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Solutions with internal jump for an autonomous elliptic system
of FitzHugh-Nagumo type

By Carolus Reinecke of Potchefstroom, Guido Sweers of Delft

(Received dd-mmmm, 2001; revised version dd-mmmm; accepted dd-mmmm)

Abstract. Systems of elliptic partial di�erential equations which are coupled in a noncooper-
ative way, such as the FitzHugh-Nagumo type studied in this paper, in general do not satisfy order
preserving properties. This not only results in technical complications but also yields a richer solution
structure. We prove the existence of multiple nontrivial solutions. In particular we show that there
exists a solution with boundary layer type behaviour, and we will give evidence that this autonomous
system for a certain range of parameters has a solution with both a boundary and an internal layer.
The analysis uses results from bifurcation theory, variational methods, as well as some pointwise a
priori estimates. The �nal section contains some numerically obtained results.

1. Introduction

We consider the following system of semilinear elliptic partial di�erential equations

(P";Æ)

8<:
�"2�u = f (u)� v in 
;

��v = Æu� 
v in 
;

u = v = 0 on @
;

where 
 is a bounded domain in RN , N � 2, with a C3-boundary, and where the

function f (u) = u (1� u) (u� a), with a 2
�
0; 1

2

�
, is the generic nonlinearity. The

parameters Æ and " are assumed to be positive, while 
 is some �xed number larger than

��1: Here �1 is the �rst eigenvalue of �� on 
 subjected to homogeneous Dirichlet

boundary conditions. By a solution to (P";Æ) we mean a quadruple ("; Æ; u; v) with

u; v 2 C
2
�


�
satisfying the equation and boundary conditions in a classical sense.

For �xed " > 0 we shall write (Æ; u; v) instead of ("; Æ; u; v).

The nonlinearity in (P";Æ) appears in the one-dimensional FitzHugh-Nagumo system,

which serves as a model for nerve conduction, and also in the Bonho�er-van der Pol

equation, a prototype for excitable media ([14]). In these systems the following type
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of parabolic system is considered.

(1.1)

8>><>>:
Ut = "

2�U + f (U)� V in R+ �
;

�Vt = �V + ÆU � 
V in R+ �
;

U = V = 0 on R+ � @
;

U = u0; V = v0 on ft = 0g �
;

with � � 0. We observe that solutions to (P";Æ) are equilibria to problem (1.1).

Systems similar to (P";Æ), also in multiple dimensions, were studied among others

by Klaasen, Troy, De Figueiredo and Mitidieri, [10], [11], [7]. More recent results on

the system above by the present authors are found in [18], [17] and [16]. In these

references the existence and qualitative properties of solutions were investigated.

We observe that when Æ = 0, then system (P";Æ) reduces to the scalar equation

(1.2)

�
�"2�u = f (u) in 
;

u = 0 on @
:

The nontrivial solutions of this scalar equation are an energy minimizing solution,

which has a boundary layer and is almost constant in the interior, and a mountain

pass solution, see [5] and [6]. Although the methods used in the studies of the full

system are much more intricate than for the scalar equation one could say that the

results proven up to now are in a sense analogies of the results for the scalar equation.

In particular the existence of two nontrivial solutions, one a minimizer of an associated

energy functional and the other of mountain pass type has been proven. The minimizer

is a solution with a boundary layer. The other solution, a `peak', is the mountain pass

between the minimizer and the trivial solution. The �rst part of the present paper is

involved with showing the existence of a boundary layer type solution for the system.

One reason for the system behaving similarly to the scalar equation is that the v

component may be too small to really have an in
uence. Also, in system (P";Æ) the

v component `di�uses' much faster than the u component. In this respect the system

di�ers from the systems studied in the references above where the di�usion rates of

the u and v components were of comparable order.

However, the main purpose of this paper is to show that the system can have so-

lutions which do not correspond to solutions of the scalar equation. To pinpoint the

question:

Can the autonomous system (P";Æ) have stable solutions with a more complicated

structure than the boundary layer type solution?

By a stable solution (u; v) for (P";Æ) we mean that if the initial values of problem

(1.1) are in a suitable neighborhood of that (u; v), then as time evolves the solution to

the parabolic problem tends to this equilibrium. With a `more complicated structure'

we have a solution in mind for which the u component exhibits a sharp interior layer.

The question of existence of such solutions is an interesting one because it is well

known that for the autonomous scalar equations (1.2) such solutions do not exist. On

the other hand, if one allows spatial inhomogeneity and consider the nonautonomous

equation �
�"2�u = f (x; u) in 
;

u = 0 on @
;
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it is known that such that pattern solutions may exist, see for example [2].

The idea behind our study is that, although the system is autonomous, the function

v can serve as such a spatial inhomogeneity for the �rst equation. This feature shows a

major di�erence between scalar equations and systems. We observe that the coupling

between the two species also forms the main diÆculty �nding such solutions. A �xed

v can lead to a pattern like u, but this u again in
uences the v and moreover, in the

opposite direction. So in order to have such solutions there need to be some kind of

balance between u and v.

What remains, as in the case of the scalar equation, is that system (P";Æ) has a

variational structure. Our main result will show that for a certain range of Æ and "

the minimizing solution for the system does have a more complicated behavior than

the energy minimizing solution of the scalar equation. Although we cannot prove

the actual behavior of that solution we do include numerical results that give some

evidence on how these solutions may look.

2. Assumptions and notation

We will make the following assumptions on f , see also Figure 1.

Condition 2.1. We assume that

1. f 2 C1 (R) with f (0) � 0:

2. There exist closed intervals J� = (�1; ��], J0 = [��; �+] and J+ = [�+;1) such

that f 0 (s) < 0 for s 2 (�1; ��) [ (�+;1) and f strictly increasing on J0. We

shall denote by

� I� := f (J�) and h� : I� ! R is the inverse of f restricted to J� for

� 2 f�; 0;+g;

� �� = f (��) for � 2 f�;+g;

3. It holds that 0 2 I0 = I� \ I+ = [��; �+];

4. There exists a unique zero 0 < �
� 2 I0 of the function j : I0 ! R de�ned by

j (�) =

Z
h+(�)

h
�

(�)

(f (u)� �) du:

Moreover j0 (��) < 0.

Remark 2.2. Note that if f satis�es the conditions above, then for every � in the

interior of I0 the function u 7�! f (u) � � has three zeroes fh�(�); h0(�); h+(�)g.
For � 2 f�; 0;+g we let

�� = h�(0):
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Figure 1: The nonlinearity f

Also we have for � 2 I0 and � < �
� then for all ! 2 (h�(�); h+(�)) it holds that

(2.1)

Z h+(�)

!

(f (u)� �) du > 0:

Remark 2.3. Since we are only interested in solutions ("; Æ; u; v) for which it holds

that h� (�+) � u � h+ (��), we can modify f outside this interval in such a way that

f and f 0 are bounded. Observe that because of the second linear equation in (P";Æ),

such an L1 bound on u implies an L1 bound, dependent on Æ, for v. Solutions to

the system with the modi�ed f and with u 2 [h� (�+) ; h+ (��)] are solutions to the

original problem.

Example 2.4. A typical example of a nonlinearity satisfying Condition 2.1 is

f (u) = u (u� 1) (a� u)

with 0 < a < 1=2. In this case �� = f
�
a+1
3
� 1

3

p
a2 � a+ 1

�
, �� = 0, �0 = a, �+ = 1

and �� = a+1
3
.

De�nition 2.5.

1. For every � > 0 we de�ne


(�) = fx 2 
 ; dist (x; @
) > �g :

2. Let u; g 2 C
�
�

�
and � � 
: We say ��w � g in D0 (�)-sense, if for every

' 2 C10 (�) with ' � 0 it holds that

�
Z
�

w�'dx �
Z
�

g' dx:
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3. A function u 2 C
�
�

�
is called a subsolution to the problem�

��u = g (x; u) in 
;

u = 0 on @
;

if ��u � g (x; u) in D0 (
)-sense and u � 0 on @
. A supersolution is de�ned

by reversing the inequality signs.

We shall work in the following abstract setting. Denote by e1 2 C2(�
) the eigenfunc-

tion corresponding to the principal eigenvalue �1 of ��, with homogeneous Dirichlet

boundary conditions, normalized such that max e1 = 1. That is,

(2.2)

�
��e1 = �1e1 in 
;

e1 = 0 on @
;

and max e1 = 1. Let Y be the space

(2.3) Y =
�
u 2 C

�
�

�
; juj � �e1 for some � � 0

	
equipped with the norm

kuk = inf f� � 0 such that juj � �e1g :

With this norm Y is a Banach lattice, see for example [1]. Finally we let

(2.4) X = Y � Y:

3. Main results

Our �rst result concerns the existence of solutions. The important aspect of this the-

orem is that it gives the existence of solutions where the maximum of the v-component

can be larger than the value ��. As we shall see, it is this property which will cause

solutions to the system to di�er from the solutions for the scalar case.

In the construction of solutions to (P";Æ) we shall �x " small enough and use Æ as a

parameter. We denote by S" = f(Æ; u; v)g the solution set of (P";Æ) in R�X . As was

observed earlier, system (P";0) corresponds to the scalar equation (1.2). It was proven

by Cl�ement c.s., [5] that there exists for " small enough a nondegenerate nontrivial

solution, say uÆ" to this problem. Using the nondegeneracy of the solution (0; uÆ" ; 0)

and a continuation argument we shall prove the following theorem.

Theorem 3.1. Let for " small enough u
Æ
"
be the unique solution to (1.2) with

maximum close to �+ and let C+
"

be the component of (0; u�
"
; 0) in S" \ R+ �X, that

is, C+" is the maximal connected subset in S"\R+�X containing the element (0; uÆ"; 0).

Given � 2 (��; �+), there exists "� such that for all " < "� there exists an element

(Æ"; u"; v") 2 C+" , such that max v" = �. Moreover there exist 0 < Æ < Æ depending

only on � such that Æ" 2
�
Æ; Æ
�
.

Next we consider the behaviour of the solutions obtained in the previous theorem.

To do this we shall use the so called sweeping principle of McNabb, see [5] and also

[12] and [20].
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Denote, for � 2 [0; �+), by (bÆ�; bv�) the unique solution to8<:
��v + 
v = Æh+ (v) in 
;

v = 0 on @
;

max v = �;

see Lemma 5.2. The following theorem holds.

Theorem 3.2. Let f(Æ"; u"; v") ; " < "�g be as in Theorem 3.1 and let (bÆ�; bv�) be

as above (see also Lemma 5.2). It holds true that

1. lim"!0+ Æ" = bÆ�;
2. lim"!0+ v" = bv� in C1

�


�
;

3. lim"!0+ u" = h+ (bv�) uniformly on compact subsets of 
.

To state our �nal results, we introduce the energy functional �" :W
1;2
0 (
)! R by

�" (u) =
"
2

2

Z



jruj2 dx+
Æ"

2

Z



uG
u dx�
Z



F (u) dx;

where Æ" is as in Theorem 3.1, G
 = (��+ 
)
�1
0 is the Green operator for (��+ 
)

with respect to zero Dirichlet boundary condition and F (u) =
R u
0
f (s) ds. Without

loss of generality we assume that f has been modi�ed in such a way that �:" is well

de�ned and di�erentiable on W
1;2
0 (
) as well as bounded from below. Moreover,

the functional is coercive and lower semicontinuous, see [11], and hence it attains its

in�mum. That is, there exists a function that minimizes �� and is a solution to (P";Æ).

This gives another way of proving existence of solutions. By explicitly constructing a

function and using a careful comparison of energies, we prove the following multiplicity

result.

Theorem 3.3. There exists "� such that for all " < "� the function u" in Theorem

3.1 is not the global minimizer of the energy functional �". In particular, if �" (u") <

0, the global minimizer is nontrivial and there exist at least two nontrivial solutions.

We shall also give conditions under which we can deduce that �" (u") < 0 and hence

have the existence of multiple nontrivial solutions.

Based on our construction of a function with lower energy than u" we make the

following conjecture on the shape of the energy minimizing solution. We also give

some numerical evidence in support of this conjecture.

Conjecture 3.4. For �xed " small enough there exists a smooth curve of solutions

(Æ; u; v) to (P";Æ) and values Æ1 < Æ2 < Æ3 such that the curve has the following branches

1. for Æ 2 [0; Æ2) a branch consisting of stable boundary layer solutions.

2. for Æ 2 (Æ1; Æ3) a branch consisting of stable boundary and interior layer solutions

3. for Æ 2 (Æ1; Æ3) a branch of unstable solutions with the u component having a

boundary layer and a downward peak.

4. for Æ 2 [0; Æ3) a branch of unstable solutions with the u component having an

upward peak.
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4. Construction of solutions

Our method of proving the existence of solutions to problem (P";Æ) relies on the

construction of appropriate order intervals U" = [u
"
; u"] and VÆ = [Æv; Æv], in which

the solution will be obtained. We want the functions u
"
, u", v and v to have the

following uniform properties.

� For every v 2 VÆ it holds that u ", respectively u ", is a subsolution, respectively

supersolution, to the scalar equation�
�"2�u = f (u

"
)� v in 
;

u = 0 on @
:

� If u 2 U" and �
��v = Æu� 
v in 
;

v = 0 on @
;

then it follows that v 2 VÆ.

4.1. The order interval for the u component

We keep in mind that because of the homogeneous boundary condition the v-

component of a solution ("; Æ; u; v) to (P";Æ) will be small in some neighbourhood

of the boundary of 
. First we obtain a function which we shall use to construct the

subsolutions near the boundary.

Proposition 4.1. Suppose that f satis�es Condition 2.1 and let � 2 (f (0) ; ��) be

�xed. Then there exist "0 > 0 and a function U 2 C2
�
B (0; 1)

�
such that

1. U satis�es

(4.1)

�
�"20�U = f (U)� � in B (0; 1) ;

U = h� (�) � 0 on @B (0; 1) :

2. U is radially symmetric with respect to the origin;

3. U (0) > h+ (��), U 0 (0) = 0 and U 0 (r) < 0 for all r 2 (0; 1].

Proof. Let g (s) = f (s+ h� (�)) � �. By our choice of � we have that � 2 I0

and hence g has three zeroes, h� (�) � h�(�) for � 2 f�; 0;+g. Moreover, for all

! 2 [0; h+ (�)� h�(�)) we have thatZ h+(�)�h�(�)

!

g (s) ds =

Z h+(�)

!+h
�

(�)

(f (s)� �) ds > 0:

Using a result in [5], there exists for all " small enough a solution w" to the problem�
�"2�w = g (w) in B (0; 1) ;

w = 0 on @B (0; 1) ;
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with the properties that w is positive, radially symmetric, radially decreasing and

maxw" ! h+ (�)� h�(�) as "! 0+:

Choose "0 such that maxw"0 = w"0 (0) > h+ (��) � h� (�) and let U (x) = w"0 +

h� (�). Then U satis�es (4.1) and maxU > h+ (��). 2

U

h+(�)

�+

h0(�)

h�(�)

�

1

r0 r1

For the function U (x) = U (jxj), constructed in

the proposition above for � �xed we introduce the

following notations.

� Let r0 and r1 be unique points in (0; 1) for

which

(4.2)
U (r0) = �+ = h+ (�+) and

U (r1) = 0:

� � := U (0).

� Let

(4.3)
c0 = infr2[0;r1)

U(r)

r1�r
and

r2 = r0 + r1:

Observe that U 0 (r1) < 0 implies c0 > 0:

By the regularity assumption on the boundary of 
, it satis�es an interior sphere

condition. That is, there exists "
 > 0 such that for every " < "
 it holds that


 =
[�

B (x; ") ; x 2 
(")

	
.

We shall assume from now on that " < "1 with

(4.4) "1 =
"0"


r1
:

We de�ne the following translations and rescalings of the function U :

Zy (x) = U (("0=") (y � x)) for x 2 B (y; r1"="0) :

It holds that (
�"2�Z(y)

" = f(Z
(y)
" )� � in B (y; r1"="0) ;

Z
(y)
" = 0 on @B (y; r1"="0) :

Next we de�ne for x 2 fx 2 
 ; 0 < dist (x; @
) < 2r1"="0g

U
"
(x) = sup

n
Z
(y)
"

(x) ; y 2 
 such that dist (y; @
) = r1"="0

o
:
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It holds that U
"
2 C

�
�
n
(r1"="0)

�
and inD0 (x 2 
 ; 0 < dist (x; @
) < 2r1"="0)-sense

we have that

(4.5) �"2�U " (x) � f (U " (x))� �;

see for example [5]. Also

U
"
(x) = 0 if x 2 @
;

U
"
(x) = � if dist (x; @
) = r1"="0;

U
"
(x) = �+ if dist (x; @
) = r2"="0:

We extend U
"
to the whole of �
 in the following way:

(4.6) u
"
(x) =

(
U " (x) if �
n
("r2="0)

�+ if 
("r2="0):

Then u
"
(x) is continuous and u

"
(x) = 0 for x 2 @
. Moreover, for any function v (x)

such that v (x) � �+ on 
 and v (x) � � on 
n
("r2="0) we have in D
0 (
) -sense that

�"2�u
"
� f (u

"
)� v:

This follows by direct integration, using the Green identity.

We now turn to the supersolution. We choose ! > 0 such that f 0 (s) + ! � 0 for all

s, see Remark 2.3 and denote by u" the unique solution to

(4.7)

�
�"2�u+ !u = !�+ in 
;

u = 0 on @
:

If u is a solution to �
�"2�u = f (u)� v in 
;

u = 0 on @
;

with v � 0 and u � �+, then it also holds that u � u". Indeed, by the choice of ! we

have in 
 that�
�"2�+ !

�
(u� u") = f (u)� v + ! (u� �+)

� f (u)� f (�+)� ! (u� �+) � 0;

and the remark follows from the maximum principle.

The order interval which we shall use for the u-components is

(4.8) U" = [u "; u"] ;

see Figure 2. For later reference we summarize the properties of u
"
and u" in the

following lemma.

Lemma 4.2. Let u
"
and u" be as de�ned in (4.6) and (4.7). Then for any function

0 � v � �+ and v (x) � � on 
n
("r2="0) it holds in D0 (
)-sense that

�"2�u
"
� f (u

"
)� v and � "

2�u" � f (u")� v:
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Figure 2: The order interval U"

4.2. The order interval for the v component

As the upper bound for the v-component order interval we shall use the functions

Æv, with v the solution to

(4.9)

�
��v + 
v = �+ in 
;

v = 0 on @
:

Let e1 and �1 be as in (2.2). To de�ne the lower bound we �rst choose a constant

K > 0 such that

(4.10) Ke1 � u "1 :

Note that also u " � Ke1 holds true for all " < "1. We de�ne

(4.11) v =
K

�1 + 

e1:

Note that in 


��(v � v) + 
 (v � v) = �+ �Ke � u"0 � u
"0
� 0;

and by the strong maximum principle we have for x 2 
 that v (x) > v (x). We denote

the order interval [v; v] by V and let

VÆ = ÆV = [Æv; Æ v] :

The following lemma is the counterpart of Lemma 4.2.

Lemma 4.3. If ("; Æ; u; v) is a solution to (P";Æ) with u 2 U", then v 2 ÆV.

Proof. It holds that ��(v � Æv) = Æ (u�Ke1) � 0 in 
. Hence, by the maximum

principle, v � Æv. Similarly we have that v � Æ v so that v 2 ÆV . In fact unless Æ = 0

there exists � > 0 such that, with e1 as in (2.2),

(4.12) Æv + �e1 � v � Æ v � �e1;

with see for example [5, Lemma A1]. 2
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4.3. Proof of Theorem 3.1

We de�ne the mapping T" : R�X ! X (the space X is de�ned in (2.3)) by

(4.13) T" (Æ; u; v) =
��
�"2�

��1
0

(f (u)� v) ; Æ (��+ 
)
�1
0 u

�
� (u; v) .

Here h = (��)
�1
0 w with w 2 C

�
�

�
is interpreted as the unique function h 2 Y

such that ��h = w in D0 (
)-sense. It also holds that S" : R �X ! X de�ned by

S" (Æ; u; v) = T" (Æ; u; v) + (u; v) maps bounded sets of R �X into relatively compact

subsets of X:

We are interested in points (Æ; u; v) 2 R+�X such that T" (Æ; u; v) = 0. Denote this

solution set by S", that is

S" = f(Æ; u; v) 2 R�X ; T" (Æ; u; v) = 0g :

Observe that (0; u; v) 2 S" if and only if v = 0 and u is a solution to the scalar equation

(1.2).

Remark 4.4. Recall that we denote by uÆ" the solution to (1.2) with maximum close

to �+. By a uniqueness result for uÆ
"
, see [5], we can assume that if u" is a solution to

(1.2) and u" 2 U", then u" = u
Æ
" .

By these observations follows the existence for all " < "1 of an element (0; uÆ
"
; 0) 2 S".

Also, T" is Fr�echet di�erentiable with respect to (u; v) in (0; u
Æ
"; 0) with derivative given

by

d(u;v)T" (0; u
Æ
"; 0) (h1; h2) =

��
�"2�

��1
0

(f 0 (uÆ") h1 � h2) ; 0
�
� (h1; h2)

for (h1; h2) 2 X . It holds that d(u;v)T" (0; u
Æ
"; 0) is an isomorphism on X . Indeed, we

have that d(u;v)T" (0; u
Æ
"
; 0) (h1; h2) = (0; 0) if and only if h2 = 0 and

�"2�h1 � f
0 (uÆ

"
)h1 = 0 in 
;

h1 = 0 on @
:

Since the eigenvalues of the operator
�
�"2�� f

0 (uÆ
"
)
�
are strictly bounded away from

zero, see [5], we conclude that h1 = 0. Since the mapping

(h1; h2) 7!
��
�"2�

��1
0

(f 0 (uÆ")h1 � h2) ; 0
�

is compact, d(u;v)T" (0; u
Æ
"
; 0) is surjective if and only if it is injective, and hence we

conclude that d(u;v)T" (0; u
Æ
"
; 0) is an isomorphism.

By the implicit function theorem there exists for Æsmall a smooth curve parameter-

ized by Æ of solutions to T" (Æ; u; v) = (0; 0) passing through (0; uÆ
"
; 0). Moreover, in a

small neighbourhood of (0; uÆ"; 0) this curve is the only solution to T" (Æ; u; v) = (0; 0).

We summarize this in the following proposition.

Proposition 4.5. For all " < "1 there exists a solution (0; uÆ"; 0) to the prob-

lem T" (Æ; u; v) = 0. Moreover, there exist �"; �" > 0 and a smooth curve (u"; v") :

(��"; �") ! X such that T" (Æ; u" (Æ) ; v" (Æ)) = 0 and if T" (Æ; u; v) = 0 with
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Figure 3: schematized bifurcation picture

k(u; v)k < �" then (u; v) = (u" (Æ) ; v" (Æ)). Finally, if T" (0; u; v) = 0 with u 2 U"
then (0; u; v) = (0; uÆ

"
; 0).

In the rest of this section we investigate this curve originating in (0; uÆ"; 0), or rather

the component in S" of (0; uÆ"; 0). In the proof we use a version of the global implicit

function of Rabinowitz [15], proven by Cl�ement and Peletier [4]. It is shown that if

for all (0; u; v) 2 C+" it holds that v < � it follows then C+" is bounded. This leads to

a contradiction of this global implicit function theorem. Figure 3 gives an graphical

description of the idea of the proof.

Proof. [Theorem 3.1] Recall that � is a �xed constant such that �� < � < �+. We

de�ne the following 'cylinder' in R+ �X :

K" =
�
(Æ; u; v) 2 R+

0 �X ; (u; v) 2 U" � ÆV
	
=
[
Æ�0

fÆg � U" � ÆV

and let eK" = K" \
�
(Æ; u; v) 2 R+

0 �X ; max v � �
	

Observe that eK", being the intersection of two closed sets, is closed and that (0; uÆ" ; 0)

belongs to eK".

Let "� > 0 be such that for all " < "� it holds that

(4.14) v (x) � �
� kvk =� for all x 2 
n
("r2="0):

Such an "� exists since v (x) = 0 if x 2 @
. Let T +
"

be the solutions to T" (Æ; u; v) = 0

in eK", that is

T +
" = C+" \ eK":
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We claim that for all " < "� there exists an element (Æ"; u"; v") 2 T +
" with max v" = �.

We prove this claim by a contradiction argument.

Fix " < "� and suppose that all (Æ; u; v) 2 T +
"

satisfy max v < �. Since all (Æ; u; v) 2eK" satisfy Æv � v � � we have for all (Æ; u; v) 2 eK" that Æ � �= kvk. Consequently we

have for all (Æ; u; v) 2 eK" that v � Æv � (�= kvk) v. By the choice of "�, see (4.14), we

have that if (Æ; u; v) 2 eK" then

v (x) � � for all x 2 
n
("r2="0):

Since (0; uÆ"; 0) 2 T +
" it holds that T +

" 6= ; and because eK" is closed, T +
" is closed in

the relative topology of C+
"
. But T +

"
is also open. To see this, let (Æ0; u0; v0) 2 T +

"
.

If Æ0 = 0 we have that (Æ0; u0; v0) = (0; u0; 0) with u0 2 U". Hence by Proposition 4.5

and Remark 4.4, u0 = u
Æ
"
. Moreover, if � > 0 is small enough we know that�

(Æ; u; v) 2 R+ �X ; k(0; u0; 0)� (Æ; u; v)kR�X < �
	
\ S"

consists of the smooth curve (Æ; (u" (Æ) ; v" (Æ)), through (0; u0; 0). Moreover if Æ is

small and (Æ; u; v) is on this curve, then u 2 U" and by Lemma 4.3, v 2 ÆV . Hence for
� small enough�

(Æ; u; v) 2 R+ �X ; k(0; u0; 0)� (Æ; u; v)kR�X < �
	
\ C+

"

consists precisely of the curve f(Æ; (u" (Æ) ; v" (Æ)) ; 0 � Æ < �g, which is contained ineK", and we have found a neighbourhood of (Æ0; u0; v0) in C+" which is contained in T +
" .

Now assume that Æ0 > 0. We have that8<:
�"2�u0 = f (u0)� v0 in 
;

��v0 = Æ0u0 � 
v0 in 
;

u = v = 0 on @
;

with (u0; v0) 2 U" � Æ0V . In 
 we have that, see (4.10) and (4.11)

��(v0 � Æ0v) + 
 (v0 � Æ0v) = Æ0 (u0 �Ke1) � Æ0 (u " �Ke1) � 0;

and v0 = Æ0v on @
. By the strong maximum principle there exists �1 > 0 such that

v0 � Æ0v + �1e1. Similarly there exists �2 > 0 such that v0 � Æ0v � �2e1. Concerning

the function u0, we have that�
�"2�+ !

�
(u0 � u") = f (u0) + !u0 � v0 � !�+ � 0;

and there exists �3 > 0 such that u0 � u" � �3e. By our choice of "� we obtain

v0 (x) � � on 
n
("r2="0);

see (4.14). Since v (x) � � < �+ we �nd that�
�"2�+ !

�
(u0 � u

"
) � (f (u0) + !u0 � v0)� (f (u

"
) + !u

"
� v0) � 0;

and there exists �4 > 0 such that u0 � u
"
+ �4e.

Let �0 = min f�i ; i = 1; : : : ; 4g and � = min f�0; (�1 + 
)�0=Kg. Then it follows

that the neighbourhood

N� =
�
(Æ; u; v) 2 R+ �X ; k(Æ0 � Æ; u0 � u; v0 � v)k

R�X < �=2
	
\ C+"
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of (Æ0; u0; v0) in C+" is contained in K". We still have to show, by possibly decreasing

�, that N� � eK". Since max v0 < � this also holds for all v in an neighbourhood of

v0, N� � eK". Since C+" is connected, we deduce that T +
"

= C+
"
.

Hence we see that C+" � eK". But this leads to a contradiction. Indeed, this implies

that C+" is bounded which means by [4, Theorem A] that there exists a point (0; u; v) 2
C+
"
with (0; u; v) 6= (0; uÆ

"
; 0). But (0; u; v) 2 C+

"
, implies that (u; v) 2 U" � 0V and by

Proposition 4.5, see Remark 4.4 it holds that u = u
Æ
", a contradiction.

Hence for " < "� there exists an element (Æ"; u"; v") 2 S" with (u"; v") 2 U" � Æ"V
and max v" = �. Note that since v" 2 Æ"V , we have that

Æ" kvk � � � Æ" kvk ;

that is, Æ = �= kvk�1 � Æ" � �= kvk = Æ. 2

Remark 4.6. Note that from the proof of the theorem we have that (u"; v") 2
U" � Æ"V .

5. Limiting behavior of (Æ"; u"; v")

By Theorem 3.1 we know that given �� < � < �+, there exists "� > 0 such that for

all " < "� there exists a solution (Æ"; u"; v") to

(P")

8<:
�"2�u = f (u)� v in 
;

��v = Æ"u� 
v in 
;

u = v = 0 on @
:

with max v" = �. Moreover we have that Æ" 2
�
Æ; Æ
�
for all " < "�. Since u" 2 U" for

all " < "�, the set fu" ; " � "�g is bounded in L1 (
). From this, and because

(5.1)

�
��v" = Æ"u" � 
v" in 
;

v" = 0 on @
;

it follows that the set fv" ; " < "�g is bounded in C1;#
�
�

�
with 0 < # < 1. Let M be

such that

(5.2) kv"kC1;#(�
) �M for all " < "�:

For �xed � we now consider the behavior of the solutions f(Æ"; u"; v") ; " � "�g as

"! 0+. First we show that u" has a boundary layer of O (") and approach h+ (v") in

the interior of 
.

Theorem 5.1. Given � > 0 there exists 0 < " (�) � "� and a constant c� such that

for all " < " (�) it holds that

ju" (x)� h+ (v" (x))j < � for all x 2 
("c
�
);

with (Æ"; u"; v") the solution as in Theorem 3.1.
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Proof. First we show that there exists a constant c� > 0 such that

(5.3) u" (x) > h+ (v" (x))� � for all x 2 
(c
�
") and " < "�.

Since u" 2 U" it follows that

u" (x) � min
�
c0"0"

�1 dist (x; @
) ; �+
	

with c0 as in (4.3).

We assume that � < h+ (�)� �+. By Condition 2.1 it holds that

(5.4) m := min f�f 0 (t) ; t 2 [h+ (�)� �; �+]g > 0:

and we de�ne

`� =
m�

2 (�+ � �� �+)
.

Then we have for all x; y 2 
 and s 2 [�+; h+ (v (y))� �] � [�+; �+ � �] that

f (s)� v (x)

s� �+
�

f (h+ (v (y))� �)� v (x)

�+ � �� �+

=
f (h+ (v (y))� �)� v (y) + v (y)� v (x)

�+ � �� �+

�
�f 0 (�y)�� jv (y)� v (x)j

�+ � �� �+

with �y 2 [h+ (v (y))� �; h+ (v (y))] � [h+ (�+)� �; �+]. Hence, using also (5.3), for

all x 2 B (y;m�=2M) we have

f (s)� v (x)

s� �+
�
m��M jy � xj
�+ � �� �+

� `�,

i.e. for s 2 [�+; h+ (v (y))� �] and x 2 B (y;m�=2M)

f (s)� v (x) � `� (s� �+) :

Next we de�ne k� =
p
�B=`�, where �B is the principal eigenvalue of�
��'B = �B'B in B (0; 1) ;

'B = 0 on @B (0; 1) :

The corresponding eigenfunction is normalized such that max'B = 1. Let x0 2

((c0+k�)") and de�ne the following family of functions on B (x0; k�") � 
((c0+k�)")

by

w
";t

(x) = �+ + t'B ((x� x0) = (k�")) for t 2 [0; h+ (v" (x0))� �� �+] .

In B (x0; k�") it holds that

�"2�w ";t = `�

�
w ";t � �+

�
.

Since w ";t (x) 2 [�+; h+ (v" (x0))� �] and k�" � m�=2M we have on B (x0; k�") that

�"2�w
";t
� f

�
w
";t

�
� v"
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for all t 2 [0; h+ (v" (x0))� �� �+]. Since w
";0 � u" on B (x0; k�") it follows the

sweeping principle that w
";t

� u" for all t 2 [0; h+ (v" (x0))� �� �+]. In particular

for t = h+ (v" (x0))� �� �+ we have that

u" (x0) � w";t (x0) = �+ + h+ (v" (x0))� �� �+ = h+ (v" (x0))� �:

Since this can be done for every x0 2 
((c0+k�)"), (5.3) holds with c� = c0 + k�.

Next we show that for " small enough it holds that

u" (x) � h+ (v" (x)) + � in 
:

Again we do this by sweeping. We choose a function  2 C2 [0; �+] such that

(5.5) j (s)� h+ (s)j � �=3 for s 2
�
0; �+

�
and let K = max fj 0 (s)j+ j 00 (s)j ; s 2 [0; �+]g. Now we de�ne

w";t = t ( (v") + �=2) for t � 1:

It holds with (5.2) that

�"2�w";t = �"2t
�
 
00 (v") jrv"j

2
+  

0 (v") (
v" � Æ"u")
�

� �"2tK
�
jrv"j

2
+ j
v" � Æ"u"j

�
� �"2tK1;

with K1 independent of ". On the other hand, by the mean value theorem, there exists

a function g (x) < �m such that by (5.5)

f (w";t)� v" = f (w";t)� f (h+ (v"))

= g (x) (t (v") + t�=2� h+ (v"))

� g (x) (t (�=6) + (t� 1)h+ (v")) � �mt�=6:

Hence for all " �
p
m�=6K1 and all t � 1 we have that

�"2�w";t � f (w";t)� v":

Since for t large enough w";t (x) > u" (x) for all x 2 �
 and if x 2 @
 w";t (x) � u" (x)

for all t � 1 it follows from the sweeping principle that

u" (x) � w";1 (x) =  (v" (x)) + �=2 � h+ (v" (x)) + �:

2

Now we consider the behavior of (Æ"; u"; v") as "! 0+. To state our result we need

the following lemma.

Lemma 5.2. For every 0 < � < �+ there exists a unique pair (bÆ�; bv�) 2 R+�C2
�


�

satisfying the following problem:

(Q�)

��v + 
v = Æh+ (v) in 
;

v = 0 on @
;

max v = �:
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Proof. First we show that there exists a solution (Æ; v) to (Qa). For this we modify

and extend h+ (v) to a function h (v) as follows

h (v) =

�
h+ (v) if v � �;

h
0
+ (�) (v � �) + h+ (�) if v > �:

A solution to the problem with this modi�ed nonlinearity is also a solution to (Q�).

Let Y be as in (2.3). We de�ne K : R�Y ! Y by

(5.6) K (Æ; v) = v � Æ (��+ 
)
�1
0 p (v)

and denote by T the set f(Æ; v) 2 R�Y ; K (Æ; v) = 0g of zeros of K. The meaning of

(��+ 
)
�1
0 in (5.6) is the same as that the operator de�ned in (4.13). We have that

(0; 0) 2 T and this is the only element of the form (0; v) in T . The Fr�echet derivative
of K with respect to v is given by

dvK (Æ; v)h = h� Æ (��+ 
)
�1
0 p (v)h

for h 2 Y , and in particular

dvK (0; 0)h = h:

Similarly as in the proof of Theorem 3.1 we can apply the global implicit function

theorem to conclude that the component, say C+, of (0; 0) in T \R+�Y is unbounded.

This implies the existence of an element (bÆ�; bv�) 2 C+ with max bv = � as follows.

Since C+ is connected it is suÆcient to prove that there exists an element (Æ; v) on

the component such that max v > �. Suppose for all (Æ; v) 2 C+ we have that v � �.

Then for all (Æ; v) 2 C+ we have

(��+ 
) v = Æh (v) � Æh (�) :

Using the maximum principle this shows that

v �
Æh (�)

(�1 + 
)
e1

with e1 as in (2.2). Hence

Æ �
�

h (�)
(�1 + 
) ;

in contradiction to the unboundedness of C+. The regularity of the solution follows

from a usual bootstrap argument. This completes the existence part of the lemma.

To prove the uniqueness, suppose that bÆ1 < bÆ2 and that bv1 and bv2 are both solutions

to (Q�). We have that

(��+ 
) (v1 � v2) = Æ1h+ (v1) + Æ2h+ (v2)

< Æ2h+ (v1) + Æ2h+ (v2)

= Æ2m (x) (v1 � v2)

with 0 � m (x) 2 L1 (
). Since also v1 � v2 on @
 we �nd by the strong maximum

principle that v1 (x) < v2 (x) for all x 2 
, a contradiction. 2
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The proof of Theorem 3.2 now follows almost immediately.

Proof. [Theorem 3.2] Since f(Æ"; v"); " < "�g is bounded in R�C1;1
�


�
, there

exist by the Heine-Borel and Arzel�a-Ascoli theorems Æ 2 R and v 2 C
1
�


�
and a

sequence "n such that (v"
n

; Æ"
n

) ! (v; Æ) as "n ! 0+. By Theorem 5.1 we also have

that u"
n

! h+ (v) uniformly on compact subsets of 
. For a test function ' 2 C2
0 (
)

we have thatZ



(rv � r'+ 
v') dx = lim
"
n
!0+

Z



(rv"
n

� r'+ 
v"
n

') dx

= lim
"
n
!0+

Æ"
n

Z



u"
n

'dx

= Æ

Z



h+ (v)'dx

Hence we see (Æ; v) is a R�W 1;2
0 (
) solution to (Q�) and by uniqueness, (Æ; v) =

(bÆa; bv�). Since any subsequence of (v"; Æ") has a subsequence converging (by the same

argument) to (bÆ�; bv�) we conclude that lim"!0+ Æ" = bÆ� and lim"!0+ v" = bv� in

C
1
�


�
. From Theorem 5.1 it follows that lim"!0+ u" = h+ (bv�) uniformly on compact

subsets of 
. 2

6. The minimizing solution

Next we show that under an additional assumption it holds that �" (u") < 0 for

" small enough. Then we show that u" is not the global minimizer of �". This is

accomplished by constructing a function eu" for which it holds that �" (eu") < �" (u").

Theorem 6.1. Let f(Æ"; u"; v") ; " < "�g be as in Theorem 3.1. It holds that

(6.1) lim
"!0+

(�" (u")) =
1

2

Z



(h+ (bv�) bv� � 2F (h+ (bv�))) dx.
In particular, a suÆcient condition for �" (u") < 0 for " small enough is given by

(6.2) uf (u) < 2F (u) for u 2 [h+ (�) ; �+] :

Proof. First note that by multiplying

�"2�u" = f (u")� v"

with u" and integrating over 
 we �nd that

"
2

Z



jru"j
2
dx =

Z



u" (f (u")� v") dx:

Hence

�" (u") =
1

2

Z



u" (f (u")� v") dx+
1

2

Z



u"v" dx �
Z



F (u") dx

=
1

2

Z



(u"f (u")� 2F (u")) dx:
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Since u" ! bu� = h+ (bv�), uniformly on compact subsets of 
, (6.1) follows from the

dominated convergence theorem.

Now, if (6.2) holds, then with bu = h+ (bv�) we have that
1

2
h+ (bv�) bv� � F (h+ (bv�)) = 1

2
buf (bu)� F (bu) < �m

for some m > 0. Hence lim"!0+ (�" (u")) < �m j
j and the result follows. 2

Remark 6.2. Condition (6.2) is clearly not necessary to have �" (u") < 0 for "

small. Since for u 2 I+

d

du
(uf (u)� 2F (u)) = uf

0 (u)� f (u) < 0;

one has that (6.2) holds if �h+ (�) < 2F (h+ (�)). For the generic example f (u) =

u (u� 1) (a� u), (6.2) is satis�ed if we choose

� 2
�
1

3
(a+ 1) ;

2

3
(a+ 1)

�
:

Recall that for this example �� = 1
3
(a+ 1) and since a < 1

2
we have that 2

3
(a+ 1) <

1 = �+.

Next we give a heuristic argument why u" is not the global minimizer. As a `�rst

approximation' of �" (u) we ignore the term
"
2

2

R


jruj2 dx, which will be small unless

u has a large gradient. Let us compare the values for two di�erent functions, say u

and eu, with v = ÆG
u, ev = ÆG
eu. We also assume that u � h+ (v) as is the case with

the solutions constructed in the previous section. We compare:

Æ

2

Z



euG
eu dx� Z



F (eu) dx��Æ
2

Z



uG
u dx�
Z



F (u) dx

�
=

Z



(eu� u) v dx�
Z



(F (eu)� F (u)) dx:

+
Æ

2

Z



(eu� u)G
 (eu� u) dx

Let us �rst look atZ



(eu� u) v dx�
Z



(F (eu)� F (u)) dx =

Z



(euv � F (eu))� (uv � F (u)) dx:

The (real) function P (u) = uv � F (u) with v 2 I0 has critical points f (u) = v, i.e.

u = h� (v) for � 2 f�; 0;+g. Also, u = h� (v) are local minima since P 00 (h� (v)) =

�f 0 (h� (v)) > 0. Moreover we have for v > �
� that

R h+(v)
h
�

(v)
(f (u)� v) du < 0, whileR h+(v)

h
�

(v)
(f (u)� v) du > 0 for v < �

�. Since

P (h+ (v)) =

Z h+(v)

h
�

(v)

(v � f (u)) du+ P (h� (v)) ;
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we see that

(6.3) P (h+ (v)) < P (h� (v)) if v < �
�

and

(6.4) P (h� (v)) < P (h+ (v)) if v > �
�
:

Hence one would expect that a function eu taking values close to h� (v) where v > �
�

instead of close to h+ (v) as u does, would have a lower energy. On the other hand,

there exist a constant � such thatZ



(eu� u)G
 (eu� u) dx � � keu� uk2
L2(
) ;

and hence
R


(eu� u)G
 (eu� u) dx increases if keu� uk2

L2(
) increases. Jumping be-

tween h+ (v) and h� (v) or from the zero boundary value to h� (v) introduces gradient

terms which cannot be ignored.

We now show that if the jump is made on small subset 
0 � 
 we can construct a

suitable modi�cation eu" of u" which will indeed have a lower energy.

First we de�ne for " < "� the following modi�cation of u":

(6.5) eu" (x) = min

�
u" (x) ;max

�
h� (v" (x)) ;

jx� x"j � �

"

��
;

with x" 2 
 such that v" (x") = � and where � > 0 shall be chosen appropriately and

independently of " for " small enough. The following theorem is a more detailed form

of Theorem 3.3.

Theorem 6.3. There exists "� such that for all " < "� the function u" is not the

global minimizer of the energy functional �". In particular we have that there exist

� > 0; independent of " and "� > 0 such that for all " < "� it holds for eu" de�ned in

(6.5) that

�" (eu") < �" (u") :

If we also assume that (6.2) holds, the global minimizer is nontrivial and we have the

existence of at least two nontrivial solutions.

Remark 6.4. Generically a minimizer is expected to be stable in the sense men-

tioned before. Indeed, one directly shows that for a solution U(t) of (1.1), with � = 0

and V (t) = Æ G
 (U(t)) ; one �nds that

@

@t
�" (U) =

Z



�
�"2�U + Æ G
U � f(U)

�
Ut dx

= �
Z



�
�"2�U + Æ G
U � f(U)

�2
dx � 0:

Hence, if �" (U) is locally strongly convex near the minimizer u�, the function U that

starts with u0 in a corresponding neighborhood of u�, with V (t) = Æ G
 (U(t)) for all
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t � 0, is expected to converge to u� for t!1: Since we do not know the qualitative

properties of the global minimizer well enough we are not able to verify the above.

Proof. We �x � 2 (��; �) and let

m = inf
��s��

f(sh+ (s)� F (h+ (s)))� (sh� (s)� F (h� (s)))g :

Then m > 0 by our assumptions on f . Since v" � �Æ�v it holds that fx" ; " < "�g is
uniformly bounded away from @
. Also by the equicontinuity of fv" ; " < "�g there

exists �0 > 0 such that

v" (x) � � for all " < "� and x such that jx� x"j < �0:

For eu" as in (6.5) we assume that � � �0. Observe eu" � u" and that eu" is a local

modi�cation of u" around the point x". Indeed, let us de�ne

P
�

"
= fx 2 
 ; jx� x"j < � + "�+g ;

Q
�

" = fx 2 
 ; jx� x"j < � + "h� (�)g ;
R
�

"
= P

�

"
nQ�

"
:

Because h� (�) � 0 we have the inclusion

Q
�

" � fx 2 
 ; jx� x"j < �g � P
�

" :

If x 2 
nP �
" , then

h� (v" (x)) � h� (0) < h+ (0) = �+ �
jx� x"j � �

"
:

Since u" (x) � �+ it holds that eu" (x) = u" (x) for x 2 
nP �
" .

If x 2 Q
�
"
; then h� (v" (x)) � h� (�) and eu" (x) = min fu" (x) ; h� (v" (x))g. But

since u" (x) � h+ (v" (x)) we have that eu" (x) = h� (v" (x)). We �nd

(6.6) (eu"v" � F (eu"))� (h+ (v") v" � F (h+ (v"))) � �m on Q�

" :

We also introduce the following neighborhood of R�
" :

~R�

"
= fx 2 
 ; � + "h� (�)� " � jx� x"j � � + "�+ + "g :

With these preliminaries in place we prove that, by decreasing � if necessary, it holds

for " small enough that

�" (eu") < �" (u") :

We write the di�erence in energy in the following form:

(6.7) �" (eu")��" (u") = I1 + I2 + I3;
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with

I1 =
"
2

2

Z



�
jreu"j2 � jru"j

2
�
dx;

I2 =
Æ"

2

Z



(eu" � u")G
 (eu" � u") dx;

I3 = Æ"

Z



(eu" � u")G
u" dx�
Z



(F (eu")� F (u")) dx

=

Z



( (eu"v" � F (eu"))� (u"v" � F (u"))) dx:

In estimating the terms I1; I2 and I3 we shall denote by C di�erent constants all of

which are independent of " and �.

We start with I3 which is the main negative term in (6.7). Since ju" � h� (v")j is
uniformly small on Q�

" by choosing " small enough and using (6.6), we have that

(eu"v" � F (eu"))� (u"v" � F (u")) < �m=2 on Q�

"

for " small enough. The integrand of I3 is zero on 
nP �
" and is uniformly bounded on

R
�
"
, so we have

(6.8) I3 � C jR�

"
j �

m

2
jQ�

"
j :

Next we consider I2. Denote by G
 (x; y) the Green's function of (��+ 
) on 


with homogeneous Dirichlet boundary conditions. We can write v" as

v" (x) = Æ"

Z



G
 (x; y)u" (y) dy:

The maximum principle and the estimate for the fundamental solution for N > 2 (see

e.g. [9, page 17]) imply that for 
 � 0

(6.9) G
 (x; y) � G0 (x; y) � �� (x; y) =
1

N (N � 2)!N
jx� yj2�N ;

where !N is the volume of the unit ball. For N = 2

(6.10) G
 (x; y) � G0 (x; y) �
1

2�
log

diam (
)

jx� yj
;

where diam (
) = sup fjx� yj ;x; y 2 
g : Whenever 
 2 (��1; 0) we may use

G
 (x; y) � c
G0 (x; y)
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(e.g. combine [3, Theorem 4.1 and 7.22]). For N > 2 we have that

G
 (u" � eu") (x) =

Z
P �

"

G
 (x; y) (u" � eu") (y) dy
� C

Z
P�

"

G
 (x; y) dy

� C

Z
fy ; jx�yj�2"�++2�g

jx� yj2�N dy

= C

Z 2"�++2�

r=0

r dr = 2C ("�+ + �)
2
:

Hence,

I2 =
Æ"

2

Z
P�

"

(eu" � u")G
 (eu" � u") dx

=
Æ"

2

Z
P�

"

(u" � eu")G
 (u" � eu") dx
� ÆC (� + "�+)

2

Z
P�

"

(u" � eu") dx
� C (� + "�+)

2 jP �

"
j :(6.11)

Similarly for N = 2

(6.12) I2 � C (� + "�+)
2 jP �

" j log
�
diam (
)

� + "�+
:

�
Finally we consider the gradient terms. We set I1 = I1a + I1b with

I1a =
"
2

2

Z
R�

"

�
jreu"j2 � jru"j

2
�
dx;

I1b =
"
2

2

Z
Q�

"

�
jreu"j2 � jru"j

2
�
dx:

Since jrv"j and h0� (v") are uniformly bounded,

I1b =
"
2

2

Z
Q�

"

���h0� (v")rv"
��2 � jru"j

2
�
dx

�
"
2

2

Z
Q�

"

�
h
0
� (v") jrv"j

�2
dx � C"

2 jQ�

"
j :(6.13)

On ~R�
" it holds that ��u" = "

�2 (f (u")� v") and we �nd by using [9] that

sup
x2 ~R�

"

h
dist

�
x; @ ~R�

"

�
jru" (x)j

i
� eC  sup

x2 ~R�

"

ju"j+ sup
x2 ~R�

"

�
dist

�
x; @ ~R�

"

�2
"
�2 jf (u" (x))� v" (x)j

�!
;
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and the right-hand side of the inequality is bounded, independent of ". Since for x 2 R�
"

it holds that dist
�
x; @ ~R�

"

�
� " we have that

" jru"j � C on R�

"
:

Where eu" (x) = jx�x
"
j��

"
we have that " jreu"j � C and where eu" (x) = h� (v" (x)) we

have that " jreu"j = "
��h0� (v" (x))

�� jrv"j � "C. This results in

(6.14) I1a � C jR�

" j :

Putting everything together, (6.8), (6.11), (6.14) and (6.13), it follows that forN � 3

�" (eu")��" (u") � C jR�

"
j+ C"

2 jQ�

"
j+ C jR�

"
j �m jQ�

"
j+ C (� + "�+)

2 jP �

"
j

� C jQ"j
�
jR�

" j
jQ�

" j
+ "

2 �
m

2C
+ (� + "�+)

2 jP �
" j

jQ�
" j

�
:

Notice that for N = 2 the additional logarithm adds only a lower order term.

Now, recalling that C is independent of � we �x � = min
�
�0;

1
2

p
m

2C

�
in case N > 2

(for N = 2 with an obvious modi�cation). Then, for this �xed � we have as " # 0 that

jR�
" j

jQ�
"
j
! 0 and

jP �
" j

jQ�
"
j
! 1;

and hence

�" (eu")��" (u") < 0: 2

Figure 4: draft of the function with lower energy eu"

u
e

~

u
e

�
h v( )

h v( )
�

u
e
*

�

�

u

?

By this theorem we have that the minimizer, say u�
"
of the functional �" is di�erent

from solution u". We expect that u�" has the same type of transition layer as the

function eu". Moreover if, for " small, the system has the trivial solution (when f (0) =

0), the stable boundary layer solution and another one being the global minimizer,

there exist at least a fourth solution to the problem. Indeed, there exists a solution

of mountain pass type between. Generically a �fth solution may exists as a mountain

pass between boundary layer solution and the minimizer.
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7. Some numerical results

Although we may conclude from the previous arguments that for a certain range of

parameters next to the boundary layer type solution another stable solutions exist, we

have not obtained any analytical evidence how this solution looks. In order to have

some guess we have used numerical methods. Numerical results for related (mostly

time-dependent) problems are found in [8], [14], [13] and [19].

A complication is the fact that the system is neither cooperative nor competitive

which means that one cannot expect some ordering to be preserved. That is, there

is no guarantee that the numerical iteration will converge and, if it converges, that

is does so to the solution one is interested in. To counter this problem we used the

following (double) iterative scheme and we started with an appropriate function.

7.1. Scheme

The iteration scheme that was used consisted of the following steps:

1. Fix an initial function u0 and set n = 0;

2. For given un solve for vn by vn = (��+ 
)
�1
0 un;

3. For given vn solve for un+1 satisfying �"2�un+1 = f (un+1)� vn with Dirichlet

boundary condition by

(a) Set U0 = un and k = 0;

(b) For given Uk solve for Uk+1 by

Uk+1 =
�
�"2�+ 1

��1
0

(f (Uk) + Uk � vn) ;

(c) If Uk+1 is `good enough' set un+1 = Uk+1; else go back to b with k := k+1;

4. If un+1 is `good enough' then set ~u = un+1 and ~v = vn; else n := n + 1 and go

back to 2.

7.2. Details

In the present case we used 
 = 0 and " = :03;

f (u) = u (1� u)
�
1
4
� u
�
;

and a two-dimensional egg-shaped domain


 =

�
x 2 R2;x21 + (1�

2

5
x2)(x2 +

6

25
)2 < 1

�
on which we put a uniform rectangular mesh of size h = 1

25
: The �-operator was

discretized by �nite di�erences. Throughout the numerical experiments we stayed

with these data and have only considered the behaviour depending on Æ: The actual

Æ for which the calculation has been done are found in Figure 6. By we denote
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iterations that started with the u0 = u
� close to the solution for Æ = 0; by we denote

iterations that started with the u0 = u
��
: This function was obtained by changing u�

with a square-shaped internal jump to 0: By exception, due to the slow convergence,

the iteration for Æ = :31 has been started with the solution for Æ = :32: By `good

enough' in c we took k = 9; `good enough' in 4 was decided if no signi�cant di�erence

was observed in the last two iterations. For Æ = :3 starting with u�� it meant n = 45

(bringing the total number of solved systems during that iteration to 450).

Figure 5: The two initial con�gurations.
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The programme was run on a PC using Mathematica 4.0. Step 2 used the Mathe-

matica command LinearSolve. For Step b, due to its high repetition, it turned out

to be more eÆcient to invert (Mathematica's Inverse) and store the corresponding

matrix.

7.3. Results

The numerical results indicate the following:

1. For Æ 2 [0; :47] and u0 = u
� the iteration process converges to a boundary layer

type solution u:

2. For Æ 2 [:475; :8] and u0 = u
� the iteration process converges to a solution having

both boundary and internal layer.

3. For Æ 2 [0; :3] and u0 = u
�� the iteration process converges to a boundary layer

type solution u:
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4. For Æ 2 [:31; 1:6] and u0 = u
�� the iteration process converges to a solution

having both boundary and internal layer.

5. For Æ 2 [:31; :6] the internal layer is close to circular.

6. For increasing Æ the internal layer moves outward until collapsing with the bound-

ary layer.

The iteration itself showed a rapid deformation of the initial square hole to a circular

layer but that circular layer only slowly converged to the stationary internal layer of

the (approximated) solution.

The actual cases that have been calculated can be found in Figure 6. The higher

dots correspond with boundary layer type solutions; the lower dots with solutions that

have both a boundary and an internal layer. We would like to recall that we do not

have any analytical guarantee that these functions are indeed approximations of actual

solutions. The present method did not converge for Æ 2 f1:8; 1:9; 2g : For Æ = 1:75 the

iteration converged to u = v = 0:

Figure 6: table of actual Æ with the initial function

Æ -

boundary layer `solution'

double layer `solution'
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We fact expect that these solutions form an S-shaped bifurcation curve for the

parameter Æ: In fact, if we set out
�
Æ;min

�
u (x) ;x 2 
(:2)

	�
and thus leaving out the

boundary layer, the curve would have the shape of a re
ected S. As the third solution

in between is expected to be unstable it cannot be determined by the iteration scheme

used here. All of this is motivation for making Conjecture 3.4.

7.4. Numerical illustrations

Here we present some of the numerical approximations which have been calculated,

and which give some numerical support for the conjecture made in the previous section.
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Figure 7: Æ = 0:3, starting either with u� or u��.
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Figure 8: Æ = 0:35
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Figure 9: Æ = 0:475, starting either with u� or u��.
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