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1 Introduction

In this paper we present optimal pointwise estimates for the kernels associated
to the following higher order Dirichlet boundary value problem

(−∆)m u=ϕ in Ω,

u=ψ0 on ∂Ω,

∂
∂ν
u=ψ1 on ∂Ω,

. . . . . .

( ∂
∂ν

)m−1u=ψm−1 on ∂Ω,

(1)
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where m ∈ N+ and Ω is an open bounded connected subset of Rn, n ≥ 2,
with for n = 2 ∂Ω ∈ C6m+4 and for n ≥ 3 ∂Ω ∈ C5m+2. The Green function
Gm and the Poisson kernels Kj are such that the solution of problem (1), for
appropriate ϕ and ψi, can be written as

u(x) =
∫
Ω
Gm(x, y)ϕ(y) dy +

m−1∑
j=0

∫
∂Ω
Kj(x, y)ψj(y) dσy.

For example when m = 2 and n = 2 we will prove that there is a constant cΩ
such that

|G2(x, y)| ≤ cΩd(x)d(y) min

{
1,
d(x)d(y)

|x− y|2

}
, (2)

where d is the distance of x to the boundary ∂Ω:

d(x) := inf
x̃∈∂Ω

|x− x̃|. (3)

For the sake of easy statement we have used L = (−∆)m in system (1) but in
fact the estimates that we will derive hold for any uniformly elliptic operator
L of order 2m.

We will focus on the estimates for Gm and Kj. However, we would like to
mention that those estimates are the optimal tools for deriving regularity
results in spaces that involve the behavior at the boundary. Coming back to
the case m = n = 2 it follows from (2) that the solution u of ∆2u = f in Ω ⊂ R2,

u = ∂
∂ν
u = 0 on ∂Ω,

satisfies for appropriate f∥∥∥∥ ud2

∥∥∥∥
L∞(Ω)

≤ cΩ ‖f‖L1(Ω) and ‖u‖L∞(Ω) ≤ cΩ
∥∥∥f d2

∥∥∥
L1(Ω)

.

These kinds of estimates, for general m and n, and also Lp-Lq estimates will
be addressed in Section 4. The estimates are interesting by their own merits.
A special case for m = 1 appears in [7].

Not only we will derive estimates for those kernels but also for their derivatives.
The main tool will be the result of Krasovskĭı in [12] where he considered
general elliptic operators and boundary conditions. The estimates he derived
did not involve special growth rates near the boundary. We instead will focus
on estimates that contain growth rates near the boundary. These estimates
seem to be optimal and indeed, when we consider Gm for Ω = B a ball in Rn

the growth rates near the boundary are sharp (see e.g. [11]).
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For m = 1 or m ≥ 2 and Ω = B it is known that the Green function is
positive and can even be estimated from below by a positive function with the
same singular behavior (see [9]). Let us remind the reader that for m ≥ 2 the
Green function in general is not positive. We believe however that for general
domains the optimal behavior in absolute values is captured in our estimates.
Sharp estimates for Km−1 and Km−2 in case of a ball can be found in [10].

Instead of using Krasovskĭı’s result one might use appropriate “heat kernel”
estimates. Indeed, integrating pointwise estimates for the parabolic kernel
p(t, x, y) with respect to t from 0 to ∞, yields pointwise estimates for the
Green function. However, only limited results seem to be available. Barbatis
[2] considered higher order parabolic problems on domains and derived point-
wise estimates for the kernel using a non-Euclidean metric. Classical estimates
by Eidel’man (see e.g. [6]) for higher order parabolic systems do not consider
domains with boundary.

For a survey on spectral theory of higher order elliptic operators, including
some estimates for the corresponding kernels, we refer to [5].

Finally we would like to remark that we do not pretend that our pointwise
estimates are completely new. However we have not been able to find any
reference to such estimates for the special type of boundary conditions above.

The paper is organized as follows. We will complete Section 1 with the es-
timates of the Green function and the Poisson kernels. In Section 2 we will
state and prove the estimates for the Green function and its derivatives. In
section 3 we will do the same for the Poisson kernels. In section 4 we will show
applications to regularity estimates in weighted spaces. We will conclude the
paper with several appendices.

1.1 Preliminaries and main results

Before stating the main results we fix some notations.

Notation 1 (See [9]) Let f and g be functions on Ω × Ω with g ≥ 0. Then
we call f ∼ g on Ω× Ω if and only if there are c1, c2 > 0 such that

c1f(x, y) ≤ g(x, y) ≤ c2f(x, y) for all x, y ∈ Ω.

We will say f � g on Ω× Ω if and only if there is c > 0 such that

f(x, y) ≤ c g(x, y) for all x, y ∈ Ω.
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Notation 2 Let f a function on Ω×Ω and α, β ∈ Nn. Derivatives are denoted

Dα
xD

β
y f(x, y) =

∂|α|

∂xα1
1 x

α2
2 .. x

αn
n

∂|β|

∂yβ1
1 y

β2
2 .. y

βn
n

f(x, y),

where |α| = ∑n
k=1 αk.

We can now state the main results of the paper.

Theorem 3 Let Gm(x, y) be the Green function associated to system (1). The
following estimates holds for every x, y ∈ Ω:

(1) if 2m− n > 0, then

|Gm(x, y)| � d(x)m− 1
2
n d(y)m− 1

2
n min

{
1,
d(x)d(y)

|x− y|2

} 1
2
n

,

(2) if 2m− n = 0, then

|Gm(x, y)| � log

(
1 +

(
d(x)d(y)

|x− y|2

)m)
,

(3) if 2m− n < 0, then

|Gm(x, y)| � |x− y|2m−n min

{
1,
d(x)d(y)

|x− y|2

}m

.

Theorem 4 Let Kj(x, y), for j = 0, ...,m− 1, be the Poisson kernels associ-
ated to system (1). The following estimate holds for every x ∈ Ω and y ∈ ∂Ω

|Kj(x, y)| �
d(x)m

|x− y|n−j+m−1 . (4)

Remark 5 If n− 1 < j ≤ m− 1 inequality (4) gives that on Ω× ∂Ω

|Kj(x, y)| � d(x)1+j−n.

Remark 6 The estimates in Theorems 3 and 4 in fact hold for (−∆)m re-
placed by any uniformly elliptic operator of order 2m. Indeed, the main ingre-
dients are the Dirichlet boundary condition and the estimates of Krasovskĭı.
In the proof one has to use the Dirichlet boundary condition both for the orig-
inal and the adjoint problem. Although the adjoint problem is different for
general elliptic problems the Dirichlet boundary condition will remain. Notice
that Krasovskĭı’s derived the estimates for the general case.

In [9] the estimates as in Theorem 3 are given for the case that Ω is a ball in
Rn. There the authors could use the explicit formula of Gm given by Boggio
in [3]. For balls the Green function associated to problem (1) is positive.
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For general domains one cannot expect an explicit formula and instead we
will proceed by the estimates of Krasovskĭı for Gm and Kj given in [12]. For
sufficiently regular domains Ω (see B) he proves that the Green function and
the Poisson kernels exist and gives estimates for these functions.

Our aim will be to prove estimates from above of Gm and Kj depending on
the distance to the boundary. We will do so by estimating the j-th deriva-
tive through an integration of the (j + 1)-th derivative along a path to the
boundary. The dependence on the distance to the boundary d(x) will appear
choosing a path which length is proportional do d(x). The path will be con-
structed explicitly in Lemma 7.

2 Estimates of the Green function

In this section we will prove Theorem 3. First we derive an estimate of the
j−th derivatives of Gm integrating an estimate of the (j + 1)−th derivative
along an appropriate path. We let the path finish at the boundary to benefit
from the boundary condition. Moreover, we have to construct the path such
that it stays away from the singularity x = y and such that it has a length of
the same magnitude as d(x).

In the following lemma we state the existence of such a path.

Lemma 7 Let x ∈ Ω and y ∈ Ω̄. There exists a curve γy
x : [0, 1] → Ω̄ with

γy
x(0) = x, γy

x(1) ∈ ∂Ω and such that:

(1) for every t ∈ [0, 1] : |γy
x(t)− y| ≥ 1

2
|x− y| ,

(2) l ≤ (1 + π) d(x) where l is the length of γy
x.

Moreover, letting γ̃y
x : [0, l] → Ω̄ be the parametrization by arclength of γy

x, it
holds that

(3) 1
5
s ≤ |x− γ̃y

x(s)| ≤ s for s ∈ [0, l] .

rx̃ r
x

∂Ω

ry r
x

∂Ω

ry
r̃x r

x

∂Ω

ry
rx̃

Fig. 1. The path γy
x for several positions of y.

PROOF. A rough description on how to define such a path is as follows.
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One connects x with a straight line to its nearest boundary point x̄ until the
straight line possibly gets too close to y. To avoid the neighborhood of y we
take a circular route on ∂B with B = B(y, 1

2
|x− y|). In the case that x̄ ∈ B

one moves on ∂B to some other point on ∂Ω. We will not give the details of
the proof but refer to Figure 1.

We proceed with the proof of Theorem 3 and start from the estimates in [12]
of the m-th derivative of Gm. Integrating this function along the path γy

x of
Lemma 7 we find the estimates of the (m − 1)-th derivative of Gm in terms
of the distance to the boundary. Next starting from the new estimates one
repeats the argument. Iterating the procedure m times we find the result as
stated in Theorem 3.

There are four cases. Each of the following lemmas will consider one of these
cases.

Lemma 8 Let ν1, ν2, k ∈ N, k ≥ 2. If

|∇xH(x, y)| � |x− y|−k min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

for x, y ∈ Ω,

and H(x̃, y) = 0 for every x̃ ∈ ∂Ω and y ∈ Ω, then the following inequality
holds:

|H(x, y)| � |x− y|−k+1 min

{
1,

d(x)

|x− y|

}ν1+1

min

{
1,

d(y)

|x− y|

}ν2

for x, y ∈ Ω.

PROOF. Let x, y ∈ Ω and let γy
x the path from x to the boundary from

Lemma 7. Let x̃ := γy
x (l). Since x̃ ∈ ∂Ω one has that

H(x, y) = H(x̃, y) +
∫

γy
x

∇zH(z, y) · dz =
∫ l

0
∇xH(γ̃y

x(s), y) · τ(s)ds, (5)

with τ(s) the unit tangent vector. By the hypothesis and Lemma 27, i) we
obtain from (5) that

|H(x, y)| �
∫ l

0
|γ̃y

x(s)− y|−k min

{
1,
d(γ̃y

x(s))ν1d(y)ν2

|γ̃y
x(s)− y|ν1+ν2

}
ds �

�
∫ l

0

(
|x− y|+ s

)−k
min

{
1,

d(x)ν1d(y)ν2

( |x− y|+ s)ν1+ν2

}
ds �

� |x− y|−k+1
∫ l

|x−y|

0
(1 + t)−k min

{
1,

d(x)ν1d(y)ν2

|x− y|ν1+ν2 (1 + t)ν1+ν2

}
dt. (6)
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Here we used Lemma 7 and that d(γ̃y
x(s)) � d(x). It is convenient to separate

the following two cases.

Case 1, d(x)
|x−y| < 1 : Then min

{
1, d(x)ν1d(y)ν2

|x−y|ν1+ν2 (1+t)ν1+ν2

}
= d(x)ν1d(y)ν2

|x−y|ν1+ν2 (1+t)ν1+ν2
and

one finds by Lemma 26 that

|H(x, y)| � d(x)ν1d(y)ν2

|x− y|k+ν1+ν2−1

∫ l
|x−y|

0

1

(1 + t)k+ν1+ν2
dt �

� d(x)ν1+1d(y)ν2

|x− y|ν1+ν2+k � |x− y|−k+1 min

{
1,

d(x)ν1+1

|x− y|ν1+1

d(y)ν2

|x− y|ν2

}
. (7)

Case 2, d(x)
|x−y| ≥ 1 : Since k ≥ 2 we get again by Lemma 26 that

|H(x, y)| � |x− y|−k+1
∫ l

|x−y|

0
(1 + t)−k dt � |x− y|−k+1 �

� |x− y|−k+1 min

{
1,

d(x)ν1+1

|x− y|ν1+1

d(y)ν2

|x− y|ν2

}
. (8)

Lemma 9 Let ν1, ν2 ∈ N. If

|∇xH(x, y)| � |x− y|−1 min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

for x, y ∈ Ω,

and H(x̃, y) = 0 for every x̃ ∈ ∂Ω and y ∈ Ω, then the following inequality
holds:

|H(x, y)| � log

(
2 +

d(x)d(y)

|x− y|2

)
min

{
1,

d(x)

|x− y|

}ν1+1

min

{
1,

d(y)

|x− y|

}ν2

,

for x, y ∈ Ω.

PROOF. Similarly as in (6) we find that

|H(x, y)| �
∫ l

|x−y|

0
(1 + t)−1 min

{
1,

d(x)ν1d(y)ν2

|x− y|ν1+ν2 (1 + t)ν1+ν2

}
dt.

Again we will separate the two cases.

Case 1, d(x)
|x−y| < 1 : As in (7) we obtain
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|H(x, y)| � d(x)ν1+1

|x− y|ν1+1

d(y)ν2

|x− y|ν2
�

� log

(
2 +

d(x)

|x− y|

)
min

{
1,

d(x)ν1+1

|x− y|ν1+1

d(y)ν2

|x− y|ν2

}
.

Case 2, d(x)
|x−y| ≥ 1 : As in (8) we get by using Lemma 27, ii) that

|H(x, y)| �
∫ l

|x−y|

0
(1 + t)−1 dt �

� log

(
1 +

(1 + π) d(x)

|x− y|

)

∼ log

(
2 +

d(x)

|x− y|

)
min

{
1,

d(x)ν1+1

|x− y|ν1+1

d(y)ν2

|x− y|ν2

}
.

The claim follows using Lemma 27, iii).

Lemma 10 Let ν1, ν2 ∈ N. If

|∇xH(x, y)| � min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

log

(
2 +

d(x)d(y)

|x− y|2

)
,

for x, y ∈ Ω, and H(x̃, y) = 0 for every x̃ ∈ ∂Ω and y ∈ Ω, then the following
inequality holds:

|H(x, y)| � d(x) min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

for x, y ∈ Ω.

PROOF. Proceeding as before and using Lemma 27, iii) one obtains that

|H(x, y)| �
∫ l

0
log

(
2 +

d(γ̃y
x(s))d(y)

|γ̃y
x(s)− y|2

)
min

{
1,
d(γ̃y

x(s))ν1d(y)ν2

|γ̃y
x(s)− y|ν1+ν2

}
ds �

� |x− y|
∫ l

|x−y|

0
log

(
2 + d(x)

|x−y|(1+t)

)
min

{
1, d(x)ν1d(y)ν2

|x−y|ν1+ν2 (1+t)ν1+ν2

}
dt. (9)

Case 1, d(x)
|x−y| < 1 : From Lemma 26 it follows that
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|H(x, y)| � d(x)ν1d(y)ν2

|x− y|ν1+ν2−1

∫ l
|x−y|

0

1

(1 + t)ν1+ν2
dt �

� d(x)ν1d(y)ν2

|x− y|ν1+ν2−1

d(x)

|x− y|
∼ d(x) min

{
1,
d(x)ν1d(y)ν2

|x− y|ν1+ν2

}
.

Case 2, d(x)
|x−y| ≥ 1 : We first observe that 6d(x)

|x−y|(1+t)
> 1. Indeed since t ≤ (1+π)d(x)

|x−y|
we have that

6d(x)

|x− y| (1 + t)
≥ 6d(x)

|x− y|+ (1 + π) d(x)
≥ 6

2+π
> 1.

Hence from (9) applying Lemma 26 we obtain

|H(x, y)| � |x− y|
∫ l

|x−y|

0
log

(
6

d(x)

|x− y| (1 + t)

)
dt ∼

∼ |x− y|
((

1 + l
|x−y|

)
log

(
6d(x)

|x−y|(1+ l
|x−y|)

)
− log

(
6d(x)
|x−y|

)
+ l

|x−y|

)
�

� |x− y|
(

1 +
(1 + π) d(x)

|x− y|

)
log

 6 d(x)
|x−y|

(1+π)d(x)
|x−y| + 1


+d(x)

(
|x− y|
d(x)

log

(
|x− y|
6d(x)

)
+ 1 + π

)
∼

∼ d(x) ∼ d(x) min

{
1,
d(x)ν1d(y)ν2

|x− y|ν1+ν2

}
.

Lemma 11 Let ν1, ν2, α1, α2 ∈ N. If

|∇xH(x, y)| � d(x)α1d(y)α2 min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

,

for x, y ∈ Ω, and H(x̃, y) = 0 for every x̃ ∈ ∂Ω and y ∈ Ω, then the following
inequality holds:

|H(x, y)| � d(x)α1+1d(y)α2 min

{
1,

d(x)

|x− y|

}ν1

min

{
1,

d(y)

|x− y|

}ν2

for x, y ∈ Ω.

PROOF. Proceeding as before, one obtains that

|H(x, y)| �
∫ l

0
d(γ̃y

x(s))α1d(y)α2 min

{
1,
d(γ̃y

x(s))ν1d(y)ν2

|γ̃y
x (s)− y|ν1+ν2

}
ds �

� |x− y| d(x)α1d(y)α2

∫ l
|x−y|

0
min

{
1,

d(x)ν1d(y)ν2

|x− y|ν1+ν2 (1 + t)ν1+ν2

}
dt.
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Again we will separate the two cases.

Case 1, d(x)
|x−y| < 1 : As before it follows that

|H(x, y)| � d(x)ν1+α1d(y)ν2+α2

|x− y|ν1+ν2−1

∫ l
|x−y|

0

1

(1 + t)ν1+ν2
dt �

� d(x)
d(x)ν1+α1d(y)ν2+α2

|x− y|ν1+ν2
∼ d(x)α1+1d(y)α2 min

{
1,
d(x)ν1d(y)ν2

|x− y|ν1+ν2

}
.

Case 2, d(x)
|x−y| ≥ 1 : We obtain

|H(x, y)| � |x− y| d(x)α1d(y)α2

∫ l
|x−y|

0
1 dt ∼

∼ d(x)α1+1d(y)α2 ∼ d(x)α1+1d(y)α2 min

{
1,
d(x)ν1d(y)ν2

|x− y|ν1+ν2

}
.

The four lemmas above allow us to prove the following theorem of which
Theorem 3 is a special case.

Theorem 12 Let Gm(x, y) be the Green function associated to system (1).
Let k ∈ Nn. The following estimates hold for every x, y ∈ Ω :

(1) For |k| ≥ m:
(a) if 2m− n− |k| < 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ � |x− y|2m−n−|k| min

{
1,

d(y)

|x− y|

}m

,

(b) if 2m− n− |k| = 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣� log

(
1 +

d(y)m

|x− y|m
)

∼

∼ log

(
2 +

d(y)

|x− y|

)
min

{
1,

d(y)

|x− y|

}m

,

(c) if 2m− n− |k| > 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ � d(y)2m−n−|k| min

{
1,

d(y)

|x− y|

}n+|k|−m

,

(2) For |k| < m:
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(a) if 2m− n− |k| < 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ � |x− y|2m−n−|k| min

{
1,

d(x)

|x− y|

}m−|k|

min

{
1,

d(y)

|x− y|

}m

,

(b) if 2m− n− |k| = 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ � log

(
1 +

d(y)md(x)m−|k|

|x− y|2m−|k|

)
∼

∼ log

(
2 +

d(y)

|x− y|

)
min

{
1,

d(y)

|x− y|

}m

min

{
1,

d(x)

|x− y|

}m−|k|

,

(c) if 2m− n− |k| > 0, and moreover
(i) m− 1

2
n ≤ |k|, then

∣∣∣Dk
xGm(x, y)

∣∣∣ � d (y)2m−n−|k| min
{
1, d(x)

|x−y|

}m−|k|
min

{
1, d(y)

|x−y|

}n−m+|k|
,

(ii) |k| < m− 1
2
n, then

∣∣∣Dk
xGm(x, y)

∣∣∣ � d(y)m−n
2 d(x)m−n

2
−|k| min

{
1,
d(x)d(y)

|x− y|2

}n
2

.

PROOF. Let x, y ∈ Ω. We will start from the estimates of Krasovskĭı for the
higher order derivatives of Gm which are stated in Theorem 24. The estimates
for the lower order derivatives of Gm will be obtained by integrating the higher
order estimates along the path γy

x from Lemma 7. Each of the four lemmas
above corresponds to one such integration step. Indeed, with α, β ∈ Nn and
x̃ ∈ ∂Ω the end point of γy

x, we find

Dα
xD

β
yGm(x, y) = Dα

xD
β
yGm(x̃, y) +

∫
γy

x

∇zD
α
zD

β
yGm(z, y) · dz. (10)

If |α| ≤ m− 1 then the first term on the right hand side of (10) equals 0 and
we get ∣∣∣Dα

xD
β
yGm(x, y)

∣∣∣ ≤ ∫ l

0

∣∣∣∇xD
α
xD

β
yGm(γ̃y

x(s), y)
∣∣∣ ds. (11)

If |β| ≤ m− 1, then similarly by integrating with respect to y we find

∣∣∣Dα
xD

β
yGm(x, y)

∣∣∣ ≤ ∫ l

0

∣∣∣∇yD
β
yD

α
xGm(x, γ̃x

y (s))
∣∣∣ ds. (12)

The explicit estimate coming out of one of such steps depends on which of
the four lemmas above we have to use. We take H(x, y) = Dα

xD
β
yGm(x, y) and

depending on |k| = r we have to make an appropriate choice for α and β.

We distinguish the cases as in the statement of the theorem.

11



Case 1, r ≥ m: Let β ∈ Nn with |β| = m − 1. Then proceeding from (12)

with k = α and using the estimate in Theorem 24, namely
∣∣∣Dα

xD
β
yGm(x, y)

∣∣∣ ≤
|x− y|m−n−r , three different cases have to be considered.

Case 1(a), 2m− n− r < 0 : The claim follows applying m times Lemma 8.

Case 1(b), 2m− n− r = 0 : One gets the estimates by using Lemma 8 m− 1
times and Lemma 9 once.

Case 1(c), 2m− n− r > 0 : By first applying Lemma 8 n + r −m− 1 times
and then Lemma 9 once we find

∣∣∣Dβ̃
yD

k
xGm(x, y)

∣∣∣ � log

(
1 +

d(y)n+r−m

|x− y|n+r−m

)
,

with β̃ ∈ Nn, β̃ ≤ β and
∣∣∣β̃∣∣∣ = 2m− n− r. Next one uses Lemma 10 once and

Lemma 11 2m− n− r − 1 times.

Case 2, r < m: Let α, β ∈ Nn with |α| = m− r and |β| = m. One starts from
the Krasovskĭı estimates for |Dβ

yD
α
xD

k
xGm(x, y)| and then integrates m times

with respect of y and m− r times with respect to x.

Case 2(a), 2m − n − r < 0 : The claim follows by applying Lemma 8 first m
times with respect to y and then m− r times with respect to x.

Case 2(b), 2m − n − r = 0 : One proves the estimates by using Lemma 8 m
times with respect to y, m − r − 1 times with respect to x and then Lemma
9 once with respect to x.

Case 2(c), 2m− n− r > 0 : One has to separate the cases m− r ≤ n− 1 and
m− r > n− 1.

Case m− r ≤ n− 1 : Applying Lemma 8 n− 1 times and Lemma 9 once we
get ∣∣∣Dβ̃

yD
k
xGm(x, y)

∣∣∣ � log

(
1 +

d(x)m−rd(y)n−m+r

|x− y|n

)
,

with β̃ ∈ Nn, β̃ ≤ β with
∣∣∣β̃∣∣∣ = 2m − n − r. Then using Lemma 10 once and

Lemma 11 2m− n− r − 1 times we obtain

∣∣∣Dk
xGm (x, y)

∣∣∣ � d (y)2m−n−r min
{
1, d(x)

|x−y|

}m−r
min

{
1, d(y)

|x−y|

}n−m+r
. (13)

The claim follows from (13) when m − 1
2
n ≤ r. Otherwise when r < m − 1

2
n

we rewrite (13) as

12



∣∣∣Dk
xGm(x, y)

∣∣∣� d(y)2m−n−r

(
d(y)

d(x)

)n
2
−m+r

min

{
1,
d(x)d(y)

|x− y|2

}n
2

∼

∼ d(y)m−n
2 d(x)m−n

2
−r min

{
1,
d(x)d(y)

|x− y|2

}n
2

.

Here we use Lemma 27, iii).

Case m− r > n− 1 : Let α̃ ∈ Nn, α̃ ≤ α with |α̃| = m− n− r. Using Lemma
8 n− 1 times and 9 once we get

∣∣∣Dβ
yD

α̃
xD

k
xGm (x, y)

∣∣∣ � log

(
1 +

d(x)n

|x− y|n

)
.

Then applying Lemma 11 m times with respect to y and m− r−n times with
respect to x, one obtains

∣∣∣Dk
xGm (x, y)

∣∣∣� d (y)m d (x)m−r−n min

{
1,

d(x)

|x− y|

}n

∼

∼ d (y)m− 1
2
n d (x)m−r−n

2 min

{
1,
d(x)d (y)

|x− y|2

}n
2

,

using again Lemma 27, iii). Observe that m− r > n− 1 implies r < m− 1
2
n

for n ≥ 2.

3 Estimates of the Poisson kernels

In this section we prove Theorem 4. The method is similar to the one used for
Theorem 3. A difference is that in this case there is no symmetry between x
and y.

We proceed with the proof of Theorem 4. The lemma that corresponds to one
integration step is as follows.

Lemma 13 Let ν1, k ∈ N with k ≥ 2. If

|∇xH(x, y)| � |x− y|−k d(x)ν1 for x ∈ Ω, y ∈ ∂Ω,

and H(x̃, y) = 0 for every x̃ ∈ ∂Ω with x̃ 6= y, then the following inequality
holds

|H(x, y)| � |x− y|−k d(x)ν1+1 for x ∈ Ω, y ∈ ∂Ω.

13



PROOF. Let x ∈ Ω and y ∈ ∂Ω. Let γy
x the path from x to the boundary

from Lemma 7 and let x̃ := γy
x (1). Since x̃ ∈ ∂Ω and x̃ 6= y it holds that

H(x, y) = H(x̃, y) +
∫

γy
x

∇zH(z, y) · dz.

By the hypothesis we get that

|H(x, y)| �
∫ l

0
|∇xH(γ̃y

x(s), y)| ds �
∫ l

0
|γ̃y

x(s)− y|−k d(γ̃y
x(s))ν1 ds.

Since d(γ̃y
x(s)) � d(x), from Lemma 7 it follows that

|H(x, y)| � d(x)ν1

∫ l

0
(|x− y|+ s)−k ds �

� d(x)ν1 |x− y|−k+1
∫ l

|x−y|

0
(1 + t)−k dt � d(x)ν1+1

|x− y|k
.

The lemma above allow us to prove the following theorem of which Theorem
4 is a special case.

Theorem 14 Let Kj (x, y) , for j = 0, ...,m − 1, be the Poisson kernels as-
sociated to system (1). Let α ∈ Nn with |α| ≤ m − 1. The following estimate
holds for x ∈ Ω, y ∈ ∂Ω

|Dα
xKj(x, y)| �

d(x)m−|α|

|x− y|n−j+m−1 .

Remark 15 The estimates of Dα
xKj(x, y) for |α| ≥ m can be found in the

paper of Krasovskĭı [12]: for x ∈ Ω and y ∈ ∂Ω

|Dα
xKj(x, y)| � |x− y|−n+j−|α|+1 .

PROOF. Let x ∈ Ω, y ∈ ∂Ω, j ∈ {0, . . . ,m− 1} and α ∈ Nn with |α| ≤
m−1. We will start from the estimates of Krasovskĭı for the derivative of order
m of Kj which are stated in Theorem 24. The estimates for the lower order
derivatives of Kj will be obtained by integrating the higher order estimates
along the path γy

x from Lemma 7. Indeed, with β ∈ Nn, β ≥ α and |β| = m−1
we find

Dβ
xKj(x, y) = Dβ

xKj(γ
y
x(1), y)+

∫
γy

x

∇zD
β
zKj(z, y) ·dz =

∫
γy

x

∇zD
β
zKj(z, y) ·dz.

Applying Lemma 8 with H(x, y) = Dβ
xKj(x, y) we get∣∣∣Dβ

xKj(x, y)
∣∣∣ � |x− y|j−n+1−m d(x).
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The claim follows iterating the procedure m− |α| − 1 times.

4 Estimates for the solution with zero boundary conditions

In this section we will derive regularity estimates for (−∆)m u = f in Ω,

( ∂
∂ν

)ku = 0 on ∂Ω with 0 ≤ k ≤ m− 1,
(14)

where Ω ⊂ Rn is bounded and has the boundary regularity as before. First
we recall an estimate involving the Riesz potential (see [8]). Defining Kγ(x) =
|x|−γ and

(Kγ ∗ f) (x) :=
∫
Ω
|x− y|−γ f(y)dy,

one has:

Lemma 16 Let Ω ⊂ Rn be bounded, γ < n and 1 ≤ p ≤ q ≤ ∞. If γ
n
< 1

r
=

1 + 1
q
− 1

p
then there is Cn−γr,Ω > 0 such that for all f ∈ Lp(Ω):

‖Kγ ∗ f‖Lq(Ω) ≤ Cn−γr,Ω ‖f‖Lp(Ω) . (15)

PROOF. This proof is standard, let us recall it for easy reference. Let

γ

n
<

1

r
= 1 +

1

q
− 1

p
= 1− δ.

Denote σn the surface area of the unit ball in Rn. For 1 < p ≤ q < ∞ one
finds by Hölder, setting cn−γr,Ω = 1

n−γr
σn (diamΩ)n−γr ,

(Kγ ∗ f) (x) =
∫
Ω

1

|x− y|γ
r
q
|f(y)|

p
q

1

|x− y|γ(
p−1

p )r
|f(y)|pδ dy ≤

≤
(∫

Ω

1

|x− y|γr |f(y)|p dy
) 1

q
(∫

Ω

1

|x− y|γr dy

) p−1
p (∫

Ω
|f(y)|p dy

)δ

≤ (cn−γr,Ω)
p−1

p

(∫
Ω

1

|x− y|γr |f(y)|p dy
) 1

q (∫
Ω
|f(y)|p dy

)δ

.

Hence, with a change in the order of integration,

∫
Ω
|(Kγ ∗ f) (x)|q dx ≤ (cn−γr,Ω)

p−1
p

q+1
(∫

Ω
|f(y)|p dy

)1+δq
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implying (15) since (cn−γr,Ω)1− 1
p
+ 1

q ≤ Cn−γr,Ω := cn−γr,Ω + 1.

For p = 1 one may skip the middle term in the Hölder estimate; for q = ∞
the first term.

As a consequence of the pointwise estimates and using the lemma above, we
next state the optimal Lp-Lq-regularity results mentioned before. Let us recall
that d(.) is the distance function defined in (3).

Proposition 17 Let u ∈ C2m
(
Ω̄
)

and f ∈ C
(
Ω̄
)

satisfy (14).

• If 2m > n, then there exists C1
Ω,m > 0 such that for all θ ∈ [0, 1]

∥∥∥d(.)−m+θnu
∥∥∥

L∞(Ω)
≤ C1

Ω,m

∥∥∥d(.)m−(1−θ)nf
∥∥∥

L1(Ω)
. (16)

• Let 1 ≤ p ≤ q ≤ ∞. If 1
p
− 1

q
< min

{
2m
n
, 1
}
, then taking

α ∈
(

1

p
− 1

q
,min

{
1,

2m

n

}]

there exists C2
Ω,m,α > 0 such that for all θ ∈ [0, 1]

∥∥∥d(.)−m+θnαu
∥∥∥

Lq(Ω)
≤ C2

Ω,m,α

∥∥∥d(.)m−(1−θ)nαf
∥∥∥

Lp(Ω)
. (17)

Remark 18 Notice that the shift in the exponent of d(.) between the right and
the left hand side of (17) is 2m − nα. Hence the shift increases when α goes
to 1

p
− 1

q
.

Remark 19 The conditions u ∈ C2m
(
Ω̄
)

and f ∈ C
(
Ω̄
)

may be considerable
relaxed for each of the estimates by using a density argument.

Remark 20 The estimate in (16) is sharp and does not seem to follow through
imbedding results. The estimates in (17) do need an application of Hölder’s

inequality. As a consequence the condition 1
p
− 1

q
< min

{
2m
n
, 1
}

appears with
a strict inequality. Such estimates will also follow through regularity results in
Lp, Poincaré estimates, Sobolev imbeddings and dual Sobolev imbeddings. See
[4].

Remark 21 In a similar way one may also derive estimates for combinations
of boundary behavior and derivatives. For example if n = m = 2 one finds with
θ ∈ [0, 1] : ∥∥∥d(.)−1+2θDxu

∥∥∥
L∞(Ω)

≤ C3
Ω,m

∥∥∥d(.)2θf
∥∥∥

L1(Ω)
.
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Remark 22 Fila, Souplet and Weissler in [7, Proposition 2.2] obtained for
the case m = 1, the following estimate. Assume that 1 ≤ p ≤ q ≤ ∞ satisfy
1
p
− 1

q
< 2

n+1
, then any u ∈ W 1,2

0 (Ω) with d(.)
1
p ∆u ∈ Lp (Ω) satisfies

∥∥∥d(.) 1
qu
∥∥∥

Lq(Ω)
≤ C4

Ω

∥∥∥d(.) 1
p ∆u

∥∥∥
Lp(Ω)

.

This is a special case of (17). The proof in [7] uses heat kernel estimates.

PROOF. In order to consider all the possible splitting between the boundary
behavior and the internal regularity we use Lemma 27, v) to find for all β ∈
[0, 1] and σ ∈ [−1, 1] that

min

{
1,
d(x)d(y)

|x− y|2

}
≤
(
d(x)d(y)

|x− y|2

)1−β (
d(x)

d(y)

)βσ

.

Hence, for 2m − n > 0, we may use Theorem 3.1 to obtain that there exists
CΩ,m > 0 such that for σ ∈ [−1, 1] ,

Gm (x, y) ≤ CΩ,m d(x)m− 1
2
nαd(y)m− 1

2
nα 1

|x− y|n(1−α)

(
d(y)

d(x)

) 1
2
nασ

≤ CΩ,m d(x)m− 1
2
nα(1+σ)d(y)m− 1

2
nα(1−σ) 1

|x− y|n(1−α)
for all x, y ∈ Ω. (18)

For 2m− n < 0 and since n
2m
α ∈ [0, 1] we find with σ ∈ [−1, 1]

Gm (x, y) ≤ CΩ,m |x− y|2m−n

(
d(x)d(y)

|x− y|2

)m(1− n
2m

α) (
d(y)

d(x)

)m n
2m

ασ

≤ CΩ,m d(x)m− 1
2
nα(1+σ)d(y)m− 1

2
nα(1−σ) 1

|x− y|n(1−α)
for all x, y ∈ Ω. (19)

So we may use Lemma 16 and

d(x)−m+ 1
2
nα(1+σ) |u(x)| ≤ CΩ,m

∫
Ω

1

|x− y|n(1−α)
d(y)m− 1

2
nα(1−σ) |f(y)| dy,

to find, since α ∈
(

1
p
− 1

q
,min

{
1, 2m

n

}]
, that:

∥∥∥d−m+ 1
2
nα(1+σ)u

∥∥∥
Lq(Ω)

≤ c
∥∥∥dm− 1

2
nα(1−σ)f

∥∥∥
Lp(Ω)

.

So with θ = 1
2
(1 + σ) we obtain the estimate in (16).
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In the case that 2m−n = 0 we may proceed as for (19) except for a logarithmic
term. This term can be taken care of through

log

(
2 +

d(x)

|x− y|

)
≤ CΩ,ε

1

|x− y|ε
,

where we take ε = 1
2
n
(
α− 1

p
+ 1

q

)
.

A Green function and Poisson kernels

In this section we recall some of the well known properties of the Green func-
tion and the Poisson kernels.

The Green function for (1)

This function Gm : Ω × Ω → R is such that for every y ∈ Ω the mapping
x 7→ G(x, y) satisfies (in the sense of distribution) (−∆)mGm (·, y) = δy(·) in Ω,(

∂
∂ν

)j
Gm (·, y) = 0 on ∂Ω, j = 0, ...,m− 1.

(A.1)

Since (−∆)m is selfadjoint on W 2m,2 (Ω) ∩ Wm,2
0 (Ω) ⊂ L2 (Ω) , the Green

function is symmetric. Observe that for y ∈ Ω identity (A.1) gives for |s| ≤
m− 1

Ds
xG (x, y) = 0 for x ∈ ∂Ω. (A.2)

In fact, taking j = 0 in (A.1) one finds that x 7→ Gm(x, y) for y ∈ Ω is zero at
the boundary. Hence the tangential derivatives of x 7→ Gm(x, y) of any order,
for y ∈ Ω, are identically zero on ∂Ω. Since the normal derivatives up to order
m− 1 are zero at the boundary, (A.2) follows.

The functionGm has a singular behavior onDΩ :=
{
(x, x) : x ∈ Ω̄

}
. Assuming

that ∂Ω is C∞ one finds that Gm belongs to C∞
((

Ω̄× Ω̄
)
\DΩ

)
.

The Poisson kernels for (1)

For j = 0, ...,m − 1, and y ∈ ∂Ω the functions x 7→ Kj(x, y) satisfy (in the
sense of distribution)

(−∆)mKj(·, y) = 0 in Ω,(
∂
∂ν

)k
Kj(·, y) = 0 on ∂Ω, for k 6= j, 0 ≤ k ≤ m− 1,(

∂
∂ν

)j
Kj(·, y) = δy,∂Ω(·) on ∂Ω,

(A.3)
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where δy,∂Ω is the delta-function defined on ∂Ω (that is, the delta-function on
an (n− 1)-dimensional manifold). Moreover, the kernels satisfy for |s| ≤ m−1
and j = 0, ...,m− 1

Ds
xKj(x, y) = 0, for x, y ∈ ∂Ω, x 6= y. (A.4)

In fact, the mappings x 7→ Kj(x, y) on Ω̄\{y} with j = 0, ...,m−1 are zero on
∂Ω \ {y}. Hence the tangential derivatives of any order are zero on ∂Ω \ {y}.
Since (A.3) implies that the normal derivatives up to order m− 1 are zero, we
find (A.4).

By an integration by part and by using the explicit order of the singularities
of the Green function (for instance from the result of Krasovskĭı in [12]), one
can explicitly write the relation between the Poisson kernels and the Green
function. Namely for j ∈ {0, ...,m− 1} and y in ∂Ω the following relation
holds in Ω

Kj(x, y) =


∂

∂νy
(−∆y)

m−( j
2
+1)G(x, y) for j even,

(−∆y)
m− j+1

2 G(x, y) for j odd,

where νy denotes the external normal to ∂Ω in y.

The kernels Kj have a singular behavior on D∂Ω = {(x, x) : x ∈ ∂Ω} . Assum-

ing that ∂Ω is C∞ one finds that Kj belong to C∞
((

Ω̄× Ω̄
)
\D∂Ω

)
.

B The estimates of Krasovskĭı

We will recall the theorem in [12] which gives the estimates of the Green
function and the Poisson kernels. We first recall the main assumption.

Consider the boundary value problem Lu = ϕ0 in Ω,

Bju = ψj on ∂Ω for j = 0, ...,m− 1.
(B.1)

The following hypothesis are assumed.

(1) The operator

L :=
∑

|β|≤2m

aβ (x)Dβ,

is uniformly elliptic (see the condition for L on page 663 of [1]).
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(2) The boundary operators

Bj =
∑

|β|≤mj

bjβ (x)Dβ, for j = 0, ...,m− 1,

satisfy the complementing condition relative to L (see the complementing
condition on page 663 of [1]).

(3) Let l1 > maxj (2m−mj) and l0 = maxj (2m−mj) . The coefficients aβ

belong to C l1+1
(
Ω̄
)

and bjβ belong to C l1+1 (∂Ω) ;

(4) The boundary ∂Ω is C l1+2m+1.

Theorem 23 Let the condition above be satisfied and let l1 be such that l1 >
2 (l0 + 1) for n = 2 and l1 >

3
2
l0 for n ≥ 3. If problem (B.1) is uniquely solvable

then the Green function Gm and the Poisson kernels Kj, with j = 0, ...,m−1,
for (B.1) exist.

Theorem 24 Assume that the conditions of Theorem 23 are satisfied. More-
over let α, β, γ ∈ Nn with |α| ≤ 2m+l1−l0, |β| ≤ l1 and |γ| ≤ l1−2m+mj +1.

Then wherever they are defined, the derivatives of the Green function Gm

satisfy:

(1) if |α|+ |β| < 2m− n then∣∣∣Dα
xD

β
yGm (x, y)

∣∣∣ � 1,

(2) if |α|+ |β| = 2m− n then

∣∣∣Dα
xD

β
yGm (x, y)

∣∣∣ � log

(
2 diamΩ

|x− y|

)
,

(3) if |α|+ |β| > 2m− n then∣∣∣Dα
xD

β
yGm (x, y)

∣∣∣ � |x− y|2m−n−|α|−|β| ,

and the derivatives of Kj satisfy:

(1) if |α|+ |γ| < mj − n+ 1 then∣∣∣Dα
xD

γ
yKj (x, y)

∣∣∣ � 1,

(2) if |α|+ |γ| = mj − n+ 1 then

∣∣∣Dα
xD

γ
yKj (x, y)

∣∣∣ � log

(
2 diamΩ

|x− y|

)
,
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(3) if |α|+ |γ| > mj − n+ 1 then∣∣∣Dα
xD

γ
yKj (x, y)

∣∣∣ � |x− y|mj−n+1−|α|−|γ| .

Here diamΩ denotes the diameter of Ω.

Remark 25 In case of Dirichlet boundary conditions, hence l0 = 2m, the
conditions on l1 are:

for n ≥ 3: l1 > 3m,

for n = 2: l1 > 4m+ 2.

Hence one needs ∂Ω ∈ C6m+4 for n = 2 and ∂Ω ∈ C5m+2 for n ≥ 3.

C Some technical lemmas

The following lemmas can be found in [9]. For the sake of convenience we
recall these.

Lemma 26 If |x− y| ≤ 1
2
max {d (x) , d (y)} then it holds

1
2
d (x) ≤ d (y) ≤ 2d (x) and 1 ≤ d (x) d (y)

|x− y|2
.

Otherwise if |x− y| ≥ 1
2
max {d (x) , d (y)} then it holds

d (x)

|x− y|
≤ 2,

d (y)

|x− y|
≤ 2 and

d (x) d (y)

|x− y|2
≤ 4.

Lemma 27 Let p, q ≥ 0. The following relations hold on Ω× Ω:

i: min
{
1, d(x)pd(y)q

|x−y|p+q

}
∼ min

{
1, d(x)p

|x−y|p
}

min
{
1, d(y)q

|x−y|q
}
,

ii: log
(
1 + d(x)pd(y)q

|x−y|p+q

)
∼ log

(
2 + d(x)

|x−y|

)
min

{
1, d(x)pd(y)q

|x−y|p+q

}
,

iii: log
(
2 + d(x)

|x−y|

)
∼ log

(
2 + d(x)d(y)

|x−y|2
)
,

iv: min
{
1, d(x)pd(y)q

|x−y|p+q

}
∼
(

d(y)
d(x)

) 1
2
(q−p)

min
{
1, d(x)

1
2 (p+q)d(y)

1
2 (p+q)

|x−y|p+q

}
,

v: min
{
1, d(x)d(y)

|x−y|2
}
∼ min

{
d(y)
d(x)

, d(x)
d(y)

, d(x)d(y)

|x−y|2
}
.
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