
Lattices and Quadratic Forms (Summer 2024) - Solutions to Problem Set 8

1. Let C ≤ Fn
2 be of length n and dimension k and consider the associated code lattice An

1 ≤ ΓC ≤ (A♯
1)

n.
Our first goal is to show that ΓC⊥ is a sublattice of Γ♯

C . So let x be an arbitrary element of ΓC⊥ and y be
an arbitrary element of ΓC . Then we have (identifying An

1 with
√
2Zn)

x =
√
2

(
z +

b

2

)
and y =

√
2
(
z′ +

c

2

)
,

where z, z′ ∈ Zn and b, c ∈ {0, 1}n reducing modulo 2 to a codeword in C⊥ and C, respectively. Then we
have

x · y = 2z · z′ + z · c+ z′ · b+ 1

2
b · c.

The first three terms are trivially integers. For the last term, we note that b · c ≡ 0 (mod 2) because the
corresponding codewords are orthogonal in Fn

2 . So we have x · y ∈ Z and because the vectors here are
arbitrary ΓC⊥ ≤ Γ♯

C .
To prove the equality, we will show that the discriminants of ΓC⊥ and Γ♯

C are equal (recall that if L′ ≤ L
then det(L′) = |L/L′|2 det(L)). Since An

1 is a sublattice of ΓC , we have det(An
1 ) = |ΓC/An

1 |2 det(ΓC).
Noting that det(An

1 ) = 2n and |ΓC/An
1 | = |C| = 2k, we find

det(ΓC) = 2n−2k.

Since the dual code C⊥ has dimension n− k, the same computation shows that

det(ΓC⊥) = 2n−2(n−k) = 22k−n.

We also have
det(Γ♯

C) =
1

det(ΓC)
= 22k−n.

So we indeed have det(ΓC⊥) = det(Γ♯
C) and hence the two lattices are equal to each other: ΓC⊥ = Γ♯

C .
2. Let C be a binary [n, k, d] code with

n = 2r − 1, k = 2r − 1− r, and d = 3

and let P ∈ F(n−k)×n
2 be a parity check matrix for C. Recall that codewords of C correspond to linear

dependencies between the columns of P . Since d = 3, we have a minimum of three columns from P to
form a linear dependency. In particular, the columns of P should all be nonzero (otherwise we would have
d = 1) and furthermore any two of these nonzero columns vi, vj ∈ Fn−k

2 with i ̸= j should not be linearly
dependent (otherwise we would have d = 2) and hence we have vi ̸= vj . Now note that Fn−k

2 = Fr
2 has

2r − 1 pairwise different nonzero vectors. Since n = 2r − 1, the columns of P exactly consist of these 2r − 1
nonzero vectors in Fr

2. This is nothing but the parity check matrix for the Hamming code H(F2, r). Note
that the ordering of the columns of P was left ambiguous in our definition of H(F2, r) as well, since any
such ordering choice produces equivalent codes (permuting the underlying bits).

3. Let C ≤ Fn
q be a linear code of dimension k with generator matrix G = [Ik|Q] where Q ∈ Fk×(n−k)

q .
• Let us first assume that C is a self-dual code (C = C⊥). Then the dimension k of C and n − k of

C⊥ are equal to each other and hence Q is a square matrix. Moreover, the columns of GT (forming a
basis for C) are orthogonal to each other by this assumption and hence GGT = 0 ∈ Fk×k

q . Inserting
G = [Ik|Q] into this equation yields Ik +QQT = 0 as we wanted to show.

• Conversely, let us first assume that the matrix Q ∈ Fk×(n−k)
q defining the generator matrix G in the

standard form as above satisfy QQT = −Ik. This is then equivalent to GGT = 0 ∈ Fk×k
q , i.e. the
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columns v1, . . . , vk of GT , which form a basis for C, satisfy vi · vj = 0 for all i, j. Consequently, if
α = a1v1 + . . .+ akvk and β = b1v1 + . . .+ bkvk are any two arbitrary codewords in C, then we have

α · β =
∑

i,j

aibjvi · vj = 0

So the condition QQT = −Ik implies that C is self-orthogonal (C ≤ C⊥).
If we further have that Q is a square matrix, then k = n−k and hence C and C⊥ have equal dimensions.
The inclusion relation C ≤ C⊥ then requires that these vector spaces should in fact be equal C = C⊥,
i.e. C is self-dual.

4. Let C ≤ Fn
2 be a binary linear code that is self-orthogonal (i.e. C ≤ C⊥). In particular, self-orthogonality

requires that any codeword c ∈ C satisfies c·c = 0 (where for x, y ∈ Fn
2 , x·y is the non-degenerate symmetric

bilinear form x1y1 + . . . + xnyn ∈ F2). For binary codes, the weight w(c) is equal to c · c modulo 2, and
hence for self-orthogonal binary linear codes we have 2 | w(c) for any c ∈ C.
Now let us further assume that C has a generator matrix G where the columns v1, . . . , vk ∈ Fn

2 of GT (which
form a basis for C) all have weights divisible by 4. Then any given codeword c ∈ C can be uniquely written
as

c = α1v1 + . . .+ αkvk where α1, . . . ,αk ∈ F2.

Now let us determine vectors c̃, ṽ1, . . . , ṽk in {0, 1}n ⊂ Zn and α̃1, . . . , α̃k ∈ {0, 1} ⊂ Z that are equal to
c, v1, . . . , vk and α1, . . . ,αk modulo 2. Then we have

c̃ ≡ α̃1ṽ1 + . . .+ α̃kṽk (mod 2).

Since a number modulo 2 determines its square modulo 4, we have

c̃2 ≡ (α̃1ṽ1 + . . .+ α̃kṽk)
2 (mod 4)

with squares denoting the usual Euclidean norm in Zn. Since w(c) ≡ c̃2 (mod 4), we will focus on the right
hand side

(α̃1ṽ1 + . . .+ α̃kṽk)
2 = α̃2

1ṽ
2
1 + . . .+ α̃2

kṽ
2
k + 2

∑

i<j

α̃iα̃j ṽi · ṽj .

Now note that ṽ2j ≡ 0 (mod 4) for all j because we are assuming vj ’s have weights divisible by 4. Moreover,
we have 2 | ṽi · ṽj for all i, j because C is self-orthogonal and hence we have vi · vj = 0 in F2. Therefore,
every term on the right hand side of our expression above for (α̃1ṽ1 + . . .+ α̃kṽk)2 is divisible by four and
therefore

(α̃1ṽ1 + . . .+ α̃kṽk)
2 ≡ 0 (mod 4).

So 4 | w(c) for any codeword c ∈ C and C is doubly-even.
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