Lattices and Quadratic Forms (Summer 2024) - Solutions to Problem Set 8

1. Let C < F3 be of length n and dimension k£ and consider the associated code lattice A} < TI'c < (Aii)”
Our first goal is to show that I'c. is a sublattice of Fﬁc. So let « be an arbitrary element of I'c1 and y be
an arbitrary element of I'c. Then we have (identifying A} with v/2Z")

b
m:\/i(z—i—Q) and y=\[2(z’—|—g),
where 2,z € Z™ and b,c € {0,1}" reducing modulo 2 to a codeword in C+ and C, respectively. Then we
have 1
x-y:2z-z’—|—z~c+z’-b—|—§b-c.

The first three terms are trivially integers. For the last term, we note that b- ¢ = 0 (mod 2) because the
corresponding codewords are orthogonal in F5. So we have x -y € Z and because the vectors here are
arbitrary I'c1 < ng.

To prove the equality, we will show that the discriminants of I'c1 and Fﬁc are equal (recall that if L/ < L
then det(L') = |L/L'|?det(L)). Since A} is a sublattice of I'c, we have det(A}) = |T'c/A7|? det(T'¢).
Noting that det(A}) = 2" and [['¢/A}| = |C] = 2F, we find

det(T'¢) = 2" 2k,
Since the dual code C* has dimension n — k, the same computation shows that
det(Dpr) = 27— 2(n—k) = 92k—n,

We also have 1
det(l%) = ———— = 2%,
etl'e) = Fome)
So we indeed have det(T'¢1) = det(I’ﬁC) and hence the two lattices are equal to each other: I'c1 = Fﬁc.
2. Let C be a binary [n, k, d] code with

n=2"-1, k=2"-1—r, and d=3

and let P € Fén_k)m be a parity check matrix for C. Recall that codewords of C' correspond to linear
dependencies between the columns of P. Since d = 3, we have a minimum of three columns from P to
form a linear dependency. In particular, the columns of P should all be nonzero (otherwise we would have
d = 1) and furthermore any two of these nonzero columns v;,v; € Fg_k with ¢ # j should not be linearly
dependent (otherwise we would have d = 2) and hence we have v; # v;. Now note that Fy % = F5 has
2" — 1 pairwise different nonzero vectors. Since n = 2" — 1, the columns of P exactly consist of these 2" — 1
nonzero vectors in F5. This is nothing but the parity check matrix for the Hamming code H(F3,r). Note
that the ordering of the columns of P was left ambiguous in our definition of H(Fs,r) as well, since any
such ordering choice produces equivalent codes (permuting the underlying bits).
3. Let C < Ty be a linear code of dimension k with generator matrix G' = [I;|Q] where Q € ]F]; x(n—k)

o Let us first assume that C is a self-dual code (C = C*). Then the dimension k of C' and n — k of
C* are equal to each other and hence Q is a square matrix. Moreover, the columns of GT (forming a
basis for C') are orthogonal to each other by this assumption and hence GGT = 0 € ]F’qc xk  Inserting
G = [I1;|Q] into this equation yields I}, + QQT = 0 as we wanted to show.

o Conversely, let us first assume that the matrix Q € F];X(nfk) defining the generator matrix G in the
standard form as above satisfy QQT = —I;. This is then equivalent to GGT = 0 € FF**, ie. the



columns vy, ...,v, of GT, which form a basis for C, satisfy v; - v; = 0 for all 4,j. Consequently, if
a=ayv; + ...+ agvg and B = byvy + ...+ bgvg are any two arbitrary codewords in C, then we have

a~B:Zaiiji~vj:O

%

So the condition QQT = —Ij, implies that C is self-orthogonal (C' < C+).

If we further have that @ is a square matrix, then k = n—k and hence C and C+ have equal dimensions.
The inclusion relation C' < C* then requires that these vector spaces should in fact be equal C' = C+,
i.e. C is self-dual.

4. Let C < F% be a binary linear code that is self-orthogonal (i.e. C < C1). In particular, self-orthogonality
requires that any codeword ¢ € C' satisfies ¢-¢ = 0 (where for z,y € F, -y is the non-degenerate symmetric
bilinear form x1y; + ... + Znyn € Fa). For binary codes, the weight w(c) is equal to ¢ - ¢ modulo 2, and
hence for self-orthogonal binary linear codes we have 2 | w(c) for any ¢ € C.

Now let us further assume that C has a generator matrix G' where the columns vy, ..., v € F§ of GT (which
form a basis for C') all have weights divisible by 4. Then any given codeword ¢ € C can be uniquely written
as

c=aov1 + ...+ apvr  where ay,...,ar € Fo.
Now let us determine vectors ¢,v1,...,0 in {0,1}" C Z™ and a1,...,a; € {0,1} C Z that are equal to
C,V1,...,V; and agq,...,a; modulo 2. Then we have

C=a101 + ...+ a0 (mod 2).
Since a number modulo 2 determines its square modulo 4, we have
& = (a101 + ...+ axvy)?®  (mod 4)

with squares denoting the usual Euclidean norm in Z". Since w(c) = ¢ (mod 4), we will focus on the right
hand side
(@101 + ...+ Qkk)® = 3107 + ... + Ap0; +2 ) ds0; - T
i<j
Now note that 17]2 =0 (mod 4) for all j because we are assuming v;,’s have weights divisible by 4. Moreover,
we have 2 | v; - v; for all 4,5 because C' is self-orthogonal and hence we have v; - v; = 0 in Fy. Therefore,
every term on the right hand side of our expression above for (1) + ... + &z )? is divisible by four and
therefore
(&ﬁl +...+ &k”ljk)Q =0 (HlOd 4)

So 4 | w(c) for any codeword ¢ € C and C is doubly-even.



