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Abstract. Andrews–Dyson–Hickerson, Cohen build a striking relation between q-hypergeometric
series, real quadratic fields, and Maass forms. Thanks to the works of Lewis–Zagier and Zwegers
we have a complete understanding on the part of these relations pertaining to Maass forms and
false-indefinite theta functions. In particular, we can systematically distinguish and study the
class of false-indefinite theta functions related to Maass forms. A crucial component here is the
framework of mock Maass theta functions built by Zwegers in analogy with his earlier work on
indefinite theta functions and their application to Ramanujan’s mock theta functions. Given this
understanding, a natural question is to what extent one can utilize modular properties to investigate
the asymptotic behavior of the associated Fourier coefficients, especially in view of their relevance
to combinatorial objects. In this paper, we develop the relevant methods to study such a question
and show that quite detailed results can be obtained on the asymptotic development, which also
enable Hardy–Ramanujan–Rademacher type exact formulas under the right conditions. We develop
these techniques by concentrating on a concrete example involving partitions with parts separated
by parity and derive an asymptotic expansion that includes all the exponentially growing terms.

1. Introduction and Statement of Results

In the last few decades, there has been an extensive body of research on objects which are close
to modular forms. A major strain here has been Ramanujan’s mock theta functions, which include
q-series such as, with q-Pochhammer symbol (a; q)n :=

∏n−1
j=0 (1− aqj) for a ∈ C, n ∈ N0 ∪ {∞},

f(q) :=
∑
n≥0

qn
2

(−q; q)2n
.

Although f(q) and Ramanujan’s other mock theta functions are not directly modular, they do have
certain non-holomorphic “completions” that make them modular. This was first discovered through
Zwegers’ work on indefinite theta functions [38] and was unified conveniently into the framework
of harmonic Maass forms as formulated by Bruinier–Funke [16]. Since then, the theory of mock
modular forms has been developed quite broadly and had many applications (see [7] for a review).

The mock theta functions are not the only examples of “modular adjacent” objects discovered
by Ramanujan. A prominent example is the σ-function appearing in his lost notebook [34]

σ(q) :=
∑
n≥0

q
n(n+1)

2

(−q; q)n
. (1.1)

Most strikingly, it was discovered by Andrews–Dyson–Hickerson [5] and Cohen [17] that σ forms
one of the legs in a three-way relationship involving q-hypergeometric series, real-quadratic fields,
and Maass forms. This has since been generalized to many other cases; see [10, 11, 13, 18, 26, 27, 28]
and references therein for further examples. The connection to real-quadratic fields is formed by
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recasting σ(q) as a false-indefinite theta function [5, Theorem 1]

σ(q) =
∑
n≥0
|j|≤n

(−1)n+jq
n(3n+1)

2
−j2
(
1− q2n+1

)
. (1.2)

A false-indefinite theta function is a theta function on a Lorentzian lattice that differs from the
well-known indefinite theta functions of Zwegers [38] by the insertion of extra sign factors, similar
to the relation between false theta functions and classical theta functions.

The connection to Maass forms, on the other hand, was developed by Cohen [17]. He showed
that the Fourier coefficients of σ along with those of a “complementary function”

σ∗(q) := 2
∑
n≥0

(−1)nqn
2

(q; q2)n

form the Fourier coefficients of a Maass form. As in the case of the mock theta functions, it is
then natural to search for a modular framework. A major development in this direction came from
the mock Maass theta functions of Zwegers [39] and the Eichler-type integrals of Lewis–Zagier [24]
that connects false-indefinite theta functions to such mock Maass theta functions.1 These are not
modular in general, but become Maass forms for a class of false-indefinite theta functions, to which
σ and σ∗ belong.

With this understanding, it is natural to ask what insights we can gain out of this relationship,
given the wide-ranging uses of modularity. For instance, one of the major applications of modularity
is to the investigation of the asymptotics of the associated Fourier coefficients. A fundamental
example is the work of Hardy–Ramanujan [21, 22] that established the modern Circle Method.
Their work examines partitions, which are non-increasing sequences λ = (λ1, λ2, . . . , λℓ) of positive
integers with size |λ| := λ1 + · · · + λℓ. An immediate question is to determine and estimating the
partition function p(n) that counts the number of partitions of size n. Hardy and Ramanujan’s
main result is an asymptotic expansion for p(n), whose first term gives the famous asymptotic

p(n) ∼ 1

4
√
3n
e
π
√

2n
3 as n→ ∞.

In fact, their work shows much more: by truncating their full asymptotic expansion after �
√
n

terms, the formula of Hardy–Ramanujan can be rounded to the nearest integer in order to obtain
the value of p(n). Later, Rademacher [31, 32] refined this work to obtain an exact formula for p(n)
that is indeed convergent and not merely asymptotic. Rademacher’s formula takes the shape

p(n) =
2π

(24n− 1)
3
4

∑
k≥1

Ak(n)

k
I 3

2

( π
6k

√
24n− 1

)
, (1.3)

where Ak(n) is an appropriate Kloosterman sum and Ir denotes the I-Bessel function of order r.
Rademacher’s work and the follow-up work of Rademacher and Zuckermann [33, 37] demonstrates
that the key point behind the proof is that the generating function for p(n) is (essentially) a
modular form of non-positive weight. As a consequence, there are Hardy–Ramanujan–Rademacher
type exact formulas for a wide class of partitions. For example, if ro(n) denotes the number of
partitions of n into distinct odd parts, the corresponding generating function∑

n≥0

ro(n)q
n =

∏
n≥0

(
1 + q2n+1

)
1In modern language, σ and σ∗ along with their limits to rationals combine into a holomorphic quantum modular

form. This was in fact one of the first examples given by Zagier [36] in developing the concept of quantum modularity.
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is (basically) a weight zero modular form. This fact leads to an exact formula for ro(n) of the form

ro(n) =
π√

24n− 1

∑
k≥1

Kk(n)

k
I1

( π

12k

√
24n− 1

)
(1.4)

(see Theorem 5 of [20]) with Kk(n) an appropriate Kloosterman sum. There are now many gener-
alizations of such methods, whereby exact formulas are obtained also for generating functions that
combine modular forms with modular-adjacent objects. Exact formulas are known, for example, in
contexts involving weakly holomorphic modular forms multiplying mock modular forms [12], mock
modular forms of depth two [14], and false modular forms [15]. In particular, [15] gives an exact
formula in a similar combinatorial context for the number of unimodal sequences. The goal in this
paper is to extend these techniques to a new context involving false-indefinite theta functions.

More specifically, we develop the machinery to find high-precision asymptotic formulas by build-
ing around the example of partitions with parts separated by parity, which were studied by Andrews
[3, 4]. A partition λ has parts separated by parity if all of its even parts are larger than all of its odd
parts, or if the reverse is true. One may then consider functions counting such partitions, which
could be refined with a number of further conditions. For example, in the notation of Andrews,
peuod(n) counts the number of partitions of n whose even parts are larger than odd parts, and where
odd parts must be distinct and likewise even parts are unrestricted. Many similar functions can be
constructed in this way; the generating functions for these partitions were considered in [3, 4, 8].
We note that of the eight functions that can be constructed from this notation, seven of them
have direct connections to modular forms, as well as to false and mock modular objects, where the
technology for deriving exact formulas is already developed. We focus in this paper on the last
case, namely peuod(n), which is related to false-indefinite theta functions and Maass forms.

In particular, this relation manifests itself by writing the generating function for peuod(n),

F eu
od (q) :=

∑
n≥0

peuod(n)q
n = 1 + q + q2 + 2q3 + 3q4 + 3q5 + 4q6 + 5q7 + 8q8 + 8q9 + · · · ,

in the form (see [4, 8] as well as comments in [6])

F eu
od (q) =

1

(q2; q2)∞

(
1− σ(−q)

2
+

(−q;−q)∞
2

)
, (1.5)

where σ is the function defined in (1.1). In our considerations, we focus on the part of the generating
function F eu

od that involves false-indefinite theta functions. More specifically, we decompose
2peuod(2n) =: 2p(n) + ro(2n) + α0(n) and 2peuod(2n+ 1) =: ro(2n+ 1) + α1(n) (1.6)

so that the generating functions of α0 and α1 are of the form (for τ ∈ H and q := e2πiτ )
u0(τ)

η(τ)
=
∑
n≥0

α0(n)q
n− 1

48 ,
u1(τ)

η(τ)
=
∑
n≥0

α1(n)q
n+ 23

48 , (1.7)

where η(τ) := q
1
24
∏

n≥1(1− qn) is the Dedekind-eta function and

u0(τ) := −q
1
48

2

(
σ
(
q

1
2

)
+ σ

(
−q

1
2

))
, u1(τ) :=

q
1
48

2

(
σ
(
q

1
2

)
− σ

(
−q

1
2

))
. (1.8)

Thanks to the exact formulas (1.3) and (1.4) for p(n) and ro(n), respectively, to study the asymp-
totic behavior of peuod(n), it is then enough to restrict our attention to αj(n) and investigate

u0(τ)

η(τ)
= q−

1
48
(
−1 + q2 + q3 + 4q4 + 4q5 + 9q6 + 11q7 + 19q8 + 23q9 + 37q10 + 44q11 + . . .

)
,

u1(τ)

η(τ)
= q

23
48
(
1 + 3q + 5q2 + 9q3 + 14q4 + 22q5 + 31q6 + 48q7 + 65q8 + 92q9 + 126q10 + . . .

)
.
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We relate uj to a vector-valued Maass form and use this connection to prove the following precise
asymptotics that includes all of the exponentially growing contributions to αj(n).
Theorem 1.1. For n ∈ N, j ∈ {0, 1}, and with ∆0 := − 1

48 and ∆1 :=
23
48 , we have

αj(n) =
2

(n+∆j)
1
4

2∑
ℓ=0

b√nc∑
k=1

1

k

∑
0≤h<k

gcd(h,k)=1

ψh,k(j, ℓ)e
− 2πi

k

(
h′
24

+(n+∆j)h
)

× PV

∫ 1
24

0
Φ
ℓ,h

′
k

(t)

(
1

24
− t

) 1
4

I 1
2

(
4π

k

√
(n+∆j)

(
1

24
− t

))
dt+O

(
n

3
4

)
,

where the multiplier ψh,k(j, ℓ) is defined in (6.3), Φ
ℓ,h

′
k

is given in (6.6) with 0 ≤ h′ < k chosen to
satisfy hh′ ≡ −1 (mod k), and PV

∫
denotes the Cauchy principal value integral.

Remarks.
(1) There is a third component u2 which is needed to build the full SL2 (Z)-orbit of the associated

Maass form. However, the false-indefinite theta function u2 does not appear to bear any direct
connection to peuod. It would be interesting to discover a combinatorial interpretation for the
analogous object involving u2. A version of this formula also holds for this object; indeed, all
three uj are treated symmetrically in the proof of Theorem 1.1 (with ∆2 :=

11
12).

(2) The error term could in principle be made smaller. However, since uj (almost) transforms with
weight 1 and η has weight 1

2 , the overall weight is 1
2 and exact formulas from the Circle Method

are not expected. We note that for smaller weights, our methods indeed give exact formulas.
(3) Although our results are stated for the specific false-indefinite theta function and the related

Maass form under study, the same calculations apply to any similar setup.
We can also extract explicit expressions for the leading exponential term in Theorem 1.1.
Corollary 1.2. For n ∈ N we have

α0(n) =
e4π

√
n+∆0

24

(n+∆0)
3
2

(
π

6
√
2
+

71π2 − 432

576
√
3

(n+∆0)
− 1

2 +O
(
n−1

))
,

α1(n) =
e4π

√
n+∆1

24

n+∆1

(
1

2
√
3
+

23π2 − 144

288
√
2π

(n+∆1)
− 1

2 +
9745π2 − 19872

55296
√
3

(n+∆1)
−1 +O

(
n−

3
2

))
,

α2(n) =
e4π

√
n+∆2

24

n+∆2

(
1

2
√
3
+

25π2 − 72

144
√
2π

(n+∆2)
− 1

2 +
2929π2 − 10800

13824
√
3

(n+∆2)
−1 +O

(
n−

3
2

))
.

The paper is organized as follows. In Section 2, we review facts on Maass forms, mock Maass
theta functions, and false-indefinite theta functions. In Section 3, we study the false-indefinite theta
functions u0 and u1 along with their natural companion u2 and give the modular transformations of
the associated Maass form. In Section 4, we describe the obstruction to modularity as a Mordell-
type integral, which allows one to discern the principal parts near each rational. We use this
representation in Section 5 to bound the nonprincipal parts in preparation for Section 6, where we
apply the Circle Method and prove Theorem 1.1. In Section 7, we employ Theorem 1.1 to show
Corollary 1.2 for the leading exponential term with its general form given in Proposition 7.2. In
Section 8, we conclude with final remarks and point out potential future directions. In Appendix
A, we give some elementary estimates on the Fourier coefficients of false-indefinite theta functions.
Finally, in Appendix B, we study the local behavior of the integral kernel appearing in Theorem
1.1, which in turn determines the leading exponential term given in Corollary 1.2.
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2. Preliminaries

We start our discussion with background on Maass forms, mock Maass theta functions, and their
relations to false-indefinite theta functions; see [13], where further details can be found.

2.1. Maass forms. We start by defining Maass forms, whose properties can be found e.g. in [29].

Definition 2.1. A collection U0, . . . , UN−1 of smooth functions Uj : H → C are said to form a
vector-valued Maass form for SL2 (Z) if they satisfy the following properties (with2 τ = τ1+iτ2 ∈ H):
(1) For M =

(
a b
c d

)
∈ SL2(Z) and ΨM a suitable multiplier system we have

Uj

(
aτ + b

cτ + d

)
=

N−1∑
ℓ=0

ΨM (j, ℓ)Uℓ(τ).

(2) There exists a constant λ := 1
4 − ν2 ∈ C such that ∆(Uj) = λUj for each j, where

∆ := −τ22
(
∂2

∂τ21
+

∂2

∂τ22

)
is the hyperbolic Laplace operator.

(3) The functions Uj grow at most polynomially towards the cusps.

From these assumptions it immediately follows that Uj have Fourier expansions

Uj(τ) =
∑

n∈Z+βj

aj(τ2;n) e
2πinτ1 ,

where aj(τ2;n) has the form

aj(τ2;n) =


dj(n)

√
τ2Kν(2π|n|τ2) if n 6= 0,

bj log(τ2)
√
τ2 + cj

√
τ2 if n = 0 and ν = 0,

bjτ
1
2
−ν

2 + cjτ
ν+ 1

2
2 if n = 0 and ν 6= 0,

and the coefficients dj(n) are polynomially bounded in n. Here Kν denotes the K-Bessel function of
order ν. In this paper, we are only interested in Maass forms on SL2 (Z) with Laplacian eigenvalue
1
4 and bj = 0, so we have Fourier expansions

Uj(τ) = cj
√
τ2 +

√
τ2

∑
n∈Z+βj

n ̸=0

dj(n)K0(2π|n|τ2) e2πinτ1 . (2.1)

Following Lewis and Zagier [24], we define the differential one-form

[Uj(z), Rτ (z)] :=

(
∂

∂z
Uj(z)

)
Rτ (z)dz + Uj(z)

(
∂

∂z
Rτ (z)

)
dz, (2.2)

2More generally for any w ∈ C, we write w1 for its real part and w2 for its imaginary part.
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where3

Rτ (z) :=

√
z2√

(z − τ)(z − τ)
.

This one-form is closed since Uj and Rτ have Laplacian eigenvalue 1
4 . One can then use this one-

form to relate Uj to a family of q-series using an Eichler-type integral. More specifically, one can
define the holomorphic functions uj : H → C through (following [24] as well as [25, Proposition 3.5]
for more details and including the constant term)

uj(τ) := − 2

π

∫ i∞

τ
[Uj(z), Rτ (z)] = −cj

π
+

∑
n∈Z+βj
n>0

dj(n)q
n.

Crucially Rτ (z) is also modular covariant. It has weight (1, 0) in (τ, z) including a sign factor
appearing in its transformation to keep track of the branch of Rτ (z) that is exchanged by modular
transformations. Together with the modularity of the Maass form Uj , this leads to the holomorphic
quantum modularity of uj . More specifically, for M =

(
a b
c d

)
∈ SL2(Z) and τ ∈ H with τ1 6= −d

c we
have (see e.g. Remark 2.4 and Proposition 2.5 of [13] for more details)

uj

(
aτ + b

cτ + d

)
= sgn(cτ1 + d)(cτ + d)

N−1∑
ℓ=0

ΨM (j, ℓ)
(
uℓ(τ) + Uℓ,− d

c
(τ)
)
,

where for j ∈ {0, 1, . . . , N − 1} and ϱ ∈ Q the obstruction to modularity is defined as

Uj,ϱ(τ) :=
2

π

∫ i∞

ϱ
[Uj(z), Rτ (z)] (2.3)

with a vertical integration path avoiding the branch cut from τ to τ .

Remark 2.2. We can analytically continue Uj,ϱ defined by (2.3) for τ1 > ϱ to a holomorphic
function U#

j,ϱ on the cut plane C \ (−∞, ϱ] by deforming the path of integration and continuing to
the second branch of square-root. This yields to the following transformation for c > 0

uj

(
aτ + b

cτ + d

)
= (cτ + d)

N−1∑
ℓ=0

ΨM (j, ℓ)

(
uℓ(τ) + U#

ℓ,− d
c

(τ)

)
.

2.2. Mock Maass and false-indefinite theta functions. We next discuss mock Maass theta
functions as defined by Zwegers [39]. These are certain theta functions constructed out of indefi-
nite binary quadratic forms that are non-modular eigenfunctions of the hyperbolic Laplacian with
a controllable modular completion that breaks the Laplacian eigenfunction property. This set-up
is quite analogous to Zwegers’ indefinite theta functions and their non-holomorphic modular com-
pletions that lead to the theory of mock modular forms developed around mock theta functions
and harmonic Maass forms [7, 16, 38]. Mock Maass theta functions provide a natural framework to
understand and generalize work of Cohen [17] on Ramanujan’s σ-function. This is done by recog-
nizing the mock Maass theta function associated with the σ-function as one of the more symmetric
cases where the difference between the mock Maass theta function and the modular completion
vanishes. Consequently, the resulting mock Maass theta function is a Maass form that is both
modular and a Laplacian eigenfunction. To be more concrete, we consider an even, signature (1, 1)
binary quadratic form4 Q : Z2 → Z with Q(n) = 1

2n
TAn, where A is an integral symmetric matrix

with even diagonal entries. We also introduce the corresponding bilinear form B(n,m) := nTAm

3Note that throughout we define square-roots using the principal branch of the logarithm.
4Throughout we write vectors in bold letters.
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and extend Q,B to R2. The set of c ∈ R2 with Q(c) = −1 breaks into two connected components,
which is also so for the set of c ∈ R2 with Q(c) = 1. So if we pick two vectors c0, c

⊥
0 ∈ R2 with

Q(c0) = −1, Q(c⊥0 ) = 1, and B(c0, c
⊥
0 ) = 0, the connected components CQ and C⊥

Q to which c0
and c⊥0 belong to, respectively, are characterized as

CQ =
{
c ∈ R2 : Q(c) = −1 and B(c, c0) < 0

}
, C⊥

Q =
{
c ∈ R2 : Q(c) = 1 and B

(
c, c⊥0

)
> 0
}
.

Finally, to parametrize the sets CQ and C⊥
Q we select a base change matrix P ∈ GL2(R) such that5

A = P T

(
2 0

0 −2

)
P, P−1

(
0

1

)
∈ CQ, P−1

(
1

0

)
∈ C⊥

Q (2.4)

and then parametrize CQ and C⊥
Q with t ∈ R by defining

c(t) := P−1

(
sinh(t)

cosh(t)

)
∈ CQ and c⊥(t) := P−1

(
cosh(t)

sinh(t)

)
∈ C⊥

Q . (2.5)

Using this setup, we recall Zwegers’ definition of a mock Maass theta function (also see the com-
ments in [13] on the constant term).

Definition 2.3. For j ∈ {1, 2} let cj = c(tj) ∈ CQ and let c⊥j := c⊥(tj). For any µ ∈ A−1Z2/Z2

we define the mock Maass theta function Θµ by

Θµ(τ) := sgn(t2 − t1)

√
τ2
2

∑
n∈Z2+µ

n ̸=0

(
1− sgn(B(n, c1))sgn(B(n, c2))

)
K0(2πQ(n)τ2)e

2πiQ(n)τ1

+ sgn(t2 − t1)

√
τ2
2

∑
n∈Z2+µ

n ̸=0

(
1− sgn

(
B
(
n, c⊥1

))
sgn
(
B
(
n, c⊥2

)))
K0 (−2πQ(n)τ2) e

2πiQ(n)τ1

+ (t2 − t1)
√
τ2δµ∈Z2 .

The differential equations satisfied by K0 imply immediately that Θµ is an eigenfunction of ∆
with eigenvalue 1

4 . Then, as described in Subsection 2.1, we can use the closed one-form defined in
(2.2) to relate the mock Maass theta function Θµ to the false-indefinite theta function

ϑµ(τ) :=
t1 − t2
π

δµ∈Z2 +
sgn(t2 − t1)

2

∑
n∈Z2+µ

n ̸=0

(1− sgn (B(n, c1)) sgn (B(n, c2))) q
Q(n)

through the Eichler-type integral

ϑµ(τ) = − 2

π

∫ i∞

τ
[Θµ(z), Rτ (z)] . (2.6)

In general, mock Maass theta functions are not modular objects. Remarkably, in [39] Zwegers
showed that there is a modular completion for the mock Maass theta function Θµ given by

Θ̂µ(τ) :=
√
τ2

∑
n∈Z2+µ

qQ(n)

∫ t2

t1

e−πB(n,c(t))2τ2dt.

5For convenience we use the reference quadratic form x2
1 − x2

2 as in [13]. See the comments there on how this
relates to [39] and why the final condition involving C⊥

Q should be added to the first two conditions imposed by [39].
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According to Theorem 2.6 and Lemma 4.1 of [39], this completion modifies Θµ as

Θ̂µ = Θµ + φ
[c1]
µ − φ

[c2]
µ , (2.7)

where the shadow contributions φ[cj ]
µ are given by

φ
[cj ]
µ (τ) :=

√
τ2

∑
n∈Z2+µ

αtj (n
√
τ2) q

Q(n), (2.8)

and

αtj (x) :=


∫∞
tj
e−πB(x,c(t))2dt if B(x, cj)B

(
x, c⊥j

)
> 0,

−
∫ tj
−∞ e−πB(x,c(t))2dt if B(x, cj)B

(
x, c⊥j

)
< 0,

0 if B(x, cj)B
(
x, c⊥j

)
= 0.

Here we assume that Q(n) = 0 has no solutions on Z2 + µ except for n = 0. Due to these
additions, the completion does not in general maintain the eigenvalue property possessed by Θµ,
but in contrast it automatically satisfies a modular transformation law. In particular, we have

Θ̂µ

(
aτ + b

cτ + d

)
=

∑
ν∈A−1Z2/Z2

ψM,Q(µ,ν)Θ̂ν(τ) for
(
a b

c d

)
∈ SL2(Z), (2.9)

where

ψM,Q(µ,ν) :=


e2πiabQ(µ)δµ,sgn(d)ν if c = 0,

1

|c|
√

| det(A)|

∑
m∈Z2/cZ2

e
2πi
c

(aQ(m+µ)−B(m+µ,ν)+dQ(ν)) if c 6= 0,
(2.10)

where δµ,ν := 1 if µ = ν in A−1Z2/Z2 and 0 otherwise. We also require the following lemma from
[39] to determine whether a linear combination of false-indefinite theta functions is a Maass form.

Lemma 2.4. Let Q be the even, signature (1, 1) quadratic form Q(n) = 1
2n

TAn and φ[c]
µ be as in

(2.8) for µ ∈ Q2 and c ∈ CQ. If γ ∈ SL2 (Z) with γTAγ = A and γCQ = CQ, then

φ
[γc]
γµ = φ

[c]
µ .

3. False-indefinite theta functions and peuod(n)

We next consider peuod and give details on its relationship to false-indefinite theta functions and
Maass forms. Recalling the discussion of the generating function (1.5), we only need to focus on
the coefficients α0 and α1 in (1.6) and their generating functions described in equations (1.7) and
(1.8). We start our analysis with (1.2) and write it in the following format to clarify its nature as
a false-indefinite theta functions (changing variables n 7→ −n− 1 in the term associated to q2n+1)

σ(q) =
1

2

∑
n,j∈Z

(
1 + sgn

(
n+ j +

1

6

)
sgn

(
n− j +

1

6

))
(−1)n+jq

n(3n+1)
2

−j2 .

Inserting this expression in (1.8), we then find

u0(τ) = −1

2

∑
α,β∈{0,1}

(−1)α+β
∑

n∈Z2+(α
2
+β

4
+ 1

24
,α
2 )

(
1 + sgn(2n1 + n2)sgn(2n1 − n2)

)
q12n

2
1−2n2

2 ,

u1(τ) = −1

2

∑
α,β∈{0,1}

(−1)α+β
∑

n∈Z2+(α
2
+β

4
+ 1

24
, 1−α

2 )

(
1 + sgn(2n1 + n2)sgn(2n1 − n2)

)
q12n

2
1−2n2

2 .
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Now, u0 and u1 can be expressed in terms of false-indefinite theta functions in the terminology of
Subsection 2.2 with6

A =

(
24 0

0 −4

)
, c1 =

1√
6

(
−1

3

)
, and c2 =

1√
6

(
1

3

)
satisfying
Q(c1) = Q(c2) = −1, B(c1, c2) = −10, B(n, c1) = −2

√
6(2n1+n2), B(n, c2) = 2

√
6(2n1−n2).

Then (2.4) is satisfied with P :=
(

2
√
3 0

0
√
2

)
and find from equation (2.5) the parameters

t1 = log
(√

3−
√
2
)
, t2 = log

(√
3 +

√
2
)
.

The resulting false-indefinite theta functions are (with 24µ1, 4µ2 ∈ Z)

fµ(τ) := −arccosh(5)

π
δµ∈Z2 +

1

2

∑
n∈Z2+µ

n ̸=0

(
1 + sgn(2n1 + n2)sgn(2n1 − n2)

)
q12n

2
1−2n2

2 .

This produces the following mock Maass theta functions (and modular completions F̂µ by (2.7))

Fµ(τ) :=

√
τ2
2

∑
n∈Z2+µ

n ̸=0

(1 + sgn(2n1 + n2)sgn(2n1 − n2))K0(2π
(
12n21 − 2n22

)
τ2)e

2πi(12n2
1−2n2

2)τ1

+

√
τ2
2

∑
n∈Z2+µ

n ̸=0

(1− sgn(3n1 + n2)sgn(3n1 − n2))K0(−2π
(
12n21 − 2n22

)
τ2)e

2πi(12n2
1−2n2

2)τ1

+ arccosh(5)
√
τ2δµ∈Z2 , (3.1)

which by equation (2.6) satisfy

fµ(τ) = − 2

π

∫ i∞

τ
[Fµ(z), Rτ (z)] .

With these definitions in hand, for j ∈ {0, 1} we have

uj(τ) =
1

2

 ∑
µ∈S+

j

fµ(τ)−
∑
µ∈S−

j

fµ(τ)

 , (3.2)

where

S+
0 :=

{(
7

24
, 0

)
,

(
17

24
, 0

)
,

(
11

24
,
1

2

)
,

(
13

24
,
1

2

)}
, S−

0 :=

{(
1

24
, 0

)
,

(
23

24
, 0

)
,

(
5

24
,
1

2

)
,

(
19

24
,
1

2

)}
,

S+
1 :=

{(
11

24
, 0

)
,

(
13

24
, 0

)
,

(
7

24
,
1

2

)
,

(
17

24
,
1

2

)}
, S−

1 :=

{(
5

24
, 0

)
,

(
19

24
, 0

)
,

(
1

24
,
1

2

)
,

(
23

24
,
1

2

)}
.

We also extend the relation (3.2) to a third function with j = 2 by setting

S+
2 :=

{(
5

12
,
1

4

)
,

(
7

12
,
1

4

)
,

(
5

12
,
3

4

)
,

(
7

12
,
3

4

)}
, S−

2 :=

{(
1

12
,
1

4

)
,

(
11

12
,
1

4

)
,

(
1

12
,
3

4

)
,

(
11

12
,
3

4

)}
.

We see below that u2 is in the SL2(Z)-orbit of u0 and u1 and it completes these functions to a
vector-valued modular object under the full modular group.

6Here we let CQ to be the set of vectors c ∈ R2 with Q(c) = −1 that have their second components positive and
correspondingly let C⊥

Q to be the component of Q(c) = 1 vectors with the first component positive.
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For j ∈ {0, 1, 2} we also define the corresponding functions

Uj :=
1

2

 ∑
µ∈S+

j

Fµ −
∑
µ∈S−

j

Fµ

 and Ûj :=
1

2

 ∑
µ∈S+

j

F̂µ −
∑
µ∈S−

j

F̂µ

 . (3.3)

To connect peuod and Maass forms, we show that Uj = Ûj , which yields the modular behavior of uj .
Proposition 3.1. For j ∈ {0, 1, 2} we have Uj = Ûj. For any M =

(
a b
c d

)
∈ SL2(Z), we have

Uj

(
aτ + b

cτ + d

)
=

2∑
ℓ=0

ΨM (j, ℓ)Uℓ(τ)

and for τ1 6= −d
c

uj

(
aτ + b

cτ + d

)
= sgn(cτ1 + d) (cτ + d)

2∑
ℓ=0

ΨM (j, ℓ)
(
uℓ(τ) + Uℓ,− d

c
(τ)
)
,

where Uj,− d
c

is defined as in (2.3) and the multiplier system ΨM is given by

ΨM (j, ℓ) =
∑
µ∈S+

j

ψM,Q(µ,ν)−
∑
µ∈S−

j

ψM,Q(µ,ν) with ν ∈ S+
ℓ and Q(n) = 12n21 − 2n22. (3.4)

Here the multiplier system ψM,Q(µ,ν) is defined in (2.10).
Remark. For modular translation and inversion, i.e., T = ( 1 1

0 1 ) and S =
(
0 −1
1 0

)
, the multiplier

system is given by7

ΨT =

ζ48 0 0

0 ζ2548 0

0 0 ζ2324

 and ΨS =
1

2

 1 1
√
2

1 1 −
√
2√

2 −
√
2 0

 , (3.5)

where here and throughout we define ζN := e
2πi
N .

Proof of Proposition 3.1. The matrix γ = ( 5 2
12 5 ) is in SL2(Z) with γTAγ = A and γc1 = c2 (so

in particular γCQ = CQ). It is also straightforward to show that γ preserves each S±
j (mod 1).

Therefore by Lemma 2.4 we have Uj = Ûj . Since Uj inherits modular transformation laws from
Ûj , which consequently lead to the modular transformations of uj according to the discussion of
Subsection 2.1, we only need to compute the transformation for Ûj following the transformations of
F̂µ from equations (2.9) and (2.10). We next compute the translation and inversion transformations
of Ûj and show that Ûj transform among themselves with multiplier system given by (3.5). The
modular translation property immediately follows from

Q(µ) ≡


1
48 (mod 1) if µ ∈ S+

0 ∪ S−
0 ,

25
48 (mod 1) if µ ∈ S+

1 ∪ S−
1 ,

23
24 (mod 1) if µ ∈ S+

2 ∪ S−
2 .

For the modular inversion property, we start with the modular transformations of the completed
mock Maass theta functions given in (2.9), which yields that for any 24µ1, 4µ2 ∈ Z we have

F̂µ

(
−1

τ

)
=

∑
ν∈A−1Z2/Z2

ψS,Q(µ,ν)F̂ν(τ) where ψS,Q(µ,ν) =
1

4
√
6
e−2πi(24µ1ν1−4µ2ν2).

7Here the entry of the matrix ΨM at position (j + 1, k + 1) is given by ΨM (j, k).
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Then we have

Ûj

(
−1

τ

)
=

1

2

∑
ν∈A−1Z2/Z2

 ∑
µ∈S+

j

ψS,Q(µ,ν)−
∑
µ∈S−

j

ψS,Q(µ,ν)

 F̂ν(τ)

and the inversion transformation for Ûj as described by the multiplier system in (3.5) follows from

∑
µ∈S+

0

ψS,Q(µ,ν)−
∑
µ∈S−

0

ψS,Q(µ,ν) =


±1

2 if ν ∈ S±
0 ,

±1
2 if ν ∈ S±

1 ,

± 1√
2

if ν ∈ S±
2 ,

0 otherwise,

∑
µ∈S+

1

ψS,Q(µ,ν)−
∑
µ∈S−

1

ψS,Q(µ,ν) =


±1

2 if ν ∈ S±
0 ,

±1
2 if ν ∈ S±

1 ,

∓ 1√
2

if ν ∈ S±
2 ,

0 otherwise,

∑
µ∈S+

2

ψS,Q(µ,ν)−
∑
µ∈S−

2

ψS,Q(µ,ν) =


± 1√

2
if ν ∈ S±

0 ,

∓ 1√
2

if ν ∈ S±
1 ,

0 otherwise.
The general transformation with the multiplier system (3.4) follows from S and T . □

4. The Obstruction to Modularity

In this section, we derive “Mordell-type” integral representations8 for the obstruction to modu-
larity (for c > 0 and τ1 > −d

c )

Uj,− d
c
(τ) :=

2

π

∫ i∞

− d
c

[Uj(z), Rτ (z)] , (4.1)

which appear in Proposition 3.1, and its extension to the whole upper half-plane (see Remark 2.2).
These are crucial for determining the contribution of the principal parts to the asymptotic growth
of αj (and hence of peuod), as well as precise bounds on the error term. For this calculation, we follow
(2.1) and denote by dj the Fourier coefficients in the expansion

Uj(z) =
√
z2

∑
n∈Z+βj

dj(n)K0(2π|n|z2) e2πinz1 , (4.2)

where j ∈ {0, 1, 2} and β0 := 1
48 , β1 := 25

48 , β2 := 23
24 (see Proposition 3.1 and (3.5)). In particular,

there is no constant term in (4.2). The calculation of the Mordell-type representation for Uj,− d
c

(or
rather for the combination uj + Uj,− d

c
) is lengthy, and is broken down into several steps.

4.1. Expanding the obstruction to modularity. We first insert the Fourier expansion (4.2) in
(4.1) for the obstruction to modularity and then simplify it.

Lemma 4.1. Let −d
c ∈ Q and τ ∈ H be such that τ1 > −d

c . Then for j ∈ {0, 1, 2} we have

Uj,− d
c
(τ) = − 1

π

∫ ∞

0

∑
n∈Z+βj

dj(n)e
− 2πidn

c
tK0 (2π|n|t)√
t2 +

(
τ + d

c

)2
(
2πn+

i
(
τ + d

c

)
t2 +

(
τ + d

c

)2
)
dt.

8This terminology aligns with the analogous integral representation in the world of mock theta functions.
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Proof. We start by writing (see e.g. proof of Proposition 2.3 of [13])

Uj,− d
c
(τ) =

1

2π

∫ ∞

0

(
4itU ′

j

(
−d
c
+ it

)
−
t+ i

(
τ + d

c

)
t− i

(
τ + d

c

)Uj

(
−d
c
+ it

))
dt

√
t

√
t2 +

(
τ + d

c

)2 .
Now we use the Fourier expansion of Uj given in (4.2) and the corresponding Fourier expansion

−iU ′
j(z) =

1

4
√
z2

∑
n∈Z+βj

dj(n)
(
(4πnz2 − 1)K0(2π|n|z2) + 4π|n|z2K1(2π|n|z2)

)
e2πinz1 ,

derived employing K ′
0(x) = −K1(x). This yields

Uj,− d
c
(τ) = − 1

π

∫ ∞

0

∑
n∈Z+βj

dj(n)e
− 2πidn

c
1√

t2 +
(
τ + d

c

)2
×

((
2πnt+

i
(
τ + d

c

)
t− i

(
τ + d

c

))K0(2π|n|t) + 2π|n|tK1(2π|n|t)

)
dt,

which we rewrite as

Uj,− d
c
(τ) = − 1

π

∫ ∞

0

∑
n∈Z+βj

dj(n)e
− 2πidn

c

×

 t√
t2 +

(
τ + d

c

)2
(
2πn+

i
(
τ + d

c

)
t2 +

(
τ + d

c

)2
)
K0(2π|n|t)−

∂

∂t

tK0(2π|n|t)√
t2 +

(
τ + d

c

)2
 dt.

For the second term, the exponential decay of the K-Bessel function leads to the uniform con-
vergence of the series on compact subsets of t > 0 (with or without the derivative). So we can
interchange the summation and differentiation and rewrite using (4.2)

Uj,− d
c
(τ) = − 1

π

∫ ∞

0

 ∑
n∈Z+βj

dj(n)e
− 2πidn

c
tK0(2π|n|t)√
t2 +

(
τ + d

c

)2
(
2πn+

i
(
τ + d

c

)
t2 +

(
τ + d

c

)2
)

− ∂

∂t

Uj

(
−d
c
+ it

)√
t

t2 +
(
τ + d

c

)2
 dt.

Moreover, we can separate the integral of the total derivative term and explicitly evaluate it to
zero thanks to the exponential decay of Uj(−d

c + it) as t → ∞ and as t → 0+. The exponential
decay towards t → ∞ follows from the absence of constant terms noted in equation (4.2). Then
the modular transformations in Proposition 3.1 imply the exponential decay as t→ 0+. □

We ultimately want to interchange the order of the sum and integral in the remaining term. The
problem is that the exponential decay of Uj(−d

c + it) and its first derivative as t → 0+, although
in fact true, cannot be seen in the Fourier expansion. Therefore the interchange of the sum and
integral is not justified, and our next step is to regularize the integral and to separate the component
of the integral that is causing the problem. For this, let

K(x) := xK1(x), Kτ, d
c
(n) :=

∫ ∞

0

t
(
i
(
τ + d

c

)
K0(2π|n|t)− sgn(n)tK1(2π|n|t)

)(
t2 +

(
τ + d

c

)2) 3
2

dt. (4.3)
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Lemma 4.2. Let −d
c ∈ Q and τ ∈ H be such that τ1 > −d

c . Then for j ∈ {0, 1, 2} we have

Uj,− d
c
(τ) = − 1

2π2
(
τ + d

c

) lim
δ→0+

∑
n∈Z+βj

dj(n)e
− 2πidn

c

n
K(2π|n|δ) − 1

π

∑
n∈Z+βj

dj(n)e
− 2πidn

c Kτ, d
c
(n).

Proof. We start by rewriting the expression for Uj,− d
c

given in Lemma 4.1 as

Uj,− d
c
(τ) = − 1

π
lim
δ→0+

∫ ∞

δ

∑
n∈Z+βj

dj(n)e
− 2πidn

c
tK0(2π|n|t)√
t2 +

(
τ + d

c

)2
(
2πn+

i
(
τ + d

c

)
t2 +

(
τ + d

c

)2
)
dt.

Since for any x > 0 we have (see e.g. 10.37.1 and 10.39.2 of [30]),

0 ≤ K0(x) < K 1
2
(x) =

√
π

2x
e−x,

for t > δ we can estimate

0 ≤ K0(2π|n|t) <
e−2π|n|t

2
√

|n|t
≤ e−πmin{βj ,1−βj}te−π|n|δ

2
√

|n|t
,

where for the second bound we use |n| ≥ min{βj , 1−βj} as βj ∈ (0, 1). Thus the combined integral
and sum is absolutely convergent and we can switch the order for δ > 0. So we have

Uj,− d
c
(τ) = − 1

π
lim
δ→0+

∑
n∈Z+βj

dj(n)e
− 2πidn

c

∫ ∞

δ

tK0(2π|n|t)√
t2 +

(
τ + d

c

)2
(
2πn+

i
(
τ + d

c

)
t2 +

(
τ + d

c

)2
)
dt.

Integrating the term with 2πn by parts using that ∂
∂t(−tK1(Ct)) = CtK0(Ct) for C > 0, we find

Uj,− d
c
(τ) = − 1

π
lim
δ→0+

∑
n∈Z+βj

dj(n)e
− 2πidn

c

sgn(n)
δK1(2π|n|δ)√
δ2 +

(
τ + d

c

)2
+

∫ ∞

δ

t(
t2 +

(
τ + d

c

)2) 3
2

(
i

(
τ +

d

c

)
K0(2π|n|t)− sgn(n)tK1(2π|n|t)

)
dt

 .

Due to the exponential decay of K1(2π|n|δ) as n→ ±∞, the sum on n can be separated to yield

Uj,− d
c
(τ) = − 1

π
lim
δ→0+

 ∑
n∈Z+βj

dj(n)e
− 2πidn

c sgn(n)
δK1(2π|n|δ)√
δ2 +

(
τ + d

c

)2
+

∑
n∈Z+βj

dj(n)e
− 2πidn

c

∫ ∞

δ

t
(
i
(
τ + d

c

)
K0(2π|n|t)− sgn(n)tK1(2π|n|t)

)(
t2 +

(
τ + d

c

)2) 3
2

dt

 . (4.4)

We now focus on the contribution of the second line and make the change of variables as t 7→ t
|n|

to rewrite the integral as
1

n2

∫ ∞

δ|n|

t(
t2

n2 +
(
τ + d

c

)2) 3
2

(
i

(
τ +

d

c

)
K0(2πt)−

t

n
K1(2πt)

)
dt. (4.5)
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Because we assume τ1 > −d
c , we can bound

1∣∣∣ t2n2 +
(
τ + d

c

)2∣∣∣ = 1∣∣∣( t2

n2 +
(
τ1 +

d
c

)2 − τ22

)
+ 2iτ2

(
τ1 +

d
c

)∣∣∣ ≤ 1

2τ2
(
τ1 +

d
c

) .
Thus for δ ≥ 0, we have the estimates∣∣∣∣∣∣∣

∫ ∞

δ|n|

it
(
τ + d

c

)
K0(2πt)(

t2

n2 +
(
τ + d

c

)2) 3
2

dt

∣∣∣∣∣∣∣ ≤
∣∣τ + d

c

∣∣(
2τ2
(
τ1 +

d
c

)) 3
2

∫ ∞

0
tK0(2πt)dt,

∣∣∣∣∣∣∣
∫ ∞

δ|n|

t2K1(2πt)(
t2

n2 +
(
τ + d

c

)2) 3
2

dt

∣∣∣∣∣∣∣ ≤
1(

2τ2
(
τ1 +

d
c

)) 3
2

∫ ∞

0
t2K1(2πt)dt.

Therefore, the integral (4.5) is uniformly � 1
n2 for δ ≥ 0. Together with the bound |dj(n)| �

√
|n|

from Corollary A.3, we then find that the sum over n in the second line of (4.4) defines a function
of δ that is continuous for δ ≥ 0. So the limit δ → 0+ can be separately taken for this term by
simply setting δ = 0. The desired result then holds thanks to the fact that for τ1 > −d

c we have

lim
δ→0+

1√
δ2 +

(
τ + d

c

)2 =
1

τ + d
c

. □

Our next goal is to let δ → 0+ in the first term of Lemma 4.2. We see below that this limit is
obtained by setting δ = 0 (noting that limx→0+ K(x) = 1) and taking the sum symmetrically. Here
by a symmetric sum over a discrete set S, we mean∑∗

n∈S
:= lim

X→∞

∑
n∈S
|n|≤X

.

We first show that the first term of Lemma 4.2 is convergent with δ = 0.

Lemma 4.3. The series
∑∗

n∈Z+βj

dj(n)e
− 2πidn

c

n
is convergent for any c ∈ N, d ∈ Z, and j ∈ {0, 1, 2}.

Proof. For M ∈ N, we consider the partial sums∑
n∈Z+βj

−c(M+1)+βj≤n≤c(M+1)−1+βj

dj(n)e
− 2πidn

c

n
. (4.6)

By Corollary A.3, the summand vanishes as n → ±∞ and up to O(c) terms on the boundary, the
limit M → ∞ of the partial sum (4.6), if it exists, is equivalent to the convergence of the symmetric
sum in this lemma and the value of the limit M → ∞ gives its value. We start by changing variables
as n = cm+ r + βj with m ∈ {−M − 1, . . . ,M} and r ∈ {0, 1, . . . , c− 1} to rewrite (4.6) as

1

c

c−1∑
r=0

e−
2πid
c

(r+βj)
M∑

m=−M−1

dj(cm+ r + βj)

m+
r+βj

c

=
1

c

c−1∑
r=0

e−
2πid
c

(r+βj)
M∑

m=0

(
dj(cm+ r + βj)

m+
r+βj

c

− dj(−c(m+ 1) + r + βj)

m+
c−r−βj

c

)
, (4.7)
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where we change m 7→ −m − 1 for the sum over −M − 1 ≤ m ≤ −1. Now we use summation by
parts to the sum over m and obtain

M−1∑
m=0


m∑

n=0

dj(cn+ r + βj)(
m+

r+βj

c

)(
m+ 1 +

r+βj

c

) −

m∑
n=0

dj(−c(n+ 1) + r + βj)(
m+

c−r−βj

c

)(
m+ 1 +

c−r−βj

c

)


+
1

M +
r+βj

c

M∑
n=0

dj(cn+ r + βj)−
1

M +
c−r−βj

c

M∑
n=0

dj(−c(n+ 1) + r + βj). (4.8)

By Corollary A.2, for m ≥ c we have (note that 0 <
r+βj

c < 1)
m∑

n=0

dj(cn+ r + βj) = cAj,r,c

(
m+

r + βj
c

)
+O

(
c
3
2
√
m
)
, (4.9)

m∑
n=0

dj(−c(n+ 1) + r + βj) = cAj,r,c

(
m+

c− r − βj
c

)
+O

(
c
3
2
√
m
)
, (4.10)

with the implied constants on the error terms independent of j and r. In particular, for M ≥ c the
second line of equation (4.8) is bounded ascAj,r,c +

O
(
c
3
2

√
M
)

M +
r+βj

c

−

cAj,r,c +
O
(
c
3
2

√
M
)

M +
c−r−βj

c

→ 0 as M → ∞.

We next consider the summand on the first line of (4.8) for m ≥ c and estimate it as

cAj,r,c

(
1− 2

r + βj
c

)
(
m+ 1 +

r + βj
c

)(
m+ 1 +

c− r − βj
c

) +
O
(
c
3
2
√
m
)

(
m+

r + βj
c

)(
m+ 1 +

r + βj
c

) +
O
(
c
3
2
√
m
)

(
m+

c− r − βj
c

)(
m+ 1 +

c− r − βj
c

) .
So overall the summand is � m− 3

2 as m→ ∞ and hence the sum on the first line of equation (4.8)
is convergent as M → ∞. This proves the required convergence. □

Given the convergence of the symmetric sum of Lemma 4.3, we now take the limit δ → 0+ in
the first term of Lemma 4.2 and show that this symmetric sum is the resulting limit.

Lemma 4.4. For c ∈ N, d ∈ Z, and j ∈ {0, 1, 2} we have

lim
δ→0+

∑
n∈Z+βj

dj(n)e
− 2πidn

c

n
K(2π|n|δ) =

∑∗

n∈Z+βj

dj(n)e
− 2πidn

c

n
.

Proof. We define b(n) := dj(n)
n e−

2πidn
c for n ∈ Z+ βj and

Bδ :=
∑

n∈Z+βj

b(n)K(2π|n|δ), B :=
∑∗

n∈Z+βj

b(n), and B(x) :=
∑

n∈Z+βj

|n|≤x

b(n).

Our goal is to prove that limδ→0+ Bδ = B. The first step towards that is the identity

Bδ = 2πδ

∫ ∞

0
B(x)K0(2πδx)dx, (4.11)
15



where K0(x) := −K′(x) = xK0(x). To prove (4.11), we split B(x) = B[1](x) +B[2](x), where

B[1](x) :=
∑

n∈Z+βj

0<n≤x

b(n) and B[2](x) :=
∑

n∈Z+βj

−x≤n<0

b(n).

By Corollary A.3, we have B[1](x), B[2](x) �
√
x, so we can split the right-hand side of (4.11) as

2πδ

∫ ∞

0
B[1](x)K0(2πδx)dx+ 2πδ

∫ ∞

0
B[2](x)K0(2πδx)dx. (4.12)

Both integrals converge due to the exponential decay of K0(x) as x → ∞. Focusing on the first
integral of (4.12), we note that B[1](x) is zero near x = 0 and has jump discontinuities at βj + N0

(recall 0 < βj < 1). Noting B[1](n+ βj − 1) = B[1](n+ βj)− b(n+ βj) we rewrite this integral as

2πδ
∑
n≥1

B[1](n+ βj − 1)

∫ n+βj

n+βj−1
K0(2πδx)dx

=
∑
n≥1

(
B[1](n+βj−1)K(2πδ(n+βj−1))−B[1](n+βj)K(2πδ(n+βj))+b(n+βj)K(2πδ(n+βj))

)
.

The first two terms telescope to yield B[1](βj)K(2πδβj). Together with the third term we then find

2πδ

∫ ∞

0
B[1](x)K0(2πδx) dx =

∑
n∈Z+βj
n>0

b(n)K(2π|n|δ) .

The analogous result for B[2](x) then proves the identity (4.11).
Now note that because limx→0+ K(x) = 1 and limx→∞K(x) = 0, we have

2πδ

∫ ∞

0
K0(2πδx)dx = 1.

Hence by equation (4.11)

Bδ −B = 2πδ

∫ ∞

0
(B(x)−B)K0(2πδx)dx.

Since B = limx→∞B(x) for any ε > 0 we can choose Xε > 0 such that |B(x) − B| < ε for all
x > Xε. Then we have (noting that K0(x) > 0 for x > 0)

|Bδ −B| < 2πδ

∫ Xε

0
|B(x)−B|K0(2πδx)dx+ 2πδε

∫ ∞

Xε

K0(2πδx)dx.

Letting K0,max := max{K0(x) : x > 0} (note K0(x) → 0 as x→ 0+ and as x→ ∞) and bounding

2πδ

∫ ∞

Xε

K0(2πδx)dx ≤ 2πδ

∫ ∞

0
K0(2πδx)dx = 1,

we find that

|Bδ −B| < 2πδK0,max

∫ Xε

0
|B(x)−B|dx+ ε.

If δ is sufficiently small, then the first term is smaller than ε, which concludes our proof. □
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For use in Section 5, we next examine how large these symmetric sums can get.
Lemma 4.5. For c ∈ N, d ∈ Z, j ∈ {0, 1, 2} we have, with the implied constant independent of d,

∑∗

n∈Z+βj

dj(n)e
− 2πidn

c

n
� c.

Proof. We follow equation (4.7) and start with

∑∗

n∈Z+βj

dj(n)e
− 2πidn

c

n
=

1

c

c−1∑
r=0

e−
2πid
c

(r+βj)
∑
m≥0

(
dj(cm+ r + βj)

m+
r+βj

c

− dj(−c(m+ 1) + r + βj)

m+
c−r−βj

c

)
.

We split the sum over m into a sum over 0 ≤ m ≤ c and a sum over m ≥ c+1. Applying summation
by parts on partial sums of the contribution from m ≥ c + 1 and noting the bounds in (4.9) and
(4.10) we rewrite this as

1

c

c−1∑
r=0

e−
2πid
c

(r+βj) (I1 + I2 + I3 + I4 + I5 + I6 + I7) ,

where

I1 :=

c∑
m=0

dj(cm+ r + βj)

m+
r+βj

c

, I2 := −
c∑

m=0

dj(−c(m+ 1) + r + βj)

m+
c−r−βj

c

, I3 := −
∑c

n=0 dj(cn+ r + βj)

c+ 1 +
r+βj

c

I4 :=

∑c
n=0 dj(−c(n+ 1) + r + βj)

c+ 1 +
c−r−βj

c

, I5 :=
∑

m≥c+1

∑m
n=0 dj(cn+ r + βj)− cAj,r,c

(
m+

r+βj

c

)
(
m+

r+βj

c

)(
m+ 1 +

r+βj

c

) ,

I6 := −
∑

m≥c+1

∑m
n=0 dj(−c(n+ 1) + r + βj)− cAj,r,c

(
m+

c−r−βj

c

)
(
m+

c−r−βj

c

)(
m+ 1 +

c−r−βj

c

) ,

I7 := cAj,r,c

(
1− 2

r + βj
c

) ∑
m≥c+1

1(
m+ 1 +

r+βj

c

)(
m+ 1 +

c−r−βj

c

)
with the involved series convergent. The lemma follows if we show that Ij = O(c) for j ∈ {1, . . . , 7}
with an implied constant independent of r. For I1, I2, this follows from Corollary A.3. For I3, I4,
we use (4.9) and (4.10), respectively, with m = c and note that |Aj,r,c| � 1. The bounds on I5, I6
also follow from (4.9) and (4.10), giving

|I5|, |I6| � c
3
2

∑
m≥c+1

m− 3
2 � c.

Finally we bound |I7| � 1. □

We now arrive at the following midway point to our desired Mordell-type representation.

Proposition 4.6. Let −d
c ∈ Q and τ ∈ H be such that τ1 > −d

c . Then for j ∈ {0, 1, 2} we have

Uj,− d
c
(τ) = − 1

2π2
(
τ + d

c

) ∑∗

n∈Z+βj

dj(n)e
− 2πidn

c

n
− 1

π

∑
n∈Z+βj

dj(n)e
− 2πidn

c Kτ, d
c
(n).
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4.2. Mordell type representation of the modular transformation. We next rewrite Kτ, d
c
(n).

In Proposition 4.6 we restrict to τ1 > −d
c because we are using the principal value of the square roots

appearing in the definition of Kτ, d
c
(n). Our rewriting below naturally continues the obstruction to

modularity to the entire H as stated in Remark 2.2. Here we require the sine and cosine integrals

Si(w) :=

∫ w

0

sin(t)

t
dt for w ∈ C, Ci(w) := −

∫ ∞

w

cos(t)

t
dt for w ∈ C \ (−∞, 0].

Then for w ∈ C \ (−∞, 0], we set

f(w) := Ci(w) sin(w) + cos(w)
(π
2
− Si(w)

)
, g(w) := −Ci(w) cos(w) + sin(w)

(π
2
− Si(w)

)
.

Lemma 4.7. For τ ∈ H with τ1 > −d
c and n 6= 0 we have

Kτ, d
c
(n) = sgn(n)f

(
2π|n|

(
τ +

d

c

))
+ ig

(
2π|n|

(
τ +

d

c

))
− 1

2πn
(
τ + d

c

) .
Proof. Using (4.3) and making the change of variables u = 2π|n|t we have, with w := 2π|n|(τ + d

c ),

Kτ, d
c
(n) = iw

∫ ∞

0

uK0(u)

(u2 + w2)
3
2

du− sgn(n)

∫ ∞

0

u2K1(u)

(u2 + w2)
3
2

du,

Such integrals can be expressed in a couple of different ways (see Section 3 of [24]). We start with
6.565.7 of [19], which gives (for Re(a) > 0, Re(b) > 0, and Re(ν) > −1)∫ ∞

0
x1+ν

(
x2 + a2

)µ
Kν(bx)dx = 2νΓ(ν + 1)aν+µ+1b−1−µSµ−ν,µ+ν+1(ab),

where the Lommel function Sµ,ν is defined in 8.570.2 of [19] (with the definition extending to µ± ν
a negative odd integer through its limiting value). In particular, using 8.575.1 of [19],

w

∫ ∞

0

uK0(u)

(u2 + w2)
3
2

du =
√
wS− 3

2
,− 1

2
(w) and

∫ ∞

0

u2K1(u)

(u2 + w2)
3
2

du =
1

w
−
√
wS− 1

2
, 1
2
(w),

These two Lommel functions (for which one needs the limiting value of the definition above) can be
simplified using Watson’s treatise of Bessel functions (see the first displayed equation after equation
(2) in Subsection 10.73 of [35]), which expresses Sν−1,ν for ν 6∈ −N0 as

Sν−1,ν(w) =
1

2ν

[
wν log(w)− ∂

∂µ
Sµ,ν(w)

]
µ=ν+1

.

Plugging in 8.570.2 of [19], the lemma follows after a lengthy but straightforward calculation. □

Lemma 4.7 is useful because the definition of the trigonometric integrals over the cut-plane
analytically continues Kτ, d

c
to all τ ∈ H. We use this to find a Mordell-type representation of this

term that is valid on H.

Lemma 4.8. For w ∈ H we have

f(w) = iPV

∫ ∞

0

eiwt

t2 − 1
dt+

π

2
eiw, g(w) = PV

∫ ∞

0

teiwt

t2 − 1
dt− πi

2
eiw.

Proof. If Re(w) > 0, then by 5.2.12 and 5.2.13 of [2] we have

f(w) =

∫ ∞

0

e−wt

t2 + 1
dt and g(w) =

∫ ∞

0

te−wt

t2 + 1
dt.
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Figure 1

We first focus on f and assume Re(w), Im(w) > 0. The integrand is a meromorphic function of t
with poles at t = ±i, we can deform the path of integration as shown in Figure 1 and rewrite

f(w) = lim
R→∞

(∫
C1,R,ε

e−wz

z2 + 1
dz +

∫
C2,R

e−wz

z2 + 1
dz

)
,

for 0 < ε < 1. The integral over C2,R tends to zero as R → ∞ using Re(w), Im(w) > 0. Letting
ε→ 0+ for the integral over C1,R,ε gives the expression in the lemma with the second term coming
from the simple pole at z = −i. Crucially, this expression is holomorphic for Im(w) > 0 and hence
coincides with f(w) there. The argument for g is exactly the same. □

We are now ready to continue the expression from Lemma 4.2 for Uj,ϱ(τ) to the entire H and to
derive a Mordell-type expression for U#

j,ϱ as discussed in Remark 2.2. More precisely, we find such
an expression for (with τ ∈ H)

Iℓ,− d
c
(τ) := uℓ(τ) + U#

ℓ,− d
c

(τ).

Theorem 4.9. For M =
(
a b
c d

)
∈ SL2(Z) with c > 0 and for τ ∈ H, we have

uj

(
aτ + b

cτ + d

)
= (cτ + d)

2∑
ℓ=0

ΨM (j, ℓ)Iℓ,− d
c
(τ),

where

Iℓ,− d
c
(τ) =

1

πi

∑∗

n∈Z+βℓ

dℓ(n)e
− 2πidn

c PV

∫ ∞

0

e2πi(τ+
d
c )t

t− n
dt.

Proof. We first plug Lemma 4.8 into Lemma 4.7 (note that βℓ 6∈ Z so that n 6= 0). Then we insert
the result in Proposition 4.6 while noting the modular transformations in Proposition 3.1 to find
the claimed transformation as well as the identity for Iℓ,− d

c
(τ) if τ ∈ H with τ1 > −d

c (note that
sgn(cτ1 + d) = 1 in this case). Therefore, the theorem statement follows if we can show that the
stated expression for Iℓ,− d

c
defines a holomorphic function on H.

The summands here are already holomorphic on H as follows from Lemma 4.8. So our goal is
to show that the involved infinite sums are convergent for any τ ∈ H and they yield a holomorphic
function there. We start our analysis by splitting 1

t−n = ( 1
t−n + 1

n)−
1
n to rewrite

Iℓ,− d
c
(τ) =

1

πi

∑∗

n∈Z+βℓ

dℓ(n)e
− 2πidn

c

n
PV

∫ ∞

0

te2πi(τ+
d
c )t

t− n
dt− 1

2π2
(
τ + d

c

) ∑∗

n∈Z+βℓ

dℓ(n)e
− 2πidn

c

n

19



with the convergence of the sums on the right-hand side proving the same for the sum in Iℓ,− d
c
. The

second term is holomorphic for τ ∈ H with Lemma 4.3 justifying the convergence of the involved
sum. So we prove convergence of the first sum for τ ∈ H and the holomorphy of the resulting
function by showing that the sum over n is absolutely and uniformly convergent on compact subsets
of H. We start by bounding the integral appearing in this term. If n < 0, then we have∣∣∣∣∣

∫ ∞

0

te2πi(τ+
d
c )t

t− n
dt

∣∣∣∣∣ ≤ 1

|n|

∫ ∞

0
te−2πτ2tdt =

1

4π2τ22 |n|
.

If n > 0, then we distinguish whether τ1 ≥ −d
c or τ1 < −d

c . If τ1 ≥ −d
c , then we rotate the path of

integration to eπi
4 R+ while picking up the half residue from the pole at t = n to write

PV

∫ ∞

0

te2πi(τ+
d
c )t

t− n
dt = πine2πin(τ+

d
c ) +

∫
e
πi
4 R+

ze2πi(τ+
d
c )z

z − n
dz.

For z = e
πi
4 t with t ≥ 0, we then note∣∣∣e2πi(τ+ d

c )z
∣∣∣ = e−

√
2π(τ2+τ1+

d
c )t ≤ e−

√
2πτ2t and

∣∣∣∣ z

z − n

∣∣∣∣ ≤ √
2t

n

to bound ∣∣∣∣∣PV
∫ ∞

0

te2πi(τ+
d
c )t

t− n
dt

∣∣∣∣∣ ≤ πne−2πnτ2 +
1√

2π2τ22n
.

The same bound also holds for τ1 < −d
c as can be seen by similarly rotating the path of integration

to e−πi
4 R+. So we have∑

n∈Z+βℓ

∣∣∣∣∣dℓ(n)e−
2πidn

c

n
PV

∫ ∞

0
e2πi(τ+

d
c )t

t

t− n
dt

∣∣∣∣∣ ≤ ∑
n∈Z+βℓ

|dℓ(n)|
|n|

(
πne−2πτ2nδn>0 +

1

τ22 |n|

)
,

which is uniformly convergent in τ over compact subsets of H thanks to Corollary A.3. □

5. Bounds on Non-Principal Parts

In the Circle Method, it is important to distinguish between the principal and non-principal
parts of the transformed generating functions. The principal parts, roughly speaking, correspond
to negative q-powers and contribute to the Fourier coefficients in an exponentially growing manner.
The non-principal parts, on the other hand are error terms. In our application, we have a mixed-type
object and the functions uj multiply a weakly holomorphic modular form, which has exponentially
growing parts towards cusps. In this section, we analyze combinations of the form e−2πidτIℓ,ϱ(τ)
with d ≥ 0 from this point of view, determining where its (continuum of) principal part lies and
likewise bounding its non-principal part. In particular, looking at the expression for Iℓ,ϱ given in
Theorem 4.9, for h′ ∈ Z, k ∈ N with gcd(h′, k) = 1 and Re(V ) ≥ 1 we decompose

e2πdV I
ℓ,h

′
k

(
h′

k
+ iV

)
= I∗

ℓ,h
′
k
,d

(
h′

k
+ iV

)
+ Ie

ℓ,h
′
k
,d

(
h′

k
+ iV

)
, (5.1)

assuming d ≥ 0 and d 6∈ Z+ βℓ, where

I∗
ℓ,h

′
k
,d

(
h′

k
+ iV

)
:=

e2πdV

πi

∑∗

n∈Z+βℓ

dℓ(n)e
2πih′n

k PV

∫ d

0

e−2πV t

t− n
dt, (5.2)

Ie

ℓ,h
′
k
,d

(
h′

k
+ iV

)
:=

e2πdV

πi

∑∗

n∈Z+βℓ

dℓ(n)e
2πih′n

k PV

∫ ∞

d

e−2πV t

t− n
dt. (5.3)
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We next find an upper bound on the non-principal part Ie, where along the way we also prove
the convergence of the involved sum. This also justifies the decomposition in (5.1).

Lemma 5.1. Let d ≥ 0 with d 6∈ Z+ βℓ, k ∈ N, h′ ∈ Z with gcd(h′, k) = 1. Then for V ∈ C with
Re(V ) > 0, the sum defining Ie in (5.3) is convergent and the resulting function is holomorphic in
V . Moreover, for Re(V ) ≥ 1 we have, with the implied constant independent of h′ and V ,

Ie

ℓ,h
′
k
,d

(
h′

k
+ iV

)
� k.

Proof. As in the proof of Theorem 4.9, we decompose 1
t−n = ( 1

t−n + 1
n)−

1
n to write

Ie

ℓ,h
′
k
,d

(
h′

k
+ iV

)
=
e2πdV

πi

∑∗

n∈Z+βℓ

dℓ(n)

n
e

2πih′n
k PV

∫ ∞

d

te−2πV t

t− n
dt− 1

2π2iV

∑∗

n∈Z+βℓ

dℓ(n)

n
e

2πih′n
k

with the convergence of the sums on the right-hand side proving the same for Ie. Our goal is to
bound and prove the convergence and holomorphy of each of these two terms. For the second term,
convergence is implied by Lemma 4.3 and its holomorphy for Re(V ) > 0 is immediate. By Lemma
4.5 it is bounded as O(k) for Re(V ) ≥ 1 with the implied constant independent of h′ and V .

So we focus on the first term, which making the change of variables t 7→ t+ d we rewrite as

Ie,[1]

ℓ,h
′
k
,d

(
h′

k
+ iV

)
:=

1

πi

∑∗

n∈Z+βℓ

dℓ(n)

n
e

2πih′n
k PV

∫ ∞

0

(t+ d)e−2πV t

t− (n− d)
dt.

The integral is a holomorphic function of V for Re(V ) > 0. We next deduce the holomorphy of
Ie,[1] by showing that the sum over n is absolutely and uniformly convergent for Re(V ) ≥ δ for
any δ > 0. We start by bounding the integral appearing in the summands of Ie,[1]. Splitting
t+ d = n

n−d t−
d

n−d(t− (n− d)), we rewrite

PV

∫ ∞

0

(t+ d)e−2πV t

t− (n− d)
dt =

n

n− d
PV

∫ ∞

0

te−2πV t

t− (n− d)
dt− d

n− d

1

2πV
.

The remaining integral is bounded in the proof of Theorem 4.9 as∣∣∣∣PV ∫ ∞

0

te−2πV t

t− (n− d)
dt

∣∣∣∣ ≤ π(n− d)e−2π(n−d)Re(V )δn>d +
1

Re(V )2|n− d|
.

So for Re(V ) ≥ δ we can estimate∣∣∣∣Ie,[1]

ℓ,h
′
k
,d

(
h′

k
+ iV

)∣∣∣∣ ≤ ∑
n∈Z+βℓ
n>d

|dℓ(n)|e−2πδ(n−d) +
1

πδ2

∑
n∈Z+βℓ

|dℓ(n)|
|n− d|2

+
d

2π2δ

∑
n∈Z+βℓ

|dℓ(n)|
|n(n− d)|

.

By Corollary A.3, all three series are convergent, proving the absolute and uniform convergence
of the series defining Ie,[1] for Re(V ) ≥ δ. This bound also shows that for Re(V ) ≥ 1 we have
Ie,[1]

ℓ,h
′
k
,d
(h

′

k + iV ) = O(1) as a function of k with the implied constant independent of h′ and V . □

6. Proof of Theorem 1.1

In this section we apply the Circle Method to obtain the exponentially growing terms in the
asymptotic expansion of the Fourier coefficients αj(n) in (see (1.7) and (3.5))

uj(τ)

η(τ)
=
∑
n≥0

αj(n)q
n+∆j , where j ∈ {0, 1, 2} and ∆0 = − 1

48
, ∆1 =

23

48
, ∆2 :=

11

12
,
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and in particular prove Theorem 1.1. We start with

αj(n) =

∫ i+1

i

uj(τ)

η(τ)
e−2πi(n+∆j)τdτ,

with any path in H connecting i to i+1. Here we use Rademacher’s path by following the exposition
of [1] (as described in Subsection 3.4 of [15]). This gives, after the change of variables τ = h

k + iZ
k2

,

αj(n) = i

N∑
k=1

k−2
∑

0≤h<k
gcd(h,k)=1

∫ Z2

Z1

uj
(
h
k + iZ

k2

)
η
(
h
k + iZ

k2

) e−2πi(n+∆j)
(

h
k
+ iZ

k2

)
dZ, (6.1)

where Zj with j ∈ {1, 2} stands for Zj(h, k,N) defined by

Z1(0, 1;N) :=
1

1− iN
, Z2(0, 1;N) :=

1

1 + iN
,

Z1(h, k;N) :=
k

k − ik1
, Z2(h, k;N) :=

k

k + ik2
for k ≥ 2,

with h1
k1
< h

k <
h2
k2

denoting consecutive fractions in the Farey sequence FN of order N . The integral
runs from Z1 to Z2 over the right arc of the standard circle of radius 1

2 and center 1
2 (see Figure 2).

Figure 2
Now consider Mh,k :=

(
h −hh′+1

k

k −h′

)
∈ SL2(Z) with 0 ≤ h′ < k chosen to satisfy hh′ ≡ −1 (mod k).

Applying Theorem 4.9 with M =Mh,k and τ = h′

k + i
Z we find

uj

(
h

k
+
iZ

k2

)
=
ik

Z

2∑
ℓ=0

ΨMh,k
(j, ℓ)I

ℓ,h
′
k

(
h′

k
+

i

Z

)
(6.2)

with ΨM defined in (3.4). Similarly, the Dedekind-eta function satisfies the modular transformation

η

(
h

k
+
iZ

k2

)
= νη(Mh,k)

√
ik

Z
η

(
h′

k
+

i

Z

)
,

where νη is the η-multiplier system given for M =
(
a b
c d

)
∈ SL2(Z) with c > 0:

νη(M) := eπi(
a+d
12c

− 1
4
+s(−d,c)) with s

(
h′, k

)
:=

k−1∑
r=1

r

k

(
h′r

k
−
⌊
h′r

k

⌋
− 1

2

)
,

(see e.g. Theorem 3.4 of [1]). Plugging these into (6.1) we find

αj(n) = −
2∑

ℓ=0

N∑
k=1

k−
3
2

∑
0≤h<k

gcd(h,k)=1

ψh,k(j, ℓ)

∫ Z2

Z1

Z− 1
2

I
ℓ,h

′
k

(
h′

k + i
Z

)
η
(
h′

k + i
Z

) e
−2πi(n+∆j)

(
h
k
+ iZ

k2

)
dZ
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with

ψh,k(j, ℓ) := e−
πi
4
ΨMh,k

(j, ℓ)

νη(Mh,k)
. (6.3)

Now we split off the principal part from the term q−
1
24 in 1

η(τ) by following (5.1) and writing

I
ℓ,h

′
k

(
h′

k + i
Z

)
η
(
h′

k + i
Z

) = e−
πih′
12k I∗

ℓ,h
′
k
, 1
24

(
h′

k
+

i

Z

)
+ e−

πih′
12k Ie

ℓ,h
′
k
, 1
24

(
h′

k
+

i

Z

)

+ I
ℓ,h

′
k

(
h′

k
+

i

Z

)(
1

η
(
h′

k + i
Z

) − e
−πi

12

(
h′
k
+ i

Z

))
. (6.4)

We next show that the contribution of the second and the third term in (6.4) (the non-principal
part contributions) are small (i.e., non-exponential) for N = b

√
nc. Thanks to Lemma 5.1 each of

these terms is holomorphic if Re(Z) > 0, so we can deform the path of integration to the chord
C(Z1, Z2) from Z1 to Z2 (see Figure 2) to write their contribution to αj(n) as

βj(n) := −
2∑

ℓ=0

N∑
k=1

k−
3
2

∑
0≤h<k

gcd(h,k)=1

ψh,k(j, ℓ)

∫
C(Z1,Z2)

Z− 1
2 e

−2πi(n+∆j)
(

h
k
+ iZ

k2

)

×

(
e−

πih′
12k Ie

ℓ,h
′
k
, 1
24

(
h′

k
+

i

Z

)
+ I

ℓ,h
′
k

(
h′

k
+

i

Z

)(
1

η
(
h′

k + i
Z

) − e
−πi

12

(
h′
k
+ i

Z

)))
dZ.

For any point in the right half-plane contained within the disk bounded by the circle with center
and radius 1

2 , and in particular on C(Z1, Z2), we have Re( 1
Z ) ≥ 1. So we can use Lemma 5.1 (once

with d = 0 and once with d = 1
24) to bound

e−
πih′
12k Ie

ℓ,h
′
k
, 1
24

(
h′

k
+

i

Z

)
+ I

ℓ,h
′
k

(
h′

k
+

i

Z

)(
1

η
(
h′

k + i
Z

) − e
−πi

12

(
h′
k
+ i

Z

))
� k

with the implied constant independent of h′ and Z. Next we recall (e.g. from Theorem 5.3 and 5.5
of [1]), that if h1

k1
< h

k <
h2
k2

are consecutive fractions in the Farey sequence FN , then we have

max{k, kj} ≤ N ≤ k + kj − 1

and hence
N2

2
< k2 + k2j ≤ 2N2. (6.5)

Consequently, for any point Z on C(Z1, Z2) (including the case k = 1) we find

k2

2N2
≤ Re(Z) <

2k2

N2
and k2

2N2
≤ |Z| <

√
2k

N
.

In particular, these results imply that on C(Z1, Z2) we have, for n ≥ 1∣∣∣∣Z− 1
2 e

−2πi(n+∆j)
(

h
k
+ iZ

k2

)∣∣∣∣� N

k
and length(C(Z1, Z2)) <

2
√
2k

N
.

Therefore, for n ∈ N we find the bound

|βj(n)| � n
3
4 .
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This leads to

αj(n) = −
2∑

ℓ=0

N∑
k=1

k−
3
2

∑
0≤h<k

gcd(h,k)=1

ψh,k(j, ℓ)e
− 2πi

24k
(h′+24(n+∆j)h)

×
∫ Z2

Z1

e2π(n+∆j)
Z
k2

√
Z

I∗
ℓ,h

′
k
, 1
24

(
h′

k
+

i

Z

)
dZ +O

(
n

3
4

)
.

We next recall the definition of the principal term I∗ from equation (5.2) and focus on the
integral on the second line:

1

πi

∫ Z2

Z1

e2π(n+∆j)
Z
k2

√
Z

∑∗

m∈Z+βℓ

dℓ(m)e
2πih′m

k PV

∫ 1
24

0

e−
2π
Z (t− 1

24)

t−m
dtdZ.

Once more writing 1
t−m = t

(t−m)m − 1
m as in the proof of Theorem 4.9, we can interchange the sum

over m and the integral over t to write∑∗

m∈Z+βℓ

dℓ(m)e
2πih′m

k PV

∫ 1
24

0

e−
2π
Z (t− 1

24)

t−m
dt = PV

∫ 1
24

0
Φ
ℓ,h

′
k

(t)e−
2π
Z (t− 1

24)dt,

where

Φ
ℓ,h

′
k

(t) :=
∑∗

m∈Z+βℓ

dℓ(m)e
2πih′m

k

t−m
(6.6)

is a meromorphic function of t on the entire complex plane with poles in Z + βℓ. Here note that
dℓ(m) is defined through (3.3) and (4.2). In particular, the only pole of Φ

ℓ,h
′
k

(t) that lies in the
interval [0, 1

24 ] that we are integrating over is the one at t = 1
48 for the component from ℓ = 0.

Now viewing the principal value integral as an average of two integrals from 0 to 1
24 , one going

above the potential pole and one below, we obtain an iterated integral of a continuous function
over two compact intervals. We can then interchange the integral over t with the integral over Z
and note that the integral over Z yields an entire function of t to conclude∫ Z2

Z1

e2π(n+∆j)
Z
k2

√
Z

I∗
ℓ,h

′
k
, 1
24

(
h′

k
+

i

Z

)
dZ =

1

πi
PV

∫ 1
24

0
Φ
ℓ,h

′
k

(t)

∫ Z2

Z1

e
2π

(
n+∆j

k2
Z+( 1

24
−t) 1

Z

)
√
Z

dZdt.

We next focus on the integral in Z and make the change of variables Z 7→ 1
Z to rewrite it as

∫ Z2

Z1

e
2π

(
n+∆j

k2
Z+( 1

24
−t) 1

Z

)
√
Z

dZ = −
∫ 1+i

k2
k

1−i
k1
k

Z− 3
2 e

2π
(

n+∆j

k2
1
Z
+( 1

24
−t)Z

)
dZ.

Then we decompose the integral on the right-hand side as∫
C
Z− 3

2 e
2π

(
n+∆j

k2
1
Z
+( 1

24
−t)Z

)
dZ −

4∑
r=1

∫
Cr
Z− 3

2 e
2π

(
n+∆j

k2
1
Z
+( 1

24
−t)Z

)
dZ,

where the paths of integration are as shown in Figure 3. Here integrals over C3 and C4 (as well
as that over C5 as mentioned above) define entire functions of t whereas integrals over C1 and C2,
and hence that over C, define holomorphic functions of t for Re(t) < 1

24 extending to a continuous
function for Re(t) ≤ 1

24 . Here we note that on C1, C2 we have |e2π(
1
24

−t)Z | ≤ 1 for Re(t) ≤ 1
24 .

24



Figure 3. C3 and C4 are circular arcs centered at zero and C := C2+C4+C5+C3+C1.

We also decompose

Φ
ℓ,h

′
k

(t) =: Φ∗
ℓ,h

′
k

(t) +
d0
(

1
48

)
t− 1

48

e
2πih′
48k δℓ,0, (6.7)

in order to separate the only pole of Φ
ℓ,h

′
k

(t) that may lie in [0, 1
24 ] (see the comments after (6.6)).

We then define

γ
[r]
j (n) :=

1

πi

2∑
ℓ=0

N∑
k=1

k−
3
2

∑
0≤h<k

gcd(h,k)=1

λh,k(n, j, ℓ)

∫ 1
24

0
Φ∗
ℓ,h

′
k

(t)

∫
Cr
Z− 3

2 e
2π

(
n+∆j

k2
1
Z
+( 1

24
−t)Z

)
dZdt, (6.8)

δ
[r]
j (n) :=

1

πi

N∑
k=1

k−
3
2

∑
0≤h<k

gcd(h,k)=1

λ∗h,k(n, j, 0)PV

∫ 1
24

0

1

t− 1
48

∫
Cr
Z− 3

2 e
2π

(
n+∆j

k2
1
Z
+( 1

24
−t)Z

)
dZdt, (6.9)

where
λh,k(n, j, ℓ) := ψh,k(j, ℓ)e

− 2πi
24k

(h′+24(n+∆j)h) and λ∗h,k(n, j, ℓ) := λh,k(n, j, ℓ)e
2πih′
48k .

This leads to

αj(n) =
1

πi

2∑
ℓ=0

N∑
k=1

k−
3
2

∑
0≤h<k

gcd(h,k)=1

ψh,k(j, ℓ)e
− 2πi

24k
(h′+24(n+∆j)h) PV

∫ 1
24

0
Φ
ℓ,h

′
k

(t)

×
∫
C
Z− 3

2 e
2π

(
n+∆j

k2
1
Z
+( 1

24
−t)Z

)
dZdt−

4∑
r=1

γ
[r]
j (n)− d0

(
1

48

) 4∑
r=1

δ
[r]
j (n) +O

(
n

3
4

)
. (6.10)

We next bound γ[r]j (n) and δ[r]j (n) for r ∈ {1, 2, 3, 4}. We start with estimating γ[r]j for r ∈ {3, 4}.

Lemma 6.1. For j ∈ {0, 1, 2} and n ∈ N we have

γ
[3]
j (n), γ

[4]
j (n) � n

3
4 .

Proof. As Z traverses the circular arc C3, 1
Z moves on a circular arc with center at zero from the

angle − arctan(k2k ) to −π. The largest value of Re( 1
Z ) is obtained at the initial point and on C3

Re

(
1

Z

)
≤ Re

(
1

1 + ik2k

)
=

k2

k2 + k22
<

2k2

N2
,
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where the last inequality follows from (6.5). We also have Re(Z) ≤ 1 on C3 so that (for 0 ≤ t ≤ 1
24)∣∣∣∣e2π(n+∆j

k2
1
Z
+( 1

24
−t)Z

)∣∣∣∣� 1.

Moreover, by (6.5) we find that on C3 we have

|Z|−1 � k

N
and length(C3) �

N

k
.

To bound Φ∗
ℓ,h

′
k

(t) over 0 ≤ t ≤ 1
24 , on the other hand, we start by writing

Φ∗
ℓ,h

′
k

(t) =
∑

m∈Z+βℓ

m ̸= 1
48

tdℓ(m)

(t−m)m
e

2πih′m
k −

∑∗

m∈Z+βℓ

dℓ(m)

m
e

2πih′m
k + 48d0

(
1

48

)
δℓ,0e

2πih′
48k .

By Corollary A.3, the first term is � 1 uniformly in t and h′. The same bound holds for the third
term. Finally, we use Lemma 4.5 to bound the second term and find

Φ∗
ℓ,h

′
k

(t) � k (6.11)

uniformly in t and h′. So gathering our results together with |λh,k(n, j, ℓ)| ≤ 1 we find∣∣∣γ[3]j (n)
∣∣∣� N∑

k=1

k−
3
2

∑
0≤h<k

k

(
k

N

) 3
2

length(C3) �
1√
N

N∑
k=1

k � N
3
2 ,

which yields the claim from N = b
√
nc. Exactly the same proof yields the result for γ[4]j . □

We next bound δ
[ℓ]
j for ℓ ∈ {3, 4}.

Lemma 6.2. For j ∈ {0, 1, 2} and n ∈ N we have

δ
[3]
j (n), δ

[4]
j (n) � log(n)n

1
4 .

Proof. Noting that the integral over C3 gives an entire function of t as we state before Figure 3 and
that we have PV

∫ 1
24
0

1
t− 1

48

dt = 0, we start by rewriting δ[3]j defined in (6.9) as

δ
[3]
j (n) =

1

πi

N∑
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k−
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2

∑
0≤h<k

gcd(h,k)=1

λ∗h,k(n, j, 0)

∫ 1
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0
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Z− 3

2 e2π
n+∆j
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1
Z
e2π(

1
24

−t)Z − e
πZ
24

t− 1
48

dZdt.

Then using the mean value inequality on the complex-valued function t 7→ e2π(
1
24

−t)Z , we find∣∣∣∣∣e2π(
1
24

−t)Z − e
πZ
24

t− 1
48

∣∣∣∣∣ ≤ 2π|Z|e2π(
1
24

−ξ)Re(Z)

for some ξ between 1
48 and t and including the limit t→ 1

48 . Since t ∈ [0, 1
24 ] (implying 1

24 − ξ <
1
24)

and since Re(Z) ≤ 1 on C3, we have∣∣∣∣∣e2π(
1
24

−t)Z − e
2πZ
48

t− 1
48

∣∣∣∣∣ ≤ 2πe
π
12 |Z|.

Moreover, as in the proof of Lemma 6.1, on C3 we have the bounds∣∣∣∣e2π n+∆j

k2
1
Z

∣∣∣∣� 1, |Z|−
1
2 �

√
k

N
, and length(C3) �

N

k
. (6.12)
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So together with |λ∗h,k(n, j, 0)| ≤ 1 we find∣∣∣δ[3]j (n)
∣∣∣� N∑

k=1

k−
3
2

∑
0≤h<k

√
N

k
�

√
N log(N)

which implies the lemma with N = b
√
nc. Since the bound Re(Z) ≤ 1 as well as those in (6.12)

also hold for C4, the exactly the same proof yields the result for δ[4]j (n) as well. □

We continue with γ
[ℓ]
j for ℓ ∈ {1, 2}.

Lemma 6.3. For j ∈ {0, 1, 2} and n ∈ N we have

γ
[1]
j (n), γ

[2]
j (n) � n

3
4 .

Proof. We first consider γ[1]j (n) and let Z = −x (with Z− 3
2 = e−

3πi
2 x−

3
2 above the cut) to write

γ
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j (n) = − 1
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Using the bound on Φ∗
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(t) in (6.11) and that e−2π(
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with the last estimate following from (6.5). Inserting this in the expression for γ[1]j (n) together with
|λh,k(n, j, ℓ)| ≤ 1 then yields the lemma. The proof for γ[2]j is exactly the same. □

Our final task is to bound δ
[ℓ]
j for ℓ ∈ {1, 2}.

Lemma 6.4. For j ∈ {0, 1, 2} and n ∈ N we have

δ
[1]
j (n), δ

[2]
j (n) � n

1
4 .

Proof. We next consider δ[1]j and again use that PV
∫ 1

24
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1
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dt = 0 to write (with Z = −x)

δ
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Now we use the fact that e−2π
n+∆j
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24
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for some ξ between 1
48 and t. For 0 ≤ t ≤ 1

24 , we bound the right-hand side above by 2πxe−π( 1
24

−t)x.
Therefore, with |λ∗h,k(n, j, 0)| ≤ 1 we find∣∣∣δ[1]j (n)
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Making the change of variables x 7→ x
1
24

−t
and extending the integration range in x to R+ gives

∣∣∣δ[1]j (n)
∣∣∣ ≤ 2

N∑
k=1

1√
k

∫ 1
24

0

dt√
1
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e−πx

√
x
dx�

√
N.

The lemma follows from N = b
√
nc. The same proof also yields the result for δ[2]j . □

Our final goal is to go back to equation (6.10) and evaluate the integral over Z for 0 < t < 1
24 ,

which continuously extends to 0 ≤ t ≤ 1
24 as we state before Figure 3. We start by recalling

(e.g. from equations 8.406.1 and 8.412.2 of [19]) that for Re(w) > 0 we have

Iν(w) =

(
w
2

)ν
2πi

∫
D
z−ν−1ez+

w2

4z dz,

where D is Hankel’s contour that starts at −∞ from below the real line, circles around the negative
real axis, and then goes back to −∞ from above the real line. Then we can evaluate∫
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.

Inserting this in (6.10) while recalling Lemmas 6.1, 6.2, 6.3, and 6.4 we find
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ψh,k(j, ℓ)e
−2πi

(
h′
24k

+(n+∆j)
h
k

)

× PV

∫ 1
24

0
Φ
ℓ,h

′
k

(t)

(
1

24
− t

) 1
4

I 1
2

(
4π

k

√
(n+∆j)

(
1

24
− t

))
dt+O

(
n

3
4

)
. (6.13)

This completes the proof of the final result, Theorem 1.1 (including the case j = 2).

7. Proof of Corollary 1.2

We next extract explicit expressions for the main exponential term and prove Corollary 1.2. We
start by bounding the contributions aside from those for k = 1 and near t = 0.

Lemma 7.1. For n ∈ N and j ∈ {0, 1, 2} we have

αj(n) =
1

π
√

2 (n+∆j)

2∑
ℓ=0

ΨS(j, ℓ)

∫ 1
96

0
Φℓ,0(t)e

4π
√

(n+∆j)( 1
24

−t)dt+O

(
eπ

√
n+∆j

2

)
.

Proof. We first recall that I 1
2
(x) =

√
2
πx sinh(x) to rewrite (6.13) as

αj(n) =

√
2

π
√
n+∆j

2∑
ℓ=0

b√nc∑
k=1

1√
k

∑
0≤h<k

gcd(h,k)=1

ψh,k(j, ℓ)e
− 2πi

k

(
h′
24

+(n+∆j)h
)

× PV

∫ 1
24

0
Φ
ℓ,h

′
k

(t) sinh

(
4π

k

√
(n+∆j)

(
1

24
− t

))
dt+O

(
n

3
4

)
. (7.1)
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Since the only pole of Φ
ℓ,h

′
k

(t) lying in [0, 1
24 ] is the one at t = 1

48 with ℓ = 0 (see the comments
after (6.6)), we recall (6.7) and decompose the integral on the second line of (7.1) as

1

2
(J1 + J2 − J3) +

1

2
d0

(
1

48

)
e

2πih′
48k δℓ,0(J4 + J5 − J6),

where

J1 :=

∫ 1
96

0
Φ
ℓ,h

′
k

(t)e
4π
k

√
(n+∆j)( 1

24
−t)dt, J2 :=

∫ 1
24

1
96

Φ∗
ℓ,h

′
k

(t)e
4π
k

√
(n+∆j)( 1

24
−t)dt,

J3 :=

∫ 1
24

0
Φ∗
ℓ,h

′
k

(t)e
− 4π

k

√
(n+∆j)( 1

24
−t)dt, J4 := PV

∫ 1
32

1
96

1

t− 1
48

e
4π
k

√
(n+∆j)( 1

24
−t)dt,

J5 :=

∫ 1
24

1
32

1

t− 1
48

e
4π
k

√
(n+∆j)( 1

24
−t)dt, J6 := PV

∫ 1
24

0

1

t− 1
48

e
− 4π

k

√
(n+∆j)( 1

24
−t)dt.

Next we bound J1, . . . , J6 in terms of n, k, h′. By (6.11), uniformly in h′ and t ∈ [0, 1
96 ], we have

Φ
ℓ,h

′
k

(t) � k and hence

J1 � ke
π
k

√
2
3
(n+∆j).

Using Φ∗
ℓ,h

′
k

(t) � k we also bound

J2 � ke
π
k

√
n+∆j

2 and J3 � k.

For J4, we first let t 7→ 1
24 − t in one half of the integral to remove the pole at t = 1

48 and write

J4 =
1

2

∫ 1
32

1
96

e
4π
k

√
(n+∆j)( 1

24
−t) − e

4π
k

√
(n+∆j)t

t− 1
48

dt.

By the mean value theorem we have∣∣∣∣∣∣e
4π
k

√
(n+∆j)( 1

24
−t) − e

4π
k

√
(n+∆j)t

2
(
t− 1

48

)
∣∣∣∣∣∣ = 2π

k

√
n+∆j

ξ
e

4π
k

√
(n+∆j)ξ

for some ξ between t and 1
24 − t. Since t ∈ [ 196 ,

1
32 ], it follows that

J4 �
√
n+∆j

k
e

π
k

√
n+∆j

2 .

For J6 we employ the same argument as J4 and use the mean value theorem while noting that
ξ−

1
2 ≤ t−

1
2 + ( 1

24 − t)−
1
2 if ξ is between t and 1

24 − t and t ∈ (0, 1
24). This then yields

J6 �
√
n+∆j

k
.

Finally, we bound J5 � e
π
k

√
n+∆j

6 . With these bounds at hand, we find that J2, . . . , J6 for k ≥ 1 as
well J1 for k ≥ 2 together contribute to αj(n) in (7.1) as � eπ

√
n+∆j

2 . The lemma statement then
follows from the contribution J1 for k = 1 while noting that ψ0,1(j, ℓ) = ΨS(j, ℓ). □

We are now ready to explore the main exponential term in the asymptotic expansion (6.13).
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Proposition 7.2. For n,N ∈ N and j ∈ {0, 1, 2} we have

αj(n) =
e
π
√

2
3
(n+∆j)

n+∆j

(
N−1∑
r=0

ar

(n+∆j)
r
2

+ON

(
n−

N
2

))
,

where

ar :=
4
√
3(

4π
√
6
)r+2

2∑
ℓ=0

ΨS(j, ℓ)

[
dr

dur

(
(1− 12u)Φℓ,0(u(1− 6u))

)]
u=0

.

Proof. By Lemma 7.1 we have

αj(n) =
e
π
√

2
3
(n+∆j)

π
√
2 (n+∆j)

2∑
ℓ=0

ΨS(j, ℓ)

∫ 1
96

0
Φℓ,0(t)e

−π
√

2
3
(n+∆j)(1−

√
1−24t)dt+O

(
e
π
√

1
2
(n+∆j)

)
.

We rewrite the integral here by making the change of variables u := 1−
√
1−24t
12 and get∫ 1

96

0
Φℓ,0(t)e

−π
√

2
3
(n+∆j)(1−

√
1−24t)dt =

∫ 2−
√

3
24

0
(1− 12u)Φℓ,0(u(1− 6u))e−4π

√
6(n+∆j)udu.

Defining fℓ(u) := (1 − 12u)Φℓ,0(u(1 − 6u)), we next look at its Taylor expansion for u ∈ [0, 2−
√
3

24 ]
(where fℓ is smooth since Φℓ,0 is smooth on the integration range) as

fℓ(u) =
N−1∑
r=0

f
(r)
ℓ (0)

r!
ur +

f
(N)
ℓ (ξ)

N !
uN for some 0 ≤ ξ ≤ u.

Since f (N)
ℓ (u) is continuous in [0, 2−

√
3

24 ], we find CN > 0 such that |f (N)
ℓ (u)| ≤ CN there. Thus∣∣∣∣∣

∫ 2−
√
3

24

0
fℓ(u)e

−4π
√

6(n+∆j)udu−
N−1∑
r=0

f
(r)
ℓ (0)

r!

∫ 2−
√
3

24

0
ure−4π

√
6(n+∆j)udu

∣∣∣∣∣
≤ CN

N !

∫ 2−
√
3

24

0
uNe−4π

√
6(n+∆j)udu�N n−

N+1
2 .

Finally, we conclude the proof by noting

1

r!

∫ 2−
√
3

24

0
ure−4π

√
6(n+∆j)udu =

(
4π
√
6 (n+∆j)

)−(r+1)

+ON

(
e
−π

√
1
6
(n+∆j)(2−

√
3)
)
. □

Proposition 7.2 shows that the Taylor coefficients of Φℓ,0(t) at t = 0 determine the main expo-
nential term in the asymptotic expansion of αj(n). For convenience, we express the first few of the
expansion coefficients ar defined there in terms of those Taylor coefficients:

a0 =
1

8
√
3π2

2∑
ℓ=0

ΨS(j, ℓ)Φℓ,0(0), a1 =
1

96
√
2π3

2∑
ℓ=0

ΨS(j, ℓ)
(
Φ
(1)
ℓ,0 (0)− 12Φℓ,0(0)

)
,

a2 =
1

768
√
3π4

2∑
ℓ=0

ΨS(j, ℓ)
(
Φ
(2)
ℓ,0 (0)− 36Φ

(1)
ℓ,0 (0)

)
,

a3 =
1

9216
√
2π5

2∑
ℓ=0

ΨS(j, ℓ)
(
Φ
(3)
ℓ,0 (0)− 72Φ

(2)
ℓ,0 (0) + 432Φ

(1)
ℓ,0 (0)

)
.

These Taylor coefficients are computed in Appendix B and using the values of
∑2

ℓ=0ΨS(j, ℓ)Φ
(r)
ℓ,0(0)

reported in Table 1 we find the first few terms reported in Corollary 1.2, which concludes its proof.
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8. Conclusion

In this paper, we find asymptotic expressions for certain integer partitions whose generating
function feature a false-indefinite theta function multiplied with a weakly holomorphic modular
form. Our asymptotic expression includes all the exponentially growing components of the asymp-
totic behavior. This is as much as one can hope for the overall weight 1

2 . Our methods however
are quite general and if the overall weight is smaller than −1, then the expressions and bounds we
prove immediately lead to Hardy–Ramanujan–Rademacher type exact formulas. These bounds are
definitely not optimal, and improving them would also allow one to find exact formulas for larger
weights. It would be interesting to develop these arguments and search for applications where such
exact formulas are viable. Another direction would be to investigate similar asymptotic results if
the false-indefinite theta function in question is not related to Maass forms but instead related to
genuine mock Maass forms. Finally, it would be compelling to find a combinatorial interpreta-
tion for the component j = 2. More generally it would be very interesting if one could relate the
SL2 (Z)-orbits observed on the modular side to a combinatorial relation.

Appendix A. Estimates on the Fourier Coefficients of False-indefinite Theta
Functions

As seen in Section 3, evaluating the obstruction to modularity for false-indefinite theta functions
involves detailed estimates due to the presence of conditional convergence. In this appendix, we
provide bounds involving the Fourier coefficients of false-indefinite theta functions. Instead of
aiming for optimal bounds, our goal is to provide easily applicable geometry of numbers type
arguments. More concretely, we consider the Fourier coefficients dj(n) of the Maass forms Uj

obtained by combining the mock Maass theta functions Fµ as in (3.3).9 Here recall the assumption
that the only solution to Q(n) = 0 with n ∈ Z+µ and µ ∈ A−1Z2 comes from n = 0 with µ ∈ Z2,
which does hold for the particular case considered in Section 3. Since Z2 ∩S±

j = ∅ for j ∈ {0, 1, 2},
the constant term does not appear in the Fourier expansion of Uj given in (4.2) and by (3.3)

dj(n) =
1

2

(∑
µ∈S+

j
aµ(n)−

∑
µ∈S−

j
aµ(n)

)
,

where for µ ∈ S±
j we have (recall β0 = 1

48 , β1 = 25
48 , β2 = 23

24 and the Fourier expansion (3.1) of Fµ)∑
n∈Z+βj
n>0

aµ(n)q
n :=

1

2

∑
n∈Z2+µ

(
1 + sgn(2n1 + n2)sgn(2n1 − n2)

)
q12n

2
1−2n2

2 ,

∑
n∈Z+βj
n<0

aµ(n)q
|n| :=

1

2

∑
n∈Z2+µ

(
1− sgn(3n1 + n2)sgn(3n1 − n2)

)
q2n

2
2−12n2

1 .

Since we require the behavior of dj in different residue classes modulo c ∈ N, for µ ∈ S±
j with

j ∈ {0, 1, 2} and r1, r2 ∈ {0, 1, . . . , c− 1} we define∑
n∈Z+βj
n>0

ac,µ,r(n)q
n :=

1

2

∑
n∈Z2+µ+r

c

(
1 + sgn(2n1 + n2)sgn(2n1 − n2)

)
qc

2(12n2
1−2n2

2),

∑
n∈Z+βj
n<0

ac,µ,r(n)q
|n| :=

1

2

∑
n∈Z2+µ+r

c

(
1− sgn(3n1 + n2)sgn(3n1 − n2)

)
qc

2(2n2
2−12n2

1), (A.1)

9See equation (2.1) for the general form of the Fourier expansion. Also recall that dj(n) for n > 0 are the Fourier
coefficients of the corresponding q-series uj given in equation (3.2).
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so that aµ(n) =
∑

0≤r1,r2≤c−1 ac,µ,r(n) for all µ ∈ S±
j and n ∈ Z + βj and ac,µ,r(n) = 0 unless

n ≡ Q(µ+ r) (mod c) . We begin our work by bounding partial sums of ac,µ,r.
Lemma A.1. Let c ∈ N, r1, r2 ∈ {0, 1, . . . , c−1}, and X ∈ R+. Then for µ ∈ S±

j with j ∈ {0, 1, 2}∑
n∈Z+Q(µ)
0<n≤X

ac,µ,r(n) = A
X

c2
+O

(
max

{
1,

√
X

c

})
,

∑
n∈Z+Q(µ)
−X≤n<0

ac,µ,r(n) = A
X

c2
+O

(
max

{
1,

√
X

c

})
,

where A := log(
√
2+

√
3)√

6
= 0.46794065 . . . and with the implied constants independent of r and µ.

Proof. We start our analysis with
D−

c,µ,r(X) :=
∑

n∈Z+Q(µ)
−X≤n<0

ac,µ,r(n).

By equation (A.1), D−
c,µ,r(X) counts the number of points in Z2+ µ+r

c within the regions R−
1 (

√
X
c )

and R−
2 (

√
X
c ), where we define (see Figure 4)

R−
1 (R) :=

{
x ∈ R2 : −x2

3
≤ x1 ≤

x2
3

and 2x22 − 12x21 ≤ R2
}
,

R−
2 (R) :=

{
x ∈ R2 :

x2
3

≤ x1 ≤ −x2
3

and 2x22 − 12x21 ≤ R2
}

and with the points on the lines x2 = ±3x1 counted with multiplicity 1
2 .

Figure 4
We first note that the contribution of the boundary points (and accordingly the change of mul-

tiplicity for such points) is negligible, since the number of such points is bounded as∣∣∣∣∣
{
n ∈ Z2 +

µ+ r

c
: n2 = ±3n1 and −

√
X√
6c

≤ n1 ≤
√
X√
6c

}∣∣∣∣∣
≤ 2

∣∣∣∣∣
{
n1 ∈ Z+

µ1 + r1
c

: −
√
X√
6c

≤ n1 ≤
√
X√
6c

}∣∣∣∣∣ ≤ 2

(
2
√
X√
6c

+ 1

)
� max

{
1,

√
X

c

}
.

Therefore, we have

D−
c,µ,r(X) = D−

1,c,µ,r(X) +D−
2,c,µ,r(X) +O

(
max

{
1,

√
X

c

})
,
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where

D−
j,c,µ,r(X) :=

∣∣∣∣∣
{
n ∈ Z2 +

µ+ r

c
: n ∈ R−

j

(√
X

c

)}∣∣∣∣∣ for j ∈ {1, 2}.

Now we can geometrically bound the number of points in R−
j (

√
X
c ) as (see e.g. the discussion of

Landau on page 186 and volume 2 of [23])∣∣∣∣∣D−
j,c,µ,r(X)− area

(
R−

j

(√
X

c

))∣∣∣∣∣ ≤ 4length

(
∂R−

j

(√
X

c

))
+ 4,

where ∂ denotes the boundary of the given region. The lemma statement for this case then follows
from area

(
R−

1 (1)
)
+ area

(
R−

2 (1)
)
= A.

Figure 5
The result for

D+
c,µ,r(X) :=

∑
n∈Z+Q(µ)
0<n≤X

ac,µ,r(n)

follows from the same argument by counting the number of Z2 + µ+r
c points within (see Figure 5)

R+
1 (R) :=

{
x ∈ R2 : −2x1 ≤ x2 ≤ 2x1 and 12x21 − 2x22 ≤ R2

}
,

R+
2 (R) :=

{
x ∈ R2 : 2x1 ≤ x2 ≤ −2x1 and 12x21 − 2x22 ≤ R2

}
and noting that area

(
R+

1 (1)
)
+ area

(
R+

2 (1)
)
= A. □

Lemma A.1 immediately leads to the following two corollaries.
Corollary A.2. Let c ∈ N, r ∈ {0, 1, . . . , c− 1}, j ∈ {0, 1, 2}, and X ∈ R+. Then we have∑

n∈Z+βj

0<n≤X
n≡r+βj (mod c)

dj(n)=Aj,r,cX+O
(
max

{
c2, c

√
X
})
,

∑
n∈Z+βj

−X≤n<0
n≡r+βj (mod c)

dj(n)=Aj,r,cX+O
(
max

{
c2, c

√
X
})
,

where the implied constants in the error terms independent of j and r and where

Aj,r,c :=
A

2c2

 ∑
µ∈S+

j

−
∑
µ∈S−

j

 ∑
0≤r1,r2≤c−1

Q(µ+r)≡r+βj (mod c)

1.

Corollary A.3. For j ∈ {0, 1, 2} and n ∈ Z+ βj, we have dj(n) �
√
|n|.
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Appendix B. Taylor Coefficients of the Integral Kernel

To get explicit statements for the main exponential term from Theorem 1.1, one needs details
on the local behavior of Φℓ,0(t) around t = 0. Both for this reason and also to provide more details
on the kernel function in general, here we determine its Taylor coefficients at t = 0. We compute
these coefficients by analyzing the false-indefinite theta functions uj using the Euler–Maclaurin
summation formula, which also ties the computation of the main exponential term in αj(n) to
studies such as [6] or its variants applying Wright’s Circle Method. We start with Theorem 4.9
stating that, for V > 0, j ∈ {0, 1, 2}, and integers 0 ≤ h, h′ < k satisfying hh′ ≡ −1 (mod k),

uj

(
h

k
+
iV

k2

)
=
ik

V

2∑
ℓ=0

ΨMh,k
(j, ℓ)I

ℓ,h
′
k

(
h′

k
+

i

V

)
. (B.1)

We first show that the asymptotic expansion of the right-hand side is determined by the Taylor
coefficients of Φ

ℓ,h
′
k

(t) at t = 0.

Lemma B.1. For ℓ ∈ {0, 1, 2}, N, k ∈ N, and h′ ∈ Z with gcd(h′, k) = 1 we have

I
ℓ,h

′
k

(
h′

k
+

i

V

)
=

1

πi

N−1∑
r=0

(
V

2π

)r+1

Φ
(r)

ℓ,h
′
k

(0) +O
(
V N+1

)
as V → 0+.

Proof. Theorem 4.9 gives that

I
ℓ,h

′
k

(
h′

k
+

i

V

)
= − V

πi

∑∗

n∈Z+βℓ

dℓ(n)e
2πih′n

k PV

∫ ∞

0

e−2πt

n− V t
dt.

Noting that 1
n−V t =

∑N−1
r=0

V rtr

nr+1 + 1
n−tV

V N tN

nN , we decompose

I
ℓ,h

′
k

(
h′

k
+

i

V

)
= − 1

πi

N−1∑
r=0

V r+1
∑∗

n∈Z+βℓ

dℓ(n)e
2πih′n

k

nr+1

∫ ∞

0
tre−2πtdt

− V N+1

πi

∑∗

n∈Z+βℓ

dℓ(n)e
2πih′n

k

nN
PV

∫ ∞

0

tNe−2πt

n− V t
dt.

The decomposition is justified since n 6= 0 and by the convergence of the involved terms as∫ ∞

0
tre−2πtdt =

r!

(2π)r+1
and

∑∗

n∈Z+βℓ

dℓ(n)e
2πih′n

k

nr+1
= − 1

r!
Φ
(r)

ℓ,h
′
k

(0).

So the lemma statement follows if we can show∣∣∣∣PV ∫ ∞

0

tNe−2πt

n− V t
dt

∣∣∣∣� 1

|n|
, (B.2)

which thanks to the fact that dℓ(n) �
√
|n| (by Corollary A.3) implies∑

n∈Z+βℓ

|dℓ(n)|
|n|N

∣∣∣∣PV ∫ ∞

0

tNe−2πt

n− V t
dt

∣∣∣∣� 1.

To prove (B.2) for n < 0 (where the pole at t = n
V is not on the integration path), we note that

1
|n−V t| ≤

1
|n| for t ≥ 0. For n > 0, we start by writing

PV

∫ ∞

0

tNe−2πt

n− V t
dt =

∫ n
2V

0

tNe−2πt

n− V t
dt+ PV

∫ 3n
2V

n
2V

tNe−2πt

n− V t
dt+

∫ ∞

3n
2V

tNe−2πt

n− V t
dt.
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If t ∈ [0, n
2V ] or t ≥ 3n

2V , then we have 1
|n−V t| ≤

2
n so that∣∣∣∣∣

∫ n
2V

0

tNe−2πt

n− V t
dt

∣∣∣∣∣+
∣∣∣∣∣
∫ ∞

3n
2V

tNe−2πt

n− V t
dt

∣∣∣∣∣ ≤ 2

n

∫ ∞

0
tNe−2πtdt

and these terms obey the claimed upper bound. For the second integral, we make the change of
variables as t 7→ 2n

V − t for one half of this term to remove the pole at t = n
V and write

PV

∫ 3n
2V

n
2V

tNe−2πt

n− V t
dt =

1

2V

∫ 3n
2V

n
2V

tNe−2πt −
(
2n
V − t

)N
e−2π( 2n

V
−t)

n
V − t

dt.

By the mean value theorem we have

tNe−2πt −
(
2n
V − t

)N
e−2π( 2n

V
−t)

2
(
t− n

V

) = ξN−1 (N − 2πξ) e−2πξ

for some ξ between t and 2n
V − t. Note that for t ∈ [ n

2V ,
3n
2V ], we have

ξ ≥ n

2V
≥ t

3
and ξ ≤ 3n

2V
≤ 3t

so that∣∣∣ξN (N − 2πξ) e−2πξ
∣∣∣ ≤ ξN (N + 2πξ) e−2πξ ≤ (3t)N (N + 6πt) e−

2πt
3 and 1

V ξ
≤ 2

n
.

Therefore, we have ∣∣∣∣∣PV
∫ 3n

2V

n
2V

tNe−2πt

n− V t
dt

∣∣∣∣∣ ≤ 2

n

∫ ∞

0
(3t)N (N + 6πt) e−

2πt
3 dt

and this term also obeys the claimed bound in (B.2). □

Inserting Lemma B.1 in equation (B.1), we obtain

uj

(
h

k
+
iV

k2

)
=

k

2π2

N−1∑
r=0

(
V

2π

)r 2∑
ℓ=0

ΨMh,k
(j, ℓ)Φ

(r)

ℓ,h
′
k

(0) +O
(
V N
)

as V → 0+. (B.3)

We next provide an independent computation from the left-hand side of equation (B.1).

Lemma B.2. For j ∈ {0, 1, 2}, N, k ∈ N, and h ∈ Z with gcd(h, k) = 1 we have, as V → 0+,

uj

(
h

k
+
iV

k2

)
=

N−1∑
r=0

(8πV )r

 ∑
µ∈S+

j

−
∑
µ∈S−

j

 3∑
α=0

∑
0≤r1,r2<k

e
2πih
k (12(r1+µ1)2−2(r2+µ2)2)

×

−
B̃2r+2

(
2(µ1+r1)−(µ2+r2)−kα

4k

)
+ B̃2r+2

(
2(µ1+r1)+µ2+r2+kα

4k

)
(2r + 2)!

∫ ∞

0
f (2r+1,0)(0, x)dx

+
∑

n1+n2=2r

B̃n1+1

(
2(µ1+r1)−(µ2+r2)−kα

4k

)
B̃n2+1

(
2(µ1+r1)+µ2+r2+kα

4k

)
(n1 + 1)!(n2 + 1)!

f (n1,n2)(0)

+O
(
V N
)
,

where S±
j are defined in Section 3 and f(x) := e−x2

1−10x1x2−x2
2.

Proof. The result follows from the two-dimensional Euler–Maclaurin formula (see e.g. [9]). □
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Comparing Lemma B.2 to equation (B.3) we find the Taylor coefficients of Φ
ℓ,h

′
k

(t) at t = 0.
Proposition B.3. For j ∈ {0, 1, 2}, integers 0 ≤ h, h′ < k satisfying hh′ ≡ −1 (mod k), and
r ∈ N0 we have

2∑
ℓ=0

ΨMh,k
(j, ℓ)Φ

(r)

ℓ,h
′
k

(0) =
(4π)2r+2

8k

 ∑
µ∈S+

j

−
∑
µ∈S−

j

 3∑
α=0

∑
0≤r1,r2<k

e
2πih
k (12(r1+µ1)2−2(r2+µ2)2)

×

−
B̃2r+2

(
2(µ1+r1)−(µ2+r2)−kα

4k

)
+ B̃2r+2

(
2(µ1+r1)+µ2+r2+kα

4k

)
(2r + 2)!

∫ ∞

0
f (2r+1,0)(0, x)dx

+
∑

n1+n2=2r

B̃n1+1

(
2(µ1+r1)−(µ2+r2)−kα

4k

)
B̃n2+1

(
2(µ1+r1)+µ2+r2+kα

4k

)
(n1 + 1)!(n2 + 1)!

f (n1,n2)(0)

 .

For the main exponential term in the expansion of αj(n) in Theorem 1.1, we need these values
for Φℓ,0(t), which can be obtained by specializing Proposition B.3 to k = 1 (with h = h′ = 0 and
Mh,k = S). For the convenience of the reader we note the first few Taylor coefficients in Table 1.

j = 0 j = 1 j = 2

r = 0 0 4π2 4π2

r = 1 16π4 23
3 π

4 50
3 π

4

r = 2 284
3 π

6 9745
72 π

6 2929
18 π

6

r = 3 32881
18 π8 3965831

2592 π8 769033
324 π8

r = 4 20222423
648 π10 4241759521

124416 π10 359054305
7776 π10

Table 1. Values of
2∑

ℓ=0

ΨS(j, ℓ)Φ
(r)
ℓ,0(0) for the first few r.
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