLy(Z): b=0 (modZ)}.

« Finally, the subgroup ¢~1(G5) is the index two subgroup of SLy(Z) given by

Uea) s (0 = (02)or (o) or (1) or oo}



