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Summary The main result in this paper is that the solution operator
for the bi-laplace problem with zero Dirichlet boundary conditions on a
bounded smooth 2d-domain can be split in a positive part and a possibly
negative part which both satisfy the zero boundary condition. Moreover,
the positive part contains the singularity and the negative part inherits the
full regularity of the boundary. Such a splitting allows one to find a priori
estimates for fourth order problems similar to the one proved via the max-
imum principle in second order elliptic boundary value problems. The
proof depends on a careful approximative fill-up of the domain by a finite
collection of limacons. The limagons involved are such that the Green
function for the Dirichlet bi-laplacian on each of these domains is strictly
positive.
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1 Introduction and main results

A major tool for second order elliptic equations is the maximum principle.
The maximum principle not only implies that a positive source will give a
positive solution but it helps to obtain a priori estimates and hence to find
regularity results. Especially in nonlinear equations such a priori estimates
play a crucial role. Several results are referred to by the name maximum
principle but the result that we want to refer to is the local result that reads
for the laplacian as Au > 0 in a neighborhood of a implies that v cannot
have a strict maximum in a. A serious obstruction for higher order elliptic
equations is that one cannot expect a similar result as functions like 2>
clearly show.

The situation becomes more complicated when considering a positiv-
ity preserving property which is often also named “maximum principle”.
For the laplacian that is: —Awu > 01in €2 and u > 0 on 02 implies u > 0
in 2 (with Q a bounded domain in R™). This “global maximum princi-
ple” also holds for some special higher dimensional problems. Indeed,
A%y > 01in B and —%u > 0,u > 0on 0B implies v > 0 in B. Here
B is a ball in R™ with n < 4. For this special result see [20, page 34] or
[16]. With %‘u = u = 0 on 0B the result holds for B in any R" and goes
back 100 years to Boggio ([3]). The restriction to the ball is rather crucial.
Since Dutffin’s first counterexample ([10]) many others followed and it is
conceivable that for most domains a positivity preserving property fails
(see [15]).

In [19] Nehari looks for subdomains of €2, characterized by the po-
sition of the points x and y and by simple geometric properties of €2,
in which the Green function for the biharmonic problem with Dirichlet
boundary condition on {2 may be shown to be positive.

In order to find a priori estimates it is however not necessary to have
such a sign preserving result; it is sufficient that one can show a uniform
behavior of the singularity of the solution operator. A separation of the so-
lution operator in a smooth but sign changing part and a uniform singular
part of fixed sign is the main result of the present paper. Since we are using
conformal mappings our present result is restricted to two dimensional do-
mains. Note that in two dimensions the singularity of the solution operator
for the bilaplacian appears in the second derivative. Indeed a fundamental
solution is & |z|* In |z.

Let us be more precise. For (2 an open bounded C** domain in R? we
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will show that the solution operator for

A%u=f inQ,
u =0 on 0f), (1.1)
%u =0 on 092,

can be split in the way we just mentioned. Crucial is that we find a uniform
behavior of such a splitting even near the boundary. Such a result away
from the boundary, that is in compact subsets of 2, was proven in [14].

We proceed as follows. We recall from [7] that for €) taken from some
family of limagons the Green function for (1.1) is positive. Secondly, one
may show that small perturbations of those limagons do not destroy the
positivity of the corresponding Green function. Thirdly, one may con-
struct a finite number of such slightly perturbed limagons { E; C R?} that
are such that the boundary of 2 is covered by the boundaries of those per-
turbed limagons while these limagons cover a neighborhood of the bound-
ary of ). Together with a covering of the interior one is able to construct
the desired splitting of the solution through a partition of unity related to
that covering. Roughly explained, for each x € €2 there is an element E
in this finite covering such that the Green function for (1.1) can be de-
composed as the sum of G, (,y) and a remainder term G (v, y) where
G, (z,y) is positive and G (x, y) is without singularity. Note that the
choice of E; depends on x. Since the extension of G, (7, y) from EJ2 to
2 by 0 is not smooth one may guess that the just mentioned decomposi-
tion is more involved than just this simple sum.

1.1 Main results

In this section we state the two main results of the paper. First we fix some
notation.

The Green function (g, is such that the solution of problem (1.1) for
appropriate f can be written as

u(z) = / Gale,y) f(y)dy.

In the following dg(.) denotes the distance to the boundary in the domain
Q:

do(z) = xle%fg |z — x| .
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Two closely related versions of the main result are the following. The
first one 1s a pointwise description which focusses on the splitting of the
solution operator.

Theorem 1.1 Assume that Q C R? is a bounded simply connected do-
main with 92 € C'°. Then there exist G55, G : Q% — R such that the
Green function for (1.1) can be written as

Gol(w,y) = G&f(,y) + Gy (2.y)
and the following is satisfied:

1. (a) G&%(x,y) > 0on Q2

(b) GU'8 € C' (Q*) NC§(Q?) forally € (0,1);

(c) Go'* € 7 ({(x,y) € W #y}) forally € (0,1);
2. (a) G&f e OB () N C§ (Q?) forally € (0,1).

Remark 1.2 The space C} (K) consists of all functions g € C'(K) such
that g = |Dg| = 0 on OK.

Remark 1.3 For the condition 92 € C''% see Definition 1.11. We expect
that C'* can be relaxed. However, since we are using results from [18] we
depend on the assumptions in that paper.

Remark 1.4 Since G is symmetric one may assume that both G* and

Gi';“g are symmetric. Indeed, one may symmetrize by setting

L . I ..
GQ,new(x’ y) = EGQ ("L‘7 y) + §GQ (yv :L')

In [8] it is shown that the Green function satisfies the following esti-
mate for a two-dimensional domain €):

d(z)d(y)

|z —y|?

|Ga(z,y)| < cq d(x)d(y) min {1, } for every z,y € 2. (1.2)

By the estimates for the disk (see e.g. [12]) one finds that (1.2) is optimal
for the positive part. Here we are able to get a better estimate from below:
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Theorem 1.5 Let ) be a bounded domain in R? with 02 € C'S. Then
there exists cq > 0 such that Gq satisfies:

Ga(z,y) > —cqod(z)*d(y)?* for every z,y € Q. (1.3)

The next result is a kind of maximum principle, that is, it gives a point-
wise bound from above for the solution in terms of the positive part of
the right hand side and a weaker norm of the solution itself. Before we
state the result let us recall that the space W ~"7(() is the dual space of
W' (§2), with % + z% = 1, and its norm can be defined as follows

[wllyy—mpq) == sup {U(so); € W™ (Q), llellwmar @) < 1} ~

Theorem 1.6 Ler 0 < o < 1 and p € (1,00). Suppose that ) is a
bounded simply connected domain in R* with Q) € C**. Then for any
q > 2 and ¢ > 0 there exists a constant ¢, o . > 0 such that for f € LP(2)
the solution w € W*P(Q) N WP (Q) of (1.1) satisfies

u(z) < Con,e (“f+|{L1(B(m7a)mQ) + ||u||W71,q(Q)> for every x € Q.
Here [ denotes the positive part of f.

Remark 1.7 More precise information on how ¢, o . depends on ¢, €2 and
¢ can be found in Theorem 4.1. For those who want to avoid norms for
negative Sobolev spaces we recall that [[ul|y,—1.4q) < c(s,q,9Q) [|ul

for s > 2q (q+2)_1.

L3(9)

1.2 Some notations

Let us fix the following (for later use we consider R"™ with general n).

Notation 1.8 Let ) be a bounded domain in R" and let f and g be func-
tions on ) x €.

e Fora,3 € N"weset|a| =) 7 _, a,and

glal olfl

DD f(x,y) = 5 Y):
=Dy /(23] 8%?1$32--x%”3y11y§2--yf”f( g
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e An equivalence relation for f and g which are nonnegative (See
[13]):
fr~gonQxQ

if and only if there are c1, cy > 0 such that
le(lll',y) < g(.fL',y) < 62f<x7y)f0rall T,y € Q.

e A dominance relation with respect to a nonnegative f :
f=gonlxQ

if and only if there is ¢ > 0 such that
f(z,y) <cglz,y) forallz,y € Q.

The Holder spaces C"(2) and C™(Q2) with » € N and v € (0, 1] are
supplied with the norm:

1fler@ = D 1D flloos

|laf<r

1 llero@y = I fller@ + Z [Df1,,

|laf=r

where [f] := sup {W, T,y €N, v # y}. For convenience we set

Cm0(Q) := C"(€). In the following C” () denotes the set of all functions
in C"(2) whose supports are compact subsets of ).
Form € Nand p > 1, p € R, W™P(Q)) denotes the Sobolev space

with the norm
Hf”Wm»P(Q) - Z HDafHLP(Q) :

laj<m

We fix the following notation to point out on which quantities the con-
stants depend.

Notation 1.9 For o, 3, v € R, C = C(«, 3,7) means that C depends
only on «, (3 and vy, and that C' is bounded for bounded values of these
parameters.
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Next we will need some notation concerning the domain and its bound-
ary.

Notation 1.10 (relatively open subset of the boundary) For K a subset
of 002 C R™, set
Ko%= (K U (092)%)° N oQ. (1.4)

In the literature several definitions of C““-domains appear. To avoid

any ambiguity we explicitly give the version that we will use.

Definition 1.11 (uniform C*° regularity condition for Q) Let ¢ ¢ N*,
a € [0,1] and Q be a bounded domain in R". The domain § satisfies the
uniform C%* regularity condition (we write 92 € C“) if there exist a
positive constant M, a finite open covering {U; }j ¢y 0f 99, a correspond-

ing collection {p; }jeJ of C“* mappings such that for every j € J:

1. p; : U — B ={y € R": |y| <1} is a diffeomorphism; set 1; =

nuv .

28

2. with (@1, ..., ¢jn) and (Y1, ..., ;) the components of p; and
V;

lpjillcee,y) < M and ||[V;illceas) < M for all i

3.9 (U;NQ)={y € B:y, >0}
and there exists 0 > 0 such that

{reQ:d(@ o) <stc v {veR |yl <i}).

jedJ

Definition 1.11 is similar to the uniform C* regularity condition in [1,
Def.4.10 page 84].
It will also be convenient to fix the following numbers.

Notation 1.12 Let Q) be a bounded domain with 0) € C?.

1. We write pq, for the largest number r such that both 2 and R"\(2 can
be filled with balls of radius r. To be precise: for r > 0 set ), :=
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{z€Q:d(2,00)>r}, Q= {zeR"\Q:d(2,00) >r}. Let
pa > 0 be the largest r such that the following holds:

Q= U B, (z) and R"\ Q = U B, (2).

2€Qy 2€Q,

2. We will also use Ry, defined as the smallest R such that Q) C Bg(z)
for some z € R2,

Remark 1.13 For most domains we may take po = x~* where x denotes
the maximal curvature. But notice that pq can be strictly smaller than .
For example this happens in the case of a dumb-bell shaped domain with

a Very narrow passage.

2 Domains with a positive biharmonic Green
function

In this section we concentrate on the positivity preserving property of
problem (1.1) in two-dimensional domain. Let us first settle what we mean
by this.

Definition 2.1 We say that problem (1.1) on a domain ) satisfies the pos-
itivity preserving property if for any f > 0 the solution u of (1.1) satisfies
u > 0.

Obviously (1.1) on a domain € satisfies the positivity preserving prop-
erty if and only if the biharmonic Green function associated to problem
(1.1) on 2 is positive.

It is well known that problem (1.1) is positivity preserving on the disk
(see [3]). In the following we first recall a recent result in [7] where a
family of domains (limagons) is given on which the biharmonic Green
function associated to problem (1.1) is positive. Next we will show that
small C*” perturbations of these domains do not destroy this property.

2.1 Limacon de Pascal

In [7] one finds that on some limagons the Green function for (1.1) is
strictly positive. Since these limagons are our starting point we will shortly
recall some properties of these domains.
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The Limagon de Pascal 2, with a € [0, 1] is defined as the image of
the unit disk through the conformal map

he(z1,x9) = (xl + 202,29, Ty + avs — azt + 1 — a) . (2.1)

2

] ]

_JI%\/g *_yé\/é

Figure 2.1 Limacons €, for respectively a = 0, a = = and a = %\/6

The result that is proved in [7] is the following:

Proposition 2.2 The Green function Gq, for (1.1) with 2 = 2, and a €
[0, %] is positive if and only if a € [0, %\/6] Moreover, there exist ¢y, cy >
0 such that for a € [O,% 6| the following estimates hold. Writing for
short d,(.) = dg, (.):

G (2.y) < 1 du(2)du(y) min {1, M} ,

|z —y|?

Gao,(z,y) > 2 (%\/6 - a) dy(z)d,(y) min {1, M} :

|z -y’

Remark 2.3 In [17] Hadamard was able to compute an explicit formula
for the biharmonic Green function on a limagon. The fact that this Green

function is positive for a € [0, +1/6] has been proven in [7].
We will also need scaled limacons and we will define these for R > 0
by

Qa,R = {(RZL’,Ry) : (*Tuy) € ha(Bl(()))}v
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with B1(0) = {(n,&) € R? : n* + & < 1}. In the following 2, denotes
le.

In the present paper we will consider limagons 2, p for a € [0, 4]
where a is strictly between }L and %\/6 By taking a strictly smaller than

1/6 we will obtain estimates of the Green function Gg,(.,.) which are
uniform with respect to a.

Some geometrical facts for the limacon:

1. Forall a € [0, %} the limacon (2, p is symmetric with respect to the
second axis and both (0, 0) and (0, 2R) lie on 05, . Special values
of the parameter a are the following:

e a = 0: Qg p is the disk with radius R and center (0, R);

e a=1:Qpisconvexifand only if a € [0, 1];

e q= %\/6 ~ .40825: the Green function associated to (1.1) for

a
(2 =, g is positive if and only if a € [O, %\/6} , see [7];
a

o a=3:Q pisacardioid.
&
S &
| 1 1 J
| a— f B 3
X Q. r convex - Q, r non-convex i
GQ[L,R >0 Ga, n

changes sign

Figure 2.2 In the graph the critical values of the parameter a for convexity
of the limagons and positivity of the Green function.

2. Let [—x,, T4] X [—Ya, 2] denote the smallest rectangle that contains
2,1. Then

a— x4 and a — y, (2.2)

are nondecreasing functions for a € [0, 3] with 1 < z, < 1.3 and
0 < y, < 0.25.
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3. Fora € [, ], we will use ko g : [—Rz,, Rz,) — R to describe
the lower part of the boundary 0€2, r :
ka,R (.T) = inf {y : (l’, y) S Qa,R} . (23)

In particular in the approximation we will use that the following

relations hold:
B 1 1—4a

k' »(0) = ——— and 2.4
o' b;
 kur < fori=1,...,5, 2.5)
’ Ox* CO[—Rzx},Rx%] R !

with 7 = (1 — /3a). Notice that z} € (+24, 31,) Where z, is
defined near (2.2). The constants b; can be taken independently of

aeld Bl

2.2 Perturbations from the bilaplacian on a limacon

In this section we study the positivity preserving property of problem (1.1)
on a domain 2 C R? that is e—close in a C?7-sense to a limagon.

The concept of e-closeness of domains that we use is the one intro-
duced in [12, Def.1.1]. For sake of completeness we recall the definition.

Definition 2.4 Let ¢ > 0. We call 2 e-close in_C’k”—s_ense to Q0* if there
exists a C*-mapping g : O* — Q such that g(0*) = Q and

lg = 1|l i (o) < &
The main result of the section is the following.
Theorem 2.5 (Perturbation of the domain) Ler a € (1, 5V6) and €
(0,1). Then there exist ¢g > 0 and cy,co > 0 such that for every € € [0, &|
and a € |0, a] the following holds.

IfQ is e-close in C*7-sense to Q,, then the Green function Gq, of (1.1)
satisfies

0< ClDﬂ(xvy) S GQ(x7y) S CQDQ(iL',y)fOT’ every x,y € Qv

where

Dq(z,y) = do(z)dq(y) min {1, M} ) (2.6)

|z —y|?
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Remark 2.6 In [7] the same estimates from above of G, are given but
with more regularity required at the boundary. Thanks to the e-closeness
we get a better estimate from below and the same from above with less
assumptions on the boundary.

The proof consists of several steps and uses similar arguments as in
[12] for a disk. For convenience we summarize the main parts here.

We first show that e-closeness in C%7-sense of €2 to €2, implies the
existence of a biholomorphic map ¢, : €2, — () such that

6o = Hdll ooy < 0(e) for 0 <4/ <. @)

Next, through this conformal mapping ¢, problem (1.1) on 2 is trans-
formed into the following problem on €2,:

(A2 4+ A)u=f inQ,,
u = 0 on 0€),, (2.8)
%u = 0 on 0¢),,

where A is a lower order perturbation of the biharmonic operator. See
[13, Remark after Theorem 5.1]. From (2.7) one also has that there exists
a 0; = 01(g) > 0 such that the coefficients of A in (2.8) satisfy

sup [|Aalloo < d1.
lo<3

We then see that the positivity of the Green function associated to
problem (2.8) implies the positivity of the Green function associated to
problem (1.1) thanks to the properties of conformal maps ([21]). Hence,
instead of proving directly Theorem 2.5 we prove the following result.

Theorem 2.7 (Perturbation of A% by lower order terms ) Suppose
that a € [0, a] with a as in Theorem 2.5 and consider problem (2.8) with
A= ngg A.De, A, € C(Q,) and let Gq, 4 the Green function asso-
ciated to (2.8).

Then there exists 1y > 0 such that, whenever || Ay |0 < 1o for all o
with |a| < 3, the Green function associated to (2.8) is positive. Moreover,
there exist dy,dy > 0 such that, with Dq,_(x,y) as in (2.6), the following
holds:

dlDQa (xa y) S GQG’A(J/’? y) S dQDQa (xmy) (29)
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Theorem 2.7 says that if the lower order perturbation of the biharmonic
operator is small then the positivity preserving property of system (2.8) in
), follows from the positivity preserving property of problem (1.1) on the
same domain.

A result similar to Theorem 2.7 was proven in [13] for the polyhar-
monic Dirichlet boundary value problem on the unit disk B. The main
ingredient of the proof are appropriate estimates of

Ggp(z,2) ’DI;GB(Z>Z/)|
GB(l’,y) 7

HE (2,9, 2) = (2.10)

which were proved in [12]. Notice that in [12] one considers {2 being
a ball. The only place however where that fact is used is in the explicit
estimates of H%. Indeed all the other arguments can be applied to any
planar smooth domain 2 whose Green function is positive in the strict
sense as in the left hand side of (2.9). Hence to prove Theorem 2.7 we first
show that Héa (that is the quotient in (2.10) calculated for G, ) satisfies
the same estimates as H g and then refer to the work in [13].

In the next section we construct the conformal mapping from “(2 e-
close to €2,” to the limacon (2, and we state the equivalence of Theorem
2.5 and Theorem 2.7. Then we prove the perturbation result of Theorem
2.7.

2.2.1 Conformal transformation

In this subsection we prove that problem (1.1) on €2 that is e-close to €,
corresponds to a problem of the type (2.8) on €2, with the coefficients of
A, the lower order perturbation of A?, being small. Or, to be more precise,
there is a function € — §(¢) with §(¢) — 0 when ¢ | 0, such that

Q) e-close in C*7-sense to 0, = sup || Aqallee < 9(e).
|| <3

Or in other words, that Theorem 2.7 implies Theorem 2.5.

The first step consist of proving existence of a biholomorphic map
from the limacon to a domain e-close to the limacon which is near the
identity in C%7-sense.
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Proposition 2.8 Forall § > 0, € (0,1) and a € [0, :V/6) there exists
€ := £(6,a,vy) > 0 such that for all £ € [0,€] and a € [0, a] we have the
following.

If QO is e-close in C*7-sense to S, then there is a biholomorphic map

: Qo — Q, with o, € C*7(Q,) and ;' € C*7(Q), such that
HSOa - IdHC?ﬁ(Qa) S 0.

The proof of Proposition 2.8 consist of the following three lemmas.
Sincea < a < %\/6 < % one may check that the map h,,, defined in
(2.1), is conformal and one-to-one on the domain

Bis = {x eR?: ||zfl, < \/1.5} .

We choose the value £, € (0, 1) such that, if (2 is e-close in C*7-sense to
Q, fore € (0,e1), then h, ' (Q) C B 5. It follows that k" is a conformal
map on any domain §2 which is e-close in C*7-sense to the limagon for
e <eq.

Lemma 2.9 There exists €1 > 0 and ¢, > 0 such that for € € |0, ] the
following holds. Let a € [0,a) and y € (0,1). If Q is e-close in C*"-sense
10 Qq, then Q' = h;1(Q) is c1e-close in C*7-sense to the disk B.

Proof: Let h, be the conformal map defined in (2.1). One directly checks
that for a (1 +v) € (0,1) the mapping h, : Bi4,(0) — he (B11.,(0))
is a C*°-diffeomorphism. So for a € [0,a] the norms ||%l/c4¢5) and
172 le1(o,) are uniformly bounded. Let g be a C*7-mapping, g : 2, —
Q, such that lg — 1d||c2rq,) < €. We define the map f : B — Q"= by
f(x) = (hylogoh,)(x ) (see Figure 2.3). Then there exists a positive
constant ¢; such that || f — Id||c2~(5) < ci€. 0

In the following Q"< denotes h; ! (Q2).

Lemma 2.10 Let v € (0,1). Then for every § > 0 there exist €5 :=
€9(0,7,a) > 0 such that for every ¢ € (0,e3) and a € [0, a] the following
holds. If Q) is e-close in C*7-sense to Q,, then there exists a biholomorphic
mapping ¢ : B — Q" with o € C*V(B), ¢~ € C?7(Q") and such that

¢ — Id||c2v(5) < 0.
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0 ot Oha
. "
gl | Pa fl | e
0, -1 B
- »

Figure 2.3 The mappings between €, Q,, B and Q"e.

Proof: From Lemma 2.9 it follows that Q" is ¢,e-close to B. Applying
Proposition A.1 we have that there exists £y > 0 such that “Q" ¢,e-close
to B” for c1e € (0, &) implies the existence of a biholomorphic mapping
¢ : B — Qhe with o € C?7(B), o=t € C?7(Qhe) and such that

| — Id||c2n(py < 0.

The claim follows by taking e, = min {51, 01_150}. a
Lemma 2.11 Let v € (0,1). Then for every § > 0 there exist €3 :=
e3(d,v,a) > 0 such that for every € € (0,e3) and a € [0, a| the following
holds.

If Q is e-close in _C'Q’V—sense 10 {1, then there exists a biholomorphic
mapping ¢, : Qa — Qwith @, € C*7(Q,), ¢, ' € C*7(Q) such that

HSOa - IdHC?ﬂ(Qa) < 4.

Proof: We denote ¢, the map from Q, to {2 given by

Ya(z) = (ha oo hgl) ().
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Here ¢ is the conformal map of Lemma 2.10. The map ¢, is biholomor-
phic as a composition of biholomorphic maps. Furthermore we have ¢, €
C%7(Q,) and ¢, € C?7(Q) since p € C*7(B) and p~1 € C%7(Qha),

By the way the holomorphic map ¢, is defined one finds that there
exists a positive constant /' such that

“90(1 - Id”cﬁw(ﬁa) <K H‘P - Id”CQW(B) :

The claim follows by choosing 3 = ¢2(d/ K, 7, a) with €5 as defined
in Lemma 2.10. O

Remark 2.12 Notice that Proposition 2.8 follows from Lemma 2.11.

We are now ready to prove that the positivity preserving property of
problem (2.8) with a small perturbation of A2 on €, implies the positivity
preserving property of problem (1.1) on € e-close in C?7-sense to €2,,.

Corollary 2.13 Let v € (0,1). For every 6 > 0 small enough and a €
0, a] there exists g > 0 such that for € € [0, &¢) the following holds.

If Q is e-close in C?*7-sense to the limacon ), and the coefficients of
the operator A satisfy

sup | Aulloe < 6, 2.11)
la|<3
then the positivity of the Green function associated to problem (2.8) on 1,
implies the positivity of the Green function associated to problem (1.1) on

Q.

Proof: To prove the claim we show that problem (1.1) on €2 e-close in
C?7-sense to ), can be “transformed” into problem (2.8) on ), with the
coefficients of the lower order operator A satisfying (2.11).

Let u be solution of problem (1.1) on §2. Consider § < min {3,274 }.
By Proposition 2.8 we know that there exists a £g = £ (dp) > 0 such that
for e € [0,&0) we have the following. If € is e-close to €2, in C*7-sense
then there exists a conformal map ¢, : Q, — € such that

[ — Id|| 202,y < o
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We define the function v,(x) := wo p,(x) on §2,. Clearly v > 0 if and
only if v, > 0. Since ¢, is a conformal map, the function v, satisfies

A%y, — 2V [? - VSt — AllP ot = [@ll'f o pa inQy,

PR al Jeg?
v, =0 on 0¥, (2.12)
%va =0 on 02,

where ¢/, denotes the complex derivative of ,. Hence v, is solution of a
problem as in (2.8). The coefficients of the lower order perturbation of A?
in (2.12) satisfy (2.11) by the choice of d. O

Remark 2.14 Notice that since we are working with conformal mappings
it is sufficient to have C*7-closeness in order to transform problem (1.1)
into problem (2.8). Working with general transformations fourth order
derivatives would appear and C*7-closeness would be necessary.

As a consequence of Corollary 2.13, Theorem 2.5 will follow from
Theorem 2.7.

2.2.2 Proof of the perturbation theorem

In [13] Theorem 2.7 has been proven in the unit disk (that is £29). We now
give a sketch of the proof for €2, a € [0, a] by following similar steps.
First we state some estimates for (2.10) with G5 replaced by G, .

Theorem 2.15 Let k = (ky, ko) with ky, ko € N and |k| < 3. The follow-
ing estimates hold for any a € [0,a) and z,y, z € ,.

G , DkG ’ 1 1
1. If |k| = 3, then 2 (2 Z)‘ -G, (2 y)! < + .
GQa(x7y) ‘I‘ — Z’ |y — Z’
Ga,(x, 2) | DEGq, (2,
2. If |k| = 2, then a.(2,2) [DEGa, (2,9)| jlog( 3 )
GQa(x7y) ‘Z—yl
Ga,(z,2) | DEGq, (2,
3. If|k| <1, then a.(2,2) [DEGa, (2, 9)| < 1.
Ga,(,y)

Proof: With the same method as has been used in [13] the result follows
from the optimal estimate from below for G, , which has been proved in
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[7] (see Proposition B.1), and from the estimates of the derivatives of the
Green function, which have been proved in [8] (see Proposition B.2). O

Let Gq denote the Green operator associated to problem (1.1) in €2,
that is

Gof(z) = / Gale,9)f(4)dy.

By the estimate in Theorem 2.15 one may observe that the derivatives of
the Green function have an integrable singularity. Hence one finds the
following two corollaries of Theorem 2.15.

Corollary 2.16 There exists M € Rt such that for any 0 < f € LP(Q,)
withp > 1 and k = (ky, ko) € N2 with 0 < |k| < 3, the following
estimate holds for all a € [0, a]

(Go. D¥Ga, f) (2)] < M (Go, ) () forall x € Q,.

Corollary 2.17 Let a € [0,a] and n > 0 be such that the coefficients of A
in (2.8) satisfy || Aa ||, < nforall |o| < 3. Then for any 0 < f € L*(€,)
withp > 1

(9. AGa, f) (x)] <10 Mn (Ga, f) (x) for all = €

and furthermore

((Go, ) Go £) (@) | < (102 ) (Go, 1) (@) forall = € Q.

where M is the constant of Corollary 2.16.
For the proofs we refer to [13, Cor.4.2, Lem.5.4-5.5].

Proof of Proof of Theorem 2.7: Let u be a solution of (2.8). Proceed-
ing as in [13, Lemma 5.3] one finds that there exists a 77; > 0 such that
(T 4 Gq, A)~ " is well defined when the coefficients of A satisfy || A, <
m for || < 3. We have u = —Gg, Au+Gq, foru = (T + G, A) ' G, f
and may formally write

Gaoa = (T+Ga,A) ' Ga,
= Ga, — Ga,AGa, + (Ga, A)’ Ga, — (Ga, A)* Ga, + ... (2.13)
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Using Corollary 2.17 from (2.13) taking 1y = min {ﬁ, 7]1} and n < ng
the series converges and we get

2G0. < Ga,a < 3Ga,. (2.14)

The estimate in (2.9) follows directly from (2.14) and Proposition B.1. O

Remark 2.18 For the problem

(A2 + A)u=f inQ,

u = 0 on 012,

%u = 0 on 012,
with Q e-close in C?7-sense to €, for a € [0,a] and with A the lower
order perturbation of the bilaplacian such that || A, | < 7 for |a| < 3,
the result stated in Theorem 2.7 is still valid for € and 7 sufficiently small.

3 An approximate filling of the domain by per-
turbed limacons

In this section we prove that a sufficiently smooth bounded two-dimen-
sional domain can be approximated by limacon-like domains in the sense
we want. That is, we will construct a finite number of domains F; such
that:

1. the union of £} covers {2 near 0€2;
2. the union of OE; covers the boundary 0€2;

3. each Ej is close in C?7-sense to a limagon €, z with a € [0,a] in a
uniform way;

4. the F; uniformly satisfy the uniform C*? regularity condition in
a € |0, al.

Although this covering looks like it exactly fills up the domain this
will not be guaranteed. Indeed, some parts of the covering may lie outside
of ). The precise statement is given in Theorem 3.14.
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3.1 Local approximation

We first show that for each z; on 02 there exists a domain e-close to a
limagon which boundary intersects 0€2 in a neighborhood of 2. In order to
do that it will be convenient to use local systems of Cartesian coordinates.
The following lemma lists some technical results.

Lemma 3.1 Let { > 2 and ) be a domain in R? satisfying the uniform
C*“ regularity condition, Definition 1.11, with constant M and mappings
@; € CH j € J. Let pq be as in Notation 1.12 and set x,, = 73/)9.
Then for every zy € OS2 there exists a local Cartesian coordinates
system and a function g,, € C**, g, : [~ pq, Tp,) — R, such that:

1. z0=1(0,0);

2. the x-axis is tangential to 0S) in zy;

3. the y-axis has the direction of the internal normal to 0S) in zy;
4

. B, (20)N0Q C{(w,y) : @ € [~2py, 3p,] and y = g, ()} ;

W

: HQZOHCK,a[ ] < 2(£+ 1) M.

“Zp oo

Remark 3.2 Observe that the function g., satisfies | g, (z)| < \/ig

We skip the rather technical proof of Lemma 3.1.

In the following theorem we will state that for every point of the
boundary of a domain satisfying the uniform C*® regularity condition
there exists a limagon 2, r that approximates 92 in the point in C*-sense.
Furthermore we will construct a domain € that is e-close to the limagon
2, r and which boundary coincides with 0€) in a neighborhood of that
point. By construction Q) is a domain satisfying the uniform C* regular-
ity condition with constant M/; where M; depends only on M and pg,.

For the purpose of a uniform statement we will have to rescale to
limagons of ‘unit’ size. In order to do so we define for a given f the
scaled function:

f®(x,y) := R~ f(Rx, Ry) for R € RT. (3.1)

Theorem 3.3 Assume that the following holds for some o,y € (0,1):
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i. Q C R?is a simply connected domain satisfying the uniform C*®
regularity condition with constant M;

ii. g, € C*® for zy € 00 are functions that describe the boundary of

) : -1
Q as in Lemma 3.1 and set R := min {% (maxzoeag Hg;’O Hoo) ; 1};
iii. € > 0 is such that for all Q which are e—close to Qg1 in C?7 sense
vyith a € [13—6, %} , the Green function associated to problem (1.1) on
Q) is positive.

Then there is 6 = 6(M, pg,',€,7) € (0, 1—16R) such that the following
holds. For every zy € 0S) there exist a € [ } , a limagon Q, p and a

35
i Z 167 16
CH® map far: Qar — far (QQ,R) such that:

1. 09N Bs (20) = O (fa.r (Qar)) N Bs (20) ;

2. the map fR = (fa,R)R is e-close in C*7-sense to the identity on
Qo || £R _IdHcM(Qa}l) S8

3. the map fo‘R is C** bounded by some A = A(M, pg',e,7): that is,
ekl oo,y < 4

Remark 3.4 We construct a C** mapping fu g : Qa,g — fa,r (Qa,r) in
order that f, p (Qq,r) is a domain satisfying the uniform C** regularity
condition with constant M; where M; = M;(M, pgl,a,v). Using the
result in [9] it should be possible to relax the regularity of the boundary to
Cct.

Remark 3.5 In order to approximate 0f2 with limagons in C?7-sense it is
sufficient that ) satisfies the uniform C% regularity condition for v > .

Remark 3.6 The R defined in Theorem 3.3 depends on €2 via the constant
M of the uniform C** regularity condition.

Corollary 3.7 Assume that ), o, vy, € are such that the hypotheses of The-
orem 3.3 hold true and let R as defined in that theorem. Then there is
0 > 0 such that for every zy € 0S) there exists a domain E. that satisfies
the following:
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1. E., satisfies the uniform C** regularity condition with constant
M, = M,(M, pg,e,7) > 0;

2. E, is e-close in C*"-sense to a limacon Q, p witha € [, 2];
20 ¢ ; 167 16

3. 2z € (B, n09Q)"".

. = 00
Furthermore, letting K,, be the component of (EZO N 89)0 that
contains z:

4. B(g(Zo) N 69 = B(g(Zo) N Kzo;

5. E,, and ) have the same outward normal for any x € K.

The proof of Theorem 3.3 is divided into several steps. We first present
the setting for a fixed 2, € 0f). Let us consider the local system of coor-
dinates near z, and the function g., € C** given by Lemma 3.1 (in this
case | = 4). We will write g,, = g.

Let 0 be a positive number such that

. X R 5 _ -1
0 < min {1, %, T (1 — 1—6\/§>} and 0177 < ¢ (010R1+7) .
(3.2)
Here (g is a positive constant that depends on M. We remark that §
depends on () through ,051 and M.

\
\
w“ \

. N

\ / \ |

ANV )

~_

/// \

r‘//

Figure 3.1 A domain, the finite number of approximated limagons with
their boundaries covering the boundary of the domain, and a zoomed view.
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3.2 Approximation by a limacon in one point
There exists a € [, 2] such that zy = (0,0) € Q, ¢ and

167 16
ka,r(0) = ¢"(0),

where k, p € C is the map that describes, as in (2.3), the lower part of
the limacon.

In order to get that €, r approximates the boundary of €2 in (0, 0) up
to the second derivative, we have to impose the condition g” (0) = k; »(0).
Using (2.4) this reads as

1 1—4a

9" (0) = R 207 (3.3)

Since the map a — (11__24“)2 sends the interval [, 2] onto [—1,1] and

it holds [¢” (0)] R < 3 by the definition of R, one finds that a € [, ]
exists such that (3.3) holds.

Note that R is fixed and that it is sufficient to play with the parameter
a to fit the limacon 2, x to the domain €2 around z.

3.3 Construction of the mapping f, r

Again we fix some preliminaries Let x, be the number defined in (2.2)
and let us set 2 := (1 — v/3a) € (}x,, 1z,). We introduce two cut-off
functions:

1. @or € C(R) such that

Yar =1 for |z| < %R,
Yar =0 for |z| > 2% R,
@l ey < DEL for k=0,...,4and v € (0,1),

with Dy, some positive constants;
2. Y45 € C*(R) such that

VYas =1 for |z| <6,
Yas =0 for |z| > 26,

sl nn < 52 for k=0,...,4and v € (0,1),

with D), some positive constants.
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We define a C**-mapping g5 on [— Rz, Rx,] that follows the bound-
ary of © when |z| < ¢ and the boundary of the limacon when Rz <
|z| < Rz, as follows:

( g(x) for 0 <z <6,

k —9)’
+Z‘g or)| (= 0) +

1 )
+ Yo 5(x )Zﬁ (9 — k‘a,R) 5 (x —8)" for § < x < 26,

2
= 1 - .
95(2) kor(x) + g ,—‘ (g — kar)® 5 (xz —6)" for 26 < x < 1Rz},

2
1 ,
k) ‘f‘SOaR Zl g — kaR (5(x_6>2
i=0 "
for Rz} < x < Ru},
| Ka,r(7) for Rz} < x < Rx,,
(3.4)

and similarly for x € [—Rx,, 0].

Figure 3.2 The limacon that approximates in (0, 0) the behavior of 02 up
to the second derivative.

Remark 3.8 In the definition of g5 we use two cut-off functions. The
reason for this construction is that we want g; to be close to k, r in C?-
sense and also to be a C*“-mapping. Indeed, one sees when considering
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supp (¢a,r)

supp (Ya.5)
—_—

| | L
1 1 L A B B B 1 1
¢
@ WL PO Sl D %
“Cx 2 e =3
@ x
2

2

Figure 3.3 Scheme for the support of the cut-off functions pq g and 1, s.

195 = Ka,rll 2 Ry Ry that the terms (g — ka,R)(i)L have a different

behavior for 7 = 0, 1, 2 respectively for 7 = 3, 4. One cut-off function can
be chosen independent of 9 since we will show that for ¢ = 0, 1, 2 the term

(g — kaﬂ)(i)‘é_ = O(6). While for i = 3,4 (g — ka,R)@L will be just
bounded, and hence one needs a cut-off function depending on ¢ in order

that the C*7-norm of g — k, r is an O(d). By the way, close in C*7-sense
is needed for positivity; C** is used in the regularity results.

We define the function f, g : Qur — fur (Qaﬁ) by

3R — gs(x)

Fante) = (o550

(y —3R) + BR) , (3.5)

which gives (fo.r — I) (z,y) = (O, % (y — 3R)> . By construc-

tion f,r € C** (Qq ) and the boundary of f, g (Qr) coincides with
02 in a neighborhood of zy = (0, 0) of length at least 29.

In the next paragraph we show that f, z(€2, r) is e-close to €2, p in
C*7-sense and that f, r(Q, r) satisfies the uniform C** regularity condi-
tion.

Remark 3.9 Notice that f, z = Id for (z,y) € Qug with |z| > Ra’.
While for |x| < Rz} it holds that f, r = Id for x = 0 only. The map
fa.r also changes the boundary of €2, p in a neighborhood of the point
(0,2R). That is not a problem since one may notice from the expression

of f, r — Id that in the approximation only the term ko, 5(2)—05(x)

SR—ho n(2) plays a
role.
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3.4 The mapping is close to the identity in C*7-sense

In this section we will prove that o R, which is the f, g from (3.5) rescaled
as in (3.1), satisfies

| farm = IdHCZv(QaJ) <e. (3.6)

By the results of the previous section and our choice of ¢, it then follows
that the Green function associated to problem (1.1) on f, r(£2, r) is posi-
tive.

We first fix some notation. In the following N; and N, denote respec-
tively

+ | aska,r(0) = £59(0)

+ | Ekar (0) = 229(0)]. 38)

Ny = || Zekon — Zrg 37

CO[—5,6]
4

4
N, = [;—kR - &ag]

Co[—5,0]

Notice that N; = N;(M) for ¢ = 1,2. Indeed R depends on M and the
dependence of k, r on a is continuous in [ 3 } and hence uniform.

16 16
‘We have
‘ %ika,R - aa;ig < Ny ifori=0,...,3
o cilod (3.9
and Hwk‘aﬁ — WQHCO[ 55 < Ns.

In order to prove (3.6) one has first to consider the effect of the scaling.

Proposition 3.10 Let v € (0,1). The function [ 'r satisfies

k _
R a,R gs
—1d - NSOz
||fa,R HCZV Qu.,l) - H 3R — ka,R CO[—Rxx,Rx¥] i
+5R’ > i v o | & Ben g
ax 3R ka R Co[fRﬁz,RI(ﬂ a[L‘Q 3R - ka,R CO[—RxZ:RmZ]
0 ka R — 95
aprer |9 Kar— 95 ' 3.10
+ {8932 3R — kor CV[-Rxx,Rax] ( )

We postpone the proof of Proposition 3.10 to Appendix C.1.1.
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Proposition 3.11 Ler vy € (0,1). There is Cyo = C1o(M) > 0 such that
/el = 1| o g, ) < CroRT767 (3.11)

The right-hand side in (3.11) is less then e due to our choice of 4 in
(3.2).

In order to prove Proposition 3.11 we estimate the terms in the right
hand side of (3.10) separately. The details of the proof are given in Ap-
pendix C.1.2.

3.5 Bounded third and fourth derivative of the mapping

In this section we derive the estimate of H fa ) Again this f(fR

R ‘ ‘ 4 (Q
is the function f, r from (3.5) rescaled as in (3.1). The estimate will imply
that f, r(Qa.r) satisfies the uniform C** regularity condition.

The effect of the scaling is as follows:

Proposition 3.12 Let a € (0, 1). There is Cy; = C11(M) > 0 such that:

Hf(fRHC‘l@(Qal) < ma+9+50115R—}—
O kar—gs
923 3R — ko r
O Far =05
921 3R — ko g

+ 5R3 +

CO(—Rz%,Rx¥)

+ 6R* +

CY(—Rz*,Rz*)
a ka R—Ys
8I4 3R — kaR CQ<Q ) )

+ R3Te [(:c,y) (y — 3R) =— (3.12)

We postpone the proof of Proposition 3.12 to Appendix C.2.1.
The estimate we are looking for is then:

Proposition 3.13 Let o« € (0, 1). There is C1g = C19(M) > 0 such that:

R3te
chfRHcéha( 0 < G Slta

In order to prove Proposition 3.13 it is sufficient to find appropriate
estimates for the terms in the right hand side of (3.12). The details of the
proof are in Appendix C.2.2.
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3.6 The covering

We are now ready to prove that for any domain 2 with 9Q € C*® one
may find an appropriate covering by finitely many open domains that are
e-close in C?7-sense to some limagon.

Theorem 3.14 Let (), o, vy and ¢ satisfy the assumptions of Theorem 3.3
and let R defined as in that Theorem. Then there exist finitely many balls
B;, j € Jp with B C Q, ﬁnztely many open domains E; C R?%, j € Jg,
and constants M = M (M, p;,',€,7) > 0and § > 0 such that:

1. Qc U, BiulU

j€JB ]GJE

2. (B;noQ)*%? £ 0 forall j € Jg;

3. every E; with j € Jg is a domain satisfying the uniform C** regu-
larity condition with constant M ;

4. each Ej is e-close in C?7-sense to a limagon Q, g with a € [13—6, %}

Furthermore, for K; = (Ej N 09)0’89 with j € Jg it holds:
5. Ej and K have the same outward normal for any x € K;;
6. {K;},.;, is arelatively open covering of 0€);

7. for all j € Jg the diameter of K is larger than 0.

Proof: According to Corollary 3.7 there is a 0 > 0 such that for every
2o € 0f) there exists a domain £, such that the following holds:

e [, satisfies the uniform C*“ regularity condition with constant
—1 .
Mzo = Mzo(Mva 7‘&7)’

. . 2, . . 3 517.
e E., is e-close in C*7-sense to a limagon Q, p witha € [, =|;

e letting K, the connected component of (E., N 9Q) “? that con-
tains zg, it holds

B(;(ZU) N o2 = B5(ZQ) N Kzo~
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By compactness of Of) there exist z1,...,2xy € 9IS such that 002 =
Uj.\;l K.,. Setting F; := FE, and M = max M., and K accordingly
three items. A straightforward argument implies that {2\ Ujvzl (E; N Q)
can be covered by finitely open balls B; with B; C (. O

Remark 3.15 In the proof we use that € is simply connected. However
with a slightly different argument the method would work also for general
connected domains.

4 Proving the estimates

In this section we prove the main results of the paper. First we give point-
wise estimates for the solution of (1.1), and then we prove the splitting of
the solution operator between a positive singular part and a sign changing
regular part.

4.1 A maximum principle type estimate

The pointwise estimates for the solution of (1.1) will be obtained using
negative Sobolev spaces. We refer to [1, pages 62-65].

Theorem 4.1 Suppose that the hypotheses of Theorem 3.3 hold true with
0 <7,a < 1. Then for any q > 2 and € € (0,4R] there exists a constant
C' > 0withC = C(ﬁ,M, po's Ra,€,7) such that for any f € LP(S2),
with p € (1,00), the solution u € W*(Q) N W;P(Q) of (1.1) satisfies

u(z) < C <Hf+||L1(B($,€)ﬁQ) + ||u||W,1,q(Q)) foreveryxr € Q. (4.1)

Proof: Let E;, with j € J, be the finite covering of €2 of Theorem 3.14
and set D; := E; N ). We first consider the case ¢ = 4 1.

Let v;, ¢ € I, be a partition of unity with boundary associated to the
covering {D;},_; of (2 (Lemma C.15 in the appendix with § = 2R) such
that for every ¢ € [:

i. [DY;| < coR71 for o € N? with |af < 4;
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£ g,

ii. 1; # 0 at the boundary only if (8Ej(i) N 89)0’89

Here j(i) denotes the j € J such that supp(v;) C E By the choice of
¢; it also holds that ¢; € C(Q U (0E;;) N 89) ) Y; € C=(E;; U
(0E;) N 0Q) O’BQ) and ¢; # 0 only on (E;;) N Q) U (0E;;) N OQ)O o0
Notice that [ is a finite set.

We choose a new family of cut-off functions

i € C (Qu (0E;) N 0Q)*” ) fori € I,
such that for every ¢ € I:

i. supp(¢;) C {z € Q: xi(x) =1} Csupp(xs) C
 ((Bio N Q) U (B n99)™™);
i 0 < yile) < 15

ii. ||[Veyxill., < caR71 for every a € N? with |a| < 4.

The functions ;g and ;g denote (with abuse of notation) respectively

Xig(x) = {G(Z(I)g(x) in Q, . Vig(x) = {E)b,(x)g(x) in O,

otherwise, otherwise.

In the following, if not explicitly stated, every function will be ex-
tended by 0 outside its domain of definition.

Let G5, be the Green function associated to A* on £; with zero Dirich-
let boundary condition. Let v, ; the function that satisfies

AZUQJ =g il’l Ej,
Ug] = aiyl)g’j = 0 on 3Ej
‘We define

() == X (2)vy, o) () and G(x) = (x)

el

Here j(7) denotes the j € J such that supp(v;) C E;.
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Figure 4.1 In the picture on the left one finds some E;’s that cover §)
locally. The dark part shows the support of the cut-off function ;. On the
right the effect of the multiplication with the cut-off function considered
on the dashed line: in black a function [ and in red (lighter) the function
; f. The scaling is arbitrary but consistent with the one in the following
figures.

Since the Green function G g, (, y) is positive and bounded on E; x E;
(Theorem 2.5) we have for some ¢; = ¢;(M, pg,")

() = (o) [ G (o 0)s(0) ) dy

Ei
supp(¢i)NQ2
+
< XZ(:E) ||f HLl(supp('gbi)ﬁQ) ’

Notice that through the double cutting-off, both by ¢; and Y, the influence
of f* on u is localized, that is, with ez := 4R one gets

ﬂ(ﬁ) < ZX1<I> Her“Ll(supp(dli)mQ)

el
<0 Hf+HL1(U{supp(wi)ﬁQ; 1€1 with x;(x)#0})
S 0 Hf+HL1(B(;g,aR)mQ) . (4.2)



Separating positivity and regularity 33
0.008
0.006
0.004

0.002

Figure 4.2 On the left one finds in black the boundary of E; and in red the
set {x : V;(x) # 0}. In the right one in black the function vy, s ¢, that
is the solution of the clamped plate equation on Ej;;y with on the right
hand side 1; f, that is, the truncated f (red in the picture).

We will now estimate the difference u — . For every ¢ € [ one has in
3@ -
ANvy i) = Vilhu = A (Yu) = Y nagD¢: D%, (43)
|o+3]=4,
18]<3

where n,, 5 are positive coefficients. From (4.3) we find in £; that

A* (v pje) — i) = = Y nagD D u.
181<3
Furthermore the function vy, r j;y — ¥;u satisfies zero Dirichlet boundary

condition on JF;;. Indeed by constructlon. u = (%u = 0 on OE;; N

supp (¢;) C OB ﬂ 0Q and v; = 8V¢z' = 0 forx € OF;(;)\ supp (¢s) .
Hence we may write for x € Ej;

Vg4 (€) = Yi()u(z) — Ri(z), (4.4)

Ri(x) := /E G, () (A2 (W (y)u(y)) — (9 A%u(y) dy.
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Uy f.5
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Figure 4.3 On the left one now also finds in green the set
{z: Vxi(x) #0}. On the right in green (lighter) the function U; =

XiUsps f,(4)-

On the other hand we get from (4.4)

A% = A? (Xiy, 1))
= XilD vy, 150y + (A% (XaVyrit)) — XiD vy, 1))
= Xilif + (A% (xiiu — xiRi) — xiD® (Yu — Ry)) .

By supp(¢;) C {z € Q: xi(z) = 1} we get A? (xithw) = xiA? (Yyu).

Hence it holds that

A%y = i f — A% (i Ry) + i A®R;.

Notice that this last relation holds in all of €2. Hence the function « satisfies

in (2
A= f— Z A? (x;R;) + Z XA’ R;.
iel iel
It follows that u — u satisfies
A? (u - ﬂ) = Zie] A? (XiRi) - Zie[ XiA2RZ' in €,
u—u=>0 on OS2,
0 on 0.

_ 0

Here we used that u; = 5-u; = 0 on 0f) forevery i € I.

(4.5)
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Writing

u(w) = a(z) + 3 / Galr,y) (A2 (wR:) — AR (y) dy
el Q
— i)+ 3 o [ Galo ) DD Ri) dy
icl,
o474,
|8'1<3

= u(r) + E naﬁ,a’,ﬁ’/GQ(%y)Da/Xi(?J)Dﬁlvmmmug(i)(?J)dy,
i€l, |81,|8'<3, @
|o/+8'|=4,
ot =4

and using the estimate in (4.2) we find
u(r) < ¢ ||f+HL1(B(x,5R)mQ) (4.6)

+ ) Napas / GQ('ay)Da/Xi(y)DﬁlvDawiDﬁu,j(i)(y)dyH
i€l, |81,/ <3, @
|a+8|=4

o0

In the following we will estimate the second term in the right hand side of
(4.6). Wefixi € I, a, 3,0, 3 € N? with |/ + /| = |a+ 3] = 4 and
18],18] < 3.

We first notice that it is sufficient to prove (4.1) for ¢ > 2 and near 2.
Indeed the result for general ¢ > 2 will then follow from the observation
that the following inequality holds

11 .
||u||W—1»¢J(Q) < [Qfa e ||u||W*17§(Q) forany ¢ > ¢ > 2.

Let us fix ¢ > 2 with ¢ — 2 small. The Sobolev Imbedding Theorem
yields that for some ¢3 = c3(32, pg,'s Ra)

< c3

/ Gl 9) D" Xo(y) D™ e (1) dyH <
Q

o0

/ GQ('a y)DalXi(y)Dﬂ/UDawiDﬁu,j(y) d?JH =...
Q Wy 1(Q)

Here and in the following we write simply j instead of j(i).



36 Dall’ Acqua, Meister and Sweers

We proceed using the regularity result for the “three-quarter weak so-
lution” of problem (1.1) (see Definition D.15). Indeed by Theorem D.16

, !/
the solution operator from (W?”q/(Q) N (Q)) to the space W, 4(Q)

is an isomorphism. Hence we get for some ¢4 = c4(s—, M, pot, Rg
2—q’ » Q)

oSG HDa Xi() D vy, pou () H (W' @rwd (@)’
0

= C4SUp { (DY Xi D" vpay, pou s @)‘ p e WA ()N W (Q)

with [[llya o) < 1} _

Notice that the constant in Theorem D.16 depends on ¢ and ¢’. However,
since we consider ¢ near 2 we can choose a constant that depends only on
the distance of ¢ to 2.

, /
Next, we consider a restriction from <W3’q Q)N W1 (Q)) to

, /
(W?”q'(Ej) NI (E])> . One uses that the cut-off function y; has sup-

portin (£; N Q)U (02N 8Ej)°’m. Proceeding formally we take a cut-off
function h; € C°(Q U (9Q N HE,)*??) such that:

i. supp(x;) C {z € Q: hi(z) =1};
ii. supp(h;) C (E; N Q) U (OE; N Q)™ ;
i, 0<h; <1:
iv. |[Veh||,, < coR7I%! for every o € N? with | < 4.
Since supp(x;) C (E; NQ) U (9E; N Q)™ such a cut-off function

exists. The function h;¢ lies in W37 (E;) N W; ’q/(Ej) for every ¢ €
W34 (Q) N W27 () and moreover it holds

(D Xi D" pey, pou s ©)a = (D XD Vpay, pouj, i)
= <Da/XiDIB/UDD‘@Z)iDﬂu,j7 thO>E]
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Since there exists ¢; > 0 such that || hip||yys.0 ) < s R (|9l s ) We
get

p € WH(Q) NG (Q)

. = cySup { <Da/XiDﬁlvDawiD5u,ja hip) i,

with [[hipllye. ) < 5B

——

W (E;) N W (B;)

< ¢4 8up { <Da,XiDB’UDO‘¢iD5u,j7 @)Ej
with [[Bllys.t () < 5B}

9 (B;) N Wy (Ej)

< cgsup { (D ’UDw,Dﬁuga@
with [[Bllysr ) < 1} =

M, po', Ro) since R depends on M.

We now proceed by integrating by parts. Since vpay, ps,, ; and ¢ and
their first derivatives are zero on OF; there is no contribution from the
boundary. We find

Here ¢ = cg( 5

9 (B) N W (E))

. = CgSUp { <UDawiDﬁu7ja DH@E;
with [|]y.s,) < 1

< ¢gSup { <UDawiD5u,ja W)Ej} p e WB*WW(EJ') n
(E5) 1}

< cgsup { (Upay, DB, @)Ej} Y e Lq/(Ej)a ||‘P||Lq’(Ej) < 1}

= Co H’UDawiDﬁu,j

min{2,3—|3'|},q’
N WO { 7l (Ej)7 HSOHWS—WII,QI

IN

|L‘1(Ej) a

Next, we apply the regularity result for weak solution of problem
(1.1) (see Definition D.12). Notice that in order to do that one needs
that OF; € C’4 “. By the result in Theorem D.13 we get for some ¢; =

(2 q’M Po RQ)

< e [ DDl g,z )

= crsup { (D*¢iDu, o), | 0 € W (E;) Wi (B,

Il <1}
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Since we consider ¢ near 2 we can choose the dependance on ¢ of the form
;Tq in the constant that appears in the estimate of Theorem D.13.
’ !
We now consider an extension from (W‘Lq' (E;) N W (E])) to
, !
<W4’q/(Q) N4 (Q)> . Since 1; has compact support in (2N E;) U
(92N 9E;)> one has

(D*iD%u, ) p; = (D*¢:Du, p)a,
which implies
= ersup { (DD, ) p € W (By) NWR (),
lelsr sy <1}
< ¢7sup { (D% DPu, cp)g| o e WH (Q)N Wg’q/(Q),
el <1}
< cssup { (D%, p)al o € W (@) AW (), gl oy < 1}

Here cg = Cg(ﬁ, ]\47 pél, RQ)

The last step is an integration by part. We do not have any contribution
from the boundary since u and ¢ and their first derivative are zero on 02.
Hence one finds

. = Cgsup { (u, Dﬁ@ﬂ‘ pE W4’q/(Q) n Wozq/(Q)v HSOHWALq’(Q) < 1}
< cosup { (u, o] ¢ € W (@) g B (@),
||90||W47\m,q’(9) S 1}
< cssup { (w, @a| € W (@), oy <1}
= s |lu]

(wo' @)

The claim follows for e = 4R. For ¢ € (0,cg] one may repeat the
same construction with a refinement of the partition of unity ¢, 7 € 1. O
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Remark 4.2 The hypothesis €2 simply connected is required in order to
use Theorem D.16. The result can be proved also for general connected
domains using a generalization of Theorem D.16.

4.2 Green function estimates

In this section we prove Theorem 1.1 and we give optimal estimates from
below for the Green function of a two-dimensional domain §2 with 02 €
C1°, In this section we have to assume more regularity on the boundary
of () in order to use [8, Th.2.6]. As before, G denotes the Green function
associated to problem (1.1) on €.

We first present some preliminary lemmas.

Lemma 4.3 Assume that ) is a bounded domain in R? with 9) € C'6,
Then

Go € W3(Q?) forany p € [1,2).
Proof: In [8] one finds for any 3 € N? with |3| < 3
~1 d(y) ’
‘DﬁGQ(x,y)‘ < |z — vyl min{l,—‘} ) 4.7)

|z —y

The result follows directly from (4.7). O

Lemma 4.4 Let ) be a bounded domain in R? with 0Q € C*S. Then for
everyy € (0,1)

Gq € CP¥7{(x,y) € Q* :x #y}) and Go € C7(Q*) N Oy (Q?).

Proof: From general regularity results for elliptic partial differential equa-
tions (see [2]) itis well known that G € C'®7({(x,y) € Q% : x # y}) for
any v € (0,1). Indeed, in general, given [l € N, 5 € [0,1) and a bounded
domain D € C"” then the regularity of Gp on {(x,y) € D? : x # y} is
as follows:

if3=0:GpeC" ({(z,v) g@zzx#y}) forany v € (0,1);
if3+#0:GpeC¥ ({(z,y) eD?:x#y}).
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The result that G € CY7(Q?) follows directly from Lemma 4.3 via
the Sobolev imbedding Theorem ([1, Th.4.12 Part 2]). Hence G €
W3P(Q2)NCH(Q?) for p € [1,2) and v € (0,1) . Moreover the function
and its first derivatives are zero on 0€) x ) and on ) x 0f). Hence, by
continuity and Theorem IX.17 in [4] it follows that Go € C}(9?) (and
also G € WP (Q2) for p € [1,2)). O

Proof of Theorem 1.1: Following the construction in Theorem 4.1, see
(4.5), one may write the solution of problem (1.1) as

- / Ga(z,2) Y (A*(xi(2)Ri(2)) — Xi(2)A’Ry(2)) dz
- Z Xi(@) / GEJ-(Z,)(:L', 2)i(2) f(2)dz +
iel Ej

+ [ Gale. ) I (i) Ri(2) — xil)APRi(2))

icl

where
D= [ Gy (2 (B ) = ) AM() d
Ej)

and j(1) denotes the j € J such that supp(¢);) C E;. Considering for-
mally f(z) = 6,(z) we get
Galz,y) sz )G, (T, y)i(y) +

+ [ Gola2) 3 (Au(a) il ) = xs(2)A*RiCeon)

where R;(z,y) =

/ G, (2. 7) (A2(Wi(2) G, y)) — () A*Cal ) d'.

Ej)
We define
Got(x,y) =Y xilx)G, (x,y)vi(y), (4.8)

el

GoE(w,y) = Gal,y) — Gg*(,y). (4.9)
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From the definition it follows that G¢ € C157(Q?) forany v € (0, 1).
Indeed, writing explicitly R; and looking at the support of the term inside
the integral, we find

Greg(x y)
- Z Z Na,B,a! ﬁ’ GQ(%‘,Z)DQXZ(Z)‘ (4.10)

i€l |a+8|=4,
o+ =4,
181,18"1<3

. ( / GEJ@(Z,z')DO‘,@Di(z')Dﬂ/GQ(z',y)dz') dz,
A
with n, g o 3 some positive coefficients and
Bi={2€Q:Vxi(z) 20} and A; = {2 € Q: Vi);(2) #0}. (4.11)

Since A; N B; = @ one always has z # 2’ in (4.10). Hence G, (2,%') €
C>=(B; x A;). Since the term D ¢);(z')D? Gq(2',y) is integrable it fol-
lows that G|f is as regular as we want in the interior. The regularity up to
the boundary is given by the fact that 9Q € C'6.

The positivity of G follows from the positivity of G g, Furthermore
by Lemma 4.4, the definition of Gy and since Gis8 € C'57(?) for any
v € (0,1) holds, it follows that Gbmg € CY(02) N CL(Q?) and moreover
that G5 € C5({(z,y) € Q% : x #y}) for any v € (0, 1). Notice that
by the boundary condition satisfied by G, and G5 we also have that
GoE € CHO). O

Remark 4.5 The functions G¢ and G'® defined in the proof of Theorem
1.1 are not yet symmetric. In order to get symmetric functions one may
consider Gy ., (7, 4) := 3G (2,9) + 5G5 (4, ).

Optimal estimates from above for the Green function as well as esti-
mates for the absolute value are known. We refer to [18], [13] and [8]. We
will next prove optimal estimates from below for Gg,.

First we prove the following lemma.

Lemma 4.6 Let ) be a bounded domain in R? with 9Q) € C'S. Then Gq
satisfies

IVGa(s )l o) < ad(y)? for everyy € Qandp € [1,2).
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Proof: Via [8, Th.2.6] one finds ||VGa(-,y)|[",q) <
d b d P
< CQ/d(y) min{l ) } min{l,(—x)} dx
[z — y [z —y|

< cad(y /‘ < ¢,0d(y)”,

forp € [1,2). O

Now we may prove the estimate for Gq(z,y) from below that was
stated in Theorem 1.5.

Proof of Theorem 1.5: Since Go(x,y) = Go®(z,y) + Gof(r,y), with
G and G defined in (4.8) and (4.9) respectively, and G5 is positive
it holds
Golz,y) > — |GSE(z,y)| forevery z,y € Q.
Hence in order to prove the result it is sufficient to get an estimate of the
absolute value of G;.
We first study the W*P-norm of G2 (-, y) for p € (1, 00).

Let A; and B; as defined in (4.11). From (4.10) and elliptic regularity
theory (see Theorem D.6) it follows that

IGSEC D lwaney <€D D nap [P XD R 9) || s,

i€l |a+08|=4,
1B1<3
We study separately the term HDO‘XI YDPRy( H Lr(B) " One has
1D DR )| o i,
< cq Z N/ g Dﬁ/ GE].(-,z’)Da/@Di(z’)DﬁlGQ(z',y)dz'
o'+ |=4, A L¥(By)
18'1<3

We first observe that Gg; is non singular in B; X A;. Indeed since 4; N
B; = @, the function G'g, (z, 2') is in C*°(B; x A;) and all its derivatives
are bounded by a constant depending only on (2.

The next step consists in an integration by part. There are no contribu-
tion from the boundary since in dA; N2 the function v; and its derivatives
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are zero, while in 9A; N 052 both G; and Gq and their first derivatives
are zero.

Let 8" € N? denote a multi-index such that 8” < 3, |8"| = |#| — 1.
We obtain

“DaXi(')DﬁRi<'>y)HLP(Bz‘) = ca Z
lo/+3'|=4,
|8']<3

Net Dﬁ/Dﬁ" (GEj(-,z')Da/wi(z')) Dﬂ/’ﬁNGQ(z’,y)dz’
A;

L?(By)

< cayp Z na/ﬂ/ ‘Dﬁ/_ﬁ//GQ(z’,y)‘ dz < c’Qypd(y)Q.
o'+ | =4, “
18'1=2.3
In the last step we used Lemma 4.6.
Since Ge¥(z,y) € WHP(Q) N WP (Q) for any p € (1,00), from [6,
Lemma 5] it follows that

Go'(,y)] e
Td)e < ca G Wl -

Hence we obtain
G (z,y)| < chd(y)?d(x)”.

The claim follows. O

Remark 4.7 In [6, Lemma 5] the authors consider a bounded domain 2
with 02 smooth. One can consider a weaker assumption on the boundary.
Indeed, in order to apply the Rellich-Kondrachov Theorem, [1, Th.6.3], it
is sufficient that €2 is bounded and satisfies the strong Lipschitz condition,
[1, Def.4.9]. Notice that if € satisfies the uniform C! regularity condition
with [ > 2 then (2 satisfies also the strong Lipschitz condition.

Appendices

A Improved c-closeness to the disk

In [12, Prop.2.6] the authors show that C*™7-closeness to the disk (Def-
inition 2.4) implies the existence of a conformal map that satisfies the
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C?m~!_closeness condition. This result can be improved. Indeed, Sassone
recently showed in [22] that from C?™7-closeness to the disk one gets
the existence of a conformal map that also satisfies the C?"™7-closeness
condition. We state the result in the following proposition.

Proposition A.1 ([22]) Let v € (0,1) and m € N be given. For all § > 0
there exist eg = €o(d, m,7y) > 0 such that for all £ € |0, 9] we have the
following.

If Q is e-close in C*™7-sense to the disk B, then there exists a biholo-
morphic mapping ¢ : B — Q, with ¢ € C*™(B) and o~ € C*™7(Q),
such that

lip = i ganr) < 6.

B Previously known estimates for G,

For easy reference we recall here some results from [7] and [8].

Proposition B.1 For every limagon Q, with a € [0, a| the following two-
sided estimate holds for (z,y) € Q2:

G (2, ) ~ dey (2)day () min {1, M} .

|z —y/’

Proposition B.2 Let k € N? with 1 < |k| < 3. For every limacon Q, with
a € [0, a| the following estimates hold for x,y € €, :

d 2
when [k| =3 : |DiGa,(z,y)| <o —y|”’ mm{l’ | Qa<y)|} ’
T—y

d 2
when K =2 DY, r.0)| < 1o (1+ 20

|z —y|?

2
~ log (2 + dﬂ“(y)> min {1, do.,(y) } ,
7 —yl lz —y

when |k| =1 : |DEGq, (z,y)| < dq,(y) min {1’ dna(r)dna(y)}.

lz—y|

Remark B.3 We refer to [8, Th.2.6] for estimates of the derivatives of
the Green function associated to polyharmonic Dirichlet boundary value

problems in domains {2 C R™ with n > 2. There it is assumed that €2 is
bounded and that 02 € C" with r > 4m + 2.
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C Technical lemmas

In this section we give the proof of some results needed in the proof of
Theorem 3.3. We assume the same hypothesis and we use the same nota-
tion as in the proof of this theorem. In particular, we recall that the domain
() satisfies the uniform C* regularity condition with constant M.

C.1 The mapping is close to identity
C.1.1 Proof of Proposition 3.10

In the following lemma we give the effect on the norms of the scaling
defined in (3.1).

Lemma C.1 Let Q) be a subset of R™ and let f : Q — Q' be a C*"-
function. Let f¥ be the f scaled as in (3.1). Then it holds

1
HfR - IdHcQ,'y(Rle) = ﬁ Hf Id”CU - Id

ry |2

i,j=1

co (@)

+ RY™ [ f} (C.1)
co(@) Z 0rit;” | e (q)

ox; xj

The proof is obvious and will be skipped.

Proof of Proposition 3.10: We estimate separately the terms in the right-
hand side of (C.1) for f = f, r and 2 = Q, p.

1. Since —y < R and k, g — g5 = O for |z| € [Rx}, Rx,] we find

ka,r — g5

T

CO[—RLUZ,RJJZ]

2. We also have

2

2

i=1

0
8$i

(.fa,R - Id)

C(Qa,r)
0 ka R —

4R —
+ ‘ 0z 3R — k’a R

ka,R — 95
3R — kon

COl— Rz, Rxy] COl— Rz, Rxy)
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3. From the definition of the function f, g in (3.5) we get

92
Z axix-fa’R (&
ij=1 J C (QQ’R)
O kop— 0? kop—
_M + 4R H _QM .
Oz 3R — ka.r CO[—Rz}%, Ry 0% 3R — ka,r CO=Raj, Ray)
4. One finds
2 62
Z [ax xyfaR}c Q)
1/7j:]- ’Y<Qa”R)

0? kor(z) —gs (37)]
0% 3R —kor(7) |o (Qu,r)

_ {u,y) — (y—3R) n

N [ﬁ M]
0z 3R — Ko,k | oo (- Rus e

Since it holds that

_— (C.2)

(z,y) — f(x)g(y)]ca[a,bﬁ < ||chO[a,b] [g]cw[a,b] + Hcho[a,b} [f]ca[a,b]

one gets from (C.2) that

_ a ka R — 95
. < 3R —_— +
022 3R — kop CO[~Ra},Ra]
9% k, 0% kop—
+ R{ P LR } + 2R || o T T ,
9 3R kaR C7[—Rx},Rx}] 0 3R kaR COY]—Rz*,Rz?]
and the claim follows. O

C.1.2 Proof of Proposition 3.11

We divide the rather technical proof of Proposition 3.11 in several lemmas.
Using the result of Proposition 3.10, to bound H i ‘R —1d H 27(0u) it is

sufficient to get the estimates of the terms in the right hand side of (3.10)
separately. We will do so in the next lemmas.

In the following C; = C;(M) > 0, fori = 1,...,9. The constants N;,
t = 1,2 are defined in (3.7) and (3.8).
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Lemma C.2 For k, r and g;s respectively as in (2.3) and (3.4) it holds that

< CioR.

H ka,R — 95
C’O[—Rx(’;,ij{}

3R — kon

Proof: By the definition of gs in (3.4), and (3.9) one has

| kar — géHCO[—Rzg,Rz*] < |lka.r — 9”00[_5,5] +
2 (1) g
a . AT — ka ‘ T 6
+ D s ’ Yar (1) 2 izom (9 r) 05< o0) C0[08,0 Ra%
a ka K '
+ Zo‘—i ‘ 1/] 0 ( ) Zl 3l (g R) od ( CO[08,020)

2
< N153+2Z, NG R + 2N,6° + ZN,6* < C1OR%.

The claim follows since |k, r| < 2R. O

Lemma C.3 Let k, r and gs be given respectively as in (2.3) and (3.4).
Then it holds
‘ g ka,R — 9s

faR T 98 < Oy6.
02 3R — ko C:

co [7Rx:;, ,RIZ}

Proof: Using Lemma C.2 and (2.5) one finds directly

‘ 9 Far—9s <

0r 3R — ko CO[-Raf,Rzs]
110

< — —(ka,R_g5) +C0b <
R ||0x CO[—Raz},Rz})

By the definition of gs and the choice of the cut-off functions ¢, r and
a5 WE get

2 2
<REFED AMOTRT + 220 AN TR +
i—1 =0
D, D!
+§§N152 IR 2 N1+ + 57V 0 + + R V20" + Cibid
< 05%0.

Here we used (3.9) and that ) < R and § < 1. O
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Lemma C.4 For k, r and g;s respectively as in (2.3) and (3.4) it holds that

O kan—95 <o
022 3R — ko g CO[-Ray Rzz] R

" " /
Proof: Since (%) = %o/’ — 2% (%) % using Lemmas C.2 and C.3
and (2.5) one finds

‘ 6_2—16}17]{ — 9 < L 8—2 (l{? R — 95)
022 3R — ka,R CO[—Ra* Rz ~ R ||ox? 7 CO[—Razy, Rx}]

By the definition of g5 in (3.4) one gets

2
N6+ ZNS+ 3280 A Ng* R+

=1

D20

D10N1(52 R3|N153

2
%DRzéOZ%Nlék%szl 2N1(5—|— 212

6 + £ (201C + boCh) 6

21 D3

i
3
NQ‘S + Ru5e

The constant C'5 depends on €2 through N; and Ns.
Remark C.5 Notice that the proof also implies that

02
| s (o= 90 < Cid

CY]—Rz’,Rz}]

Lemma C.6 For k, r and g5 respectively as in (2.3) and (3.4) it holds that

ggz ot
CV[—RIZ,RJZ;;]

2
|: 8 — g(j):| S 05(51_7.
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Proof: Writing explicitly the function g; yields
= |
= (ka,r — gé)} <2Ni0 7 +
O C7[-Rax?, Rz

-a - 1 %
2 (oot )
L C7[é,Rx}]

=0

a? 4 .
+2 (m ()34 (g = kur) 6@-5))] . (C3)
L C7[6,26)

=3

It is convenient to study separately the terms on the right-hand side of
(C.3). In the following C; = C;(M )>0,i=1,2.

1. By (3.9) one has

0 - 1 i
D2 Pa.r ( Z,—, g9 - kaR ‘6(‘—5)
i=0 C7[6,Rx]

2
. O?
lN |: 5)1 A5 Pa R}
Z' O C[8, R
- 1 3—1 i—1 a
+2 Z (a—1)! 0 ( - 6) . %a,R + Nl(s [QOG,R]C’Y[(; Rz <
i=1 Oz C[6,Ray) S

Via the definition of the cut-off function ¢, r we get

_11)!N153—iRi—1R1 ’yDZ 0 =+

IA
M)

N
—

53 21522+’LR7'—|—2N15R1 7D10

+
Sl’_‘

1=0
2
- QZ (z‘—ll)lNl‘S3 Zz?llﬁsz ! +N1513§$ < Cyot.

=1
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0 -~ (i) i
o2 | Yea O (9= ku)?| (= 9)
i=3 C715,26)

(=67 L s
6= gvnst)]

C16,20)

34 (%) 0
i i—1
+ Z; (i—21)! (9 — ka,r) 5 {( —9) %@bm(.)]

C16,20)

=00 <

C[5,26]

from (3.9) and the choice of 9, s one obtains

4
< Z% 9 — ka,r) © (5152“ + 45160 D20>

=3
4 .

30wy 0= kan) | (5715 + (- )0 %)
1=3
4 | N ~

3 (9= k) V| (8725 4 (=257 ) < Cos'
i=3

The claim follows. O

Lemma C.7 Let k, r and g5 be given respectively in (2.3) and (3.4). Then
it holds

P Fan—gs < g
0r?23R — ka,r C7[— Rz}, Rz TR |
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Proof: We have, writing [ . |, := [ |oo[_pys pes» that
0* kop— 1 0?
_2ﬂ—% el Py ]
0x2 3R — ka,R o 3R — ka,R ox o
1 —
49 9 aRQ ka,r — 95 n
3R — ka Oox 70x3R— ka,R o
ko — 95 0
3R — ko)t 007 |
( - a:R) v

We study the terms in the right-hand side of (C.4) separately.
1. From (2.5), Remark C.5 and Lemma C.6 it follows that

Ccv

51

(C4)

1
[ (ko — ga>] < Mb2RTC,8 + S0t

3R — ko 02
< %51—7.

2. Using (2.5) and Lemmas C.3 and C.4 one obtains

1 ﬁk 3 ka,R —9s
3R — kar0r “"013R — kg |
0

+ £C50 {a—a:kaﬁ}

o
3R — kar) s o

a kaR_gé
pL | =2 IO
TR {axm—m .
by <

bi12R'TCoby 6 4+ 22R'TT25 + C3L2R Y

< 01050 {

Q

< &

ka,R —9s 82
(3R — ko)’ 022 |

< kar — s
= 3R~ kor) o

82
+{ } +COR < ...,
[0kl

3R — ko

ga"

7

=|

5.

1
i ] ewns
cv



52 Dall’ Acqua, Meister and Sweers

applying (2.5) and Lemmas C.2 and C.3 one finds

o S Co02RT Lz + L20 RVTH,C00 + B2RVCH < %5”.

The claim follows directly from (C.4) using the results of the previous
points 1, 2 and 3. a

The proof of Proposition 3.11 follows from Lemmas C.2, C.3, C.4 and
C.7.

C.2 Bounded third and fourth derivative of the mapping
C.2.1 Proof of Proposition 3.12

Proof of Proposition 3.12: Let f, z; and f, r2 be respectively the first
and the second component of f, r. From the definition of f, r we find:
fara (z,y) = z and foro(x,y) = % (y —3R) + 3R. Hence
Hfa,R,1Hc4,a(Qa ) <z, + 1 and Lemma C.1 yields

4
[Ffallonnany € 3 B HID furelloga, o

|ﬁ‘:07
BeN?
3 8
+R* Y [D fa,R,ﬂCa(QayR) <.
|8]=4,
BeN2

By observing that

1 3R — g5
1 Lo < Py
R ||fa1Rv2||CO(Qa,R) - 3+4H3R_ka7R

Y

CO9(—Rz*,Rx¥)

using that f, g is linear in y one finds

8i 3R — gs
0zt 3R — ka
o 3Ry,
81’4 3R — ka,R

+

3
..<345 Z R
=0 CO(_R:E?;,’RI;)

+6R*

CO(—Ra,Rx})
o 3R — gs
4+ R3te l x,y) — — 3R _—} ‘
(.9) = v =3R) 5 s Co ()
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The claim follows from Lemmas C.2, C.3 and C.4 since 331’%13295R =

ka,R_gts
L+ 3R—Fop' O

C.2.2 Proof of Proposition 3.13

We also divide the technical proof of Proposition 3.13 in several lemmas.

In the following C; = C;(M) > 0, for i = 12,...,18. The constants
N;, 1= 1,2 are defined in (3.7) and (3.8).

Lemma C.8 For k, r and g;s respectively as in (2.3) and (3.4) it holds that

I
a3 (ka,R - 95) < 012.
O0x? CO[—Ra},Ray]
Proof: By the definition of gs we have
o? ok
= (Ka,r — 95) < H— (ka.r — 9) +
H Ox® CO[ R, Ra)] O’ CO[=5,6]
85 ;
+2 ()OCLR Z i g kaR ‘5 ( — (5)7,
=0 CO[6,Rz]
83 4 ,
+2 (1/;(“; ) A (g- kar)" . (- — 5>z> (C.5)
i=3 C01[5,26]

It is convenient to study the terms on the right-hand side of (C.5) sepa-
rately. In the following C; = C;(M) > 0 fori = 1, 2.

1. It follows directly from (3.9) that H % (kar — g)‘

s < N;.
CO[-5,6
2. Via (3.9) and the definition of the cut-off function ¢, r we get

% (%,R () Z% (9 — ka,R>(i) ‘5 (= 5)i>

2 2
<Y ANSPTRRR 43 AN R +
i=0 i=1

CO16, Rz

+3N620 < G5 < ().
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3. One finds
4 .
(1/}(15 Z% g — kaR ‘5('_5>Z> <
i=3 C0[5,26]
4 4
Z% g — kaR 3062_"32(1' 1 g kaR) 2051_1_‘_
=3 1=3
4 4
+3) gy (9= ko) | 2070+ D (9~ Kup)
=3 =3
The claim follows. O

Lemma C.9 For k, r and g5 respectively as in (2.3) and (3.4) it holds that

63 ka,R — 95

O Fap =05 < U
3x3 3R — ka,R

— R .

CO(—Rz*,Rx¥)

Proof: Since

(e)”’_a_’”_gﬁ’(3)”_3ﬁ_”<9)’_5_’”3
) ~ 8 "8 \B 5\8)  B@

using Lemma C.8, (2.5) and Lemmas C.4, C.3, C.2 we get

C
< £Cip+ 3890 4 30005 4 by 015R<§

8_3 ka,R — 95
OI?’ 3R — ka,R

CO(—Rz%,Rx)

O

Lemma C.10 For k, r and g; respectively as in (2.3) and (3.4) it holds

that o -
| i (o= 90 <

CO[— Rz, Rx)

dat
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Proof: From the definition of g; it follows

H 84 34
_(ka,R_g(5> S H_(ka,R_g) +
Ozt C9[— Rz, R Ox? CO[—5,6]
o4 ° () ;
2|2 (fun ()Y b (9= kur)® | (= 9) +
1= CO1[6,Rz]
0! (0 ‘
+2 Ot Yas () % (9 — ka,r) (-—9) (C.6)
x : 5
i=3 €0[5,20]

It is convenient to study the terms on the right-hand side of (C.6) sepa-
rately. Here C; = C;(M) > 0 fori = 1,2.

1. From (3.9) it follows directly that H;T (kur — g)‘ <N,

C0[-6,5]
2. By (3.9) and the definition of the cut-off function ¢, r we get that

% (Soa,R () Z % (9 - ka,R)(i) ‘5 ( - 5)z>

CO[6,Rzy]

2 2
<Y INPTRER 44 A N T R 4 6N 6
: =1

o4 - (4) i
I (s 034 (0~ ko)), (-~ 0)
i=3 C0[5,25]

4
P %51‘ + 42 (i_ll)! (9 — ka,R)(l) s
i=3

Déo 1—1
550

4 4
1 D/ i— i D/ i
463 iy (0= kar)?| 00443 (g k)| Bt
=3 =3
C
+ (g - ka,R)(4) S 72

The claim follows. O
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Lemma C.11 Let k, r and gs be given respectively in (2.3) and (3.4).
Then it holds that
Proof: From

) ) )
B B BB FAANS; g \p B B
(C.7)

using Lemma C.10, (2.5) and Lemmas C.9, C.4, C.3, C.2 we get

015
- 5R

8_4 ka,R — G5
8%4 3R — ka,R

CO(—Rz%,Ra})

84 ka,R —9s

et IO < 1Cu 4 yCis L gba 0,8 4 gbs 0§
' 81'4 BR—ka,R CO(—Rx;’;,Rz;) - RO * R R * >R * R32
C
b 15
—|—R—42101(5R < _5R

Lemma C.12 For k, r and gs respectively as in (2.3) and (3.4) it holds

that o o
A A4 (ka,R — g5):| S IE; .
{81’4 Co[—Rz*,Rz*] ot

Proof: From the definition of gs one finds

{ o o
A A4 (ka,R - g5):| S |:_ (ka,R - g):| +
Ot Co[-Rax,Ra] Oz Ccol-6,0]

- 84 9 |
+2 (paR ZZ_I' g kaR ‘(5 (_5)1
L Ce[6,Rxy)

=0
84 ! .
+2 Vas ()Y 5 (9 — kar)" 5(' —5)! . (C.8)
L i=3 Ce[5,26]

It is convenient to study the terms on the right-hand side of (C.8) sepa-
rately. In the following C; = C;(M) > 0 fori = 1,2, 3.
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1. Since 2 is a C*“ domain with constant M we have

l ot o .
= (kap — g)] < {_ka,R] + M < Ch.
Ozt C[—6,6] Ox? Ce[-6,5)
Notice that the constant C} depends only on M.
2. One has
o 2 . .
[W (%,R () Z,l' (9 — kar)” ‘ (-— 5)z>]
x ; 5
i=0 Ce[5,Ray)
2 o
<> 2(g—kur) {(- — ) W%,R(-)]
i=0 & Co[8,Rag)
i . (i 1 O
1Y 0= k) | |- 97 ()]
i ’ Oz Co 5,z

<....

+6 (g — k‘a,R)(Z) ‘ |:_90a,R:|
5 | Oz? Co[5,Rax]

Via (3.9) and the definition of the cut-off function ¢, r we get

2
S Zﬁmmz Nt B LR
i=0
2
+4Z =] N153 Z]?;_,_C;RZ 1 +4N15DI§Z;0R17Q + 6N151?22_"_‘1
=1
C
<25
R2+a
3. Since
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_l’_

N
Il
w

257 (9= k)| [ =9 Zsviasl)

C[5,26)

+ +
.g% &M%

-
Il
w

S5 (9= kar) || =0 Exvusl)

C[5,26)

.

(9= ka)®| [ =0 Zvus)]

C[5,20]

1
+ (9 — kar) )‘5 [Was]capng < -+

from (3.9) and the choice of 9, s one obtains

4

. S Z_lu (9— ka,R)(i)
i=3

+Z(z 1)! g kaR)i)

D/ . ) -_—
<§Z544,a Zﬁ’L 151 67
[

Dio
o4

((51 1;?512_'_@_1)51;72517(1%)_‘_

4
’i i— D! o . i o D!
+Z aR) )5<5 2522@—#(2—2)6 35t 5250>
=3
- D! Y
+4Y (9~ kar)" ‘ (52_35113 + (i —3) 5’—451”%)
1=3
@| Db, _ Cs
+ (g - ka,R) ’6 5(11 S 51-1—0/
The claim follows. .

Lemma C.13 For k, r and g5 respectively as in (2.3) and (3.4) it holds

that .
a_ ka,R — 95 < Cl?
01 3R — Kar) copus sy ROV

Proof: By (C.7) through Lemma C.10, (2.5) and Lemmas C.12, C.9, C 4,
C.3, C.2 one obtains for C* = C* (— Rz, Rx)

k — 1

54 a,R gs C 1 C

O e v < | _14_|__ 16(1_|_
|: x4:;R_ka,R:|Ca |:3R_ka,R:|Ca 0 Rot
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! 0
dlo——| 0SB +4|—k,
* _3R—ka73}ca m T [ax ’R}CQ

1
R
[ 9° ka,R_g5 b1 1 ba d
o3 R ) o ® O B ) o BT
:82 ’

_ k 1 ZGtv IO
0 | Ox? a’R} o #Cs7 +6 L‘?xz 3R — k,,

+ 4

1 o 1
td || BC 4| har| L+
i

ﬁk’aﬂ— by
_8!L‘3R—]€a73 c
o[
+ |5k LC0R+ |2
L‘) D P 3R — ko g CaR
Z2R'TOG 4 L Gs L ABIR T 98 + 4B 2R TG +
+ 45 R1 B+ 65 2R1 BCyy + 65 2R1 alch
+ 6013231 C”’ +4b12R1 RO+ 42RO 500 +
25 2R "‘1015R+4C’3R2R1 g+ AR MCIOR +
1
R+«

+ 025231 o < Clomre
and the claim follows. O

Lemma C.14 For k, r and g5 respectively as in (2.3) and (3.4) it holds
that
0" kor— < Cis

or 43R kaR Ca(QaﬁR) - 51+a.

(z,y) = (y = 3R) ~—

Proof: The inequality
[(z,y) — f(2)g (?J)]oa[a,b]2 < [f]ca[a,b} ||9||00[a7b] + ||f||co[a,b] [Q]Ca[a,b}
implies that

a kaR_gti
Oxr*3R — kar| o o

IN

(z,y) = (y = 3R) 7~

2
8
N~—
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84 ka B
< 3Rle _4@;96 +
924 3R — Ka,r || co(— pas Ra)
3 kaR - 95:|
+4R{ KaR — 95 <....
9z' 3R — kar | ca(_ Rz} Rx)

By Lemma C.11 and Lemma C.13 we get

- <BRVUGE + ARG < O

The boundedness of f, r in C**-norm follows directly from Proposi-
tion 3.12 and Lemmas C.9, C.11 and C.14.

C.3 Partition of unity

In this section we present a general result about partition of unity that we
will use in the proof of Theorem 4.1.

Lemma C.15 (Partition of unity with boundary)
Let ) C R" be a bounded domain and let {D;},_; C ) be a finite open

covering of  such that 9 C |J;c; (9D; N 00)>. For every § > 0
there exist finitely many smooth functions 1; € C* (Q) , 1 € I, such that:

1. ;> 0foralli € Iand Y, ;v (x) = 1forall x € Q;

2. for every i € I there exists j = j (i) such that supp (v;) C D; U
(D; U 9Q)%%,

3. diam(supp(;)) < dforalli € I.

D Elliptic regularity and interpolation

Elliptic regularity results for linear equations can be found in numerous
places. However, if one goes beyond second order and if one needs to
know how the constants depend on the domain there is no easy reference.
For that reason we will collect such type of results in the present section.
For the explicit dependence of these constants we will go back to the orig-
inal source of Agmon, Douglis and Nirenberg ([2]).
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This section is organized as follows. First we recall some classical
results and the Calderon-Zygmund inequality for n = 2. Then we consider
a strong and a weak formulation of problem (1.1). Finally we study three
intermediate versions (between strong and weak) of problem (1.1).

Throughout this section the following condition will appear..

Condition D.1 The number « lies in (0,1) and Q is a bounded simply
connected domain (open subset) in R? satisfying the uniform C** regu-
larity condition with constant M.

D.1 Classical results

In this section we recall some results from [11]. For sake of brevity we do
not give the most general statements.

Theorem D.2 [11, Th.9.13] Let ) be a bounded domain in R" satisfying
the uniform CV! regularity condition with constant M. Then it holds

lullysy < © (Il oy + 180l ooy
for every u € W22 (Q) N Wy *(Q) and with C = C(n, M, pg*, Ro).

Remark D.3 The dependence of the constant can be deduced from the
proofin [11, Th.9.13].

We will use the Calderon-Zygmund inequality for n = 2. This in-
equality is usually proved by contradiction. Since we are interested in the
dependence of the constant on the domain, we give here a direct proof.

Lemma D.4 Let Q) be a bounded domain in R%. Then there is C' = C(Rg)
such that

lull 2y < O ll AUl 2 for every u € W22 (Q) N Wy (Q).

Proof: Let u € W22(Q) N W, (). For n = 2 Aleksandrov’s maximum
principle ([11, Th.9.1]) implies that supg, [u[ < C'||Aul|;sq, for some

1
C = C(Rq). Hence we find [|ul[ ;2 < C [|Aul| 2 2|2 . O
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Corollary D.5 Suppose Q) is a bounded domain in R? satisfying the uni-
form CY' regularity condition with constant M. Then there is C =
C(M, pg', Rq) such that

[ull ez < C|Aull 2 for everyu € W22 (Q) N W2 (Q).
Proof: The claim follows directly from Theorem D.2 and Lemma D.4. O

D.2 Regularity for strong solutions

The classical regularity result that we like to recall in an explicit statement
is the following.

Theorem D.6 Assume Condition D.1. For every f € LP(Q) with p €
(1,00) there exists a unique solution u € W*?(Q) N WP (Q) of (1.1).
Moreover the solution satisfies

3 1 llr ) < Nllwan) < Csllf ooy » (D.1)

with Cy = Cy(p,p', M, pg,', Rq) where C, satisfies the convention of No-
tation 1.9.

Before proving Theorem D.6 we present some estimates.

Lemma D.7 Let Q) be a bounded domain in R? satisfying the uniform C1:!
regularity condition with constant M and let p € (1,00) . Then there is

C =C(p,p, M, pg', Rq) such that:
[ull oy < € HA2UHLP(Q) for every u € WHP(Q) N WZP(Q).

Proof: Since n = 2 we find by Sobolev inequalities that
[l Loy < Crllullyen gy and Jull gy < Ca flullyaz g -

Notice that C; = Cy(p, M, pg,", Rq) and Cy = Cy(p', M, po*, Ra). Hence
we have by Corollary D.5, by integrating by parts and by Holder that

2 2
|MM®MM@§Q@MMWm§%AMMM:

— C’g/Qu APudz < Cy ||A2uHLP(Q) [ull Lo 0 »
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with Cs = C3(p,p’, M, p;", Ra). The claim follows. O

Lemma D.8 Assume Condition D.1. Then for 1 < p < oo there exists
C =C(p,p', M, pg', Rq) such that

lullwan@ < C HAQUHLP(Q) for every u € W*P(Q) N WP (Q).

Remark D.9 Usually Lemma D.8 is proved by contradiction and this
does not explain what the constant depends on. However by using Lemma
D.7 we find the explicit quantities.

Proof: The result follows from [2, Th.15.2] and Lemma D.7. The proof
of [2, Th.15.2] shows that the dependence of the constant is as given in
the statement. O

Proof of Theorem D.6:
e Uniqueness follows by a standard integration by parts. Indeed, if
A%y = 0 then
/ |Aul? dz = / u A*u dr = 0,
Q Q

and with the boundary condition one finds u = 0.

e Estimate: By definition of the norm in W%?(Q)) one finds that
5 | A2 (@) < llullyyan. The other side of inequality (D.1) follows
from Lemma D.8.

e Existence: For f € C () the existence of a solution u € C* (Q)N
C3(Q) is given by [2, Th.12.7]. Such a solution satisfies (D.1), see [2,
Th.9.3]. By an approximation the existence in W*? (Q) N Wg* (Q) fol-
lows. O

Remark D.10 The hypothesis 90 € C** is needed in order to use Theo-
rem 12.7 in [2]. For the rest of the paper it would be sufficient to assume
o0 e CL

For 1 < p < oo we formally define the operator 77 , by

D(Ty,) = W4 (Q) N WP (Q),

D.2
Tipu = A%uforu € D(Ty,). (0-2)
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The operator T} , is the inverse of the solution operator.
The following result is a consequence of Theorem D.6.

Corollary D.11 Let 1 < p < oo. Assuming Condition D.1 the operator
Ty, defined in (D.2) gives an isomorphism from W*? () N WOQ’p (Q) onto
LP (). Moreover one has

1

o = Tl wasarmwz o) r@) < 2

where C's is the constant appearing in Theorem D.6.

D.3 Regularity for weak solutions

In the following section we give the explicit definition of what we will call
a weak solution for problem (1.1) and we recall the classical regularity
result in this setting.

, /
Definition D.12 Let p € (1,00) and F € (W‘*vp'(Q) N W2 (Q)) . We

call u € LP(Q2) a weak solution of problem (1.1) with right hand side F if
the following holds

/ u(z) A%(x) dz = F(v) for every v € W' (Q) N W2V (Q).
Q

Theorem D.13 Assume Condition D.I and let p € (1,00). Then for ev-
, /

ery F' € <W4’p/(Q) NP (Q)) there exists a unique u weak solution of

problem (1.1) with right hand side F'. Moreover u satisfies

1

U a1y < Cu 1P

(W&P’(Q)HWOQ’I’/(Q))/ ’

with C,, = Cy(p,p’, M, ,051, Rq).

Proof: Let i, be the canonical isometry LP(€)) — (Lp/(Q)),, that is,
ip(u)(v) = /u(x) v(x) dx for every v € LP ().
Q
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Existence of u follows by a duality argument. Indeed, by Corollary
D.11 we may define

U(f) == F(T; 5 (f)) forevery f € L7 (Q).

4,p/

The solution u is given by u := i '(U). Uniqueness and the estimate

follow from Corollary D.11. 0

For 1 < p < oo let us formally define the operator 7y, by

D(Ty,p) == LP(Q),

(Top (1)) (V) := ip(u)(Tyy (v)) for every v € W4 (Q) N WEP ().
(D.3)
By Theorem D.13 it follows:

Corollary D.14 Let 1 < p < oo and assume Condition D.1 is satisfied.
Then the operator Ty, ,, defined in (D.3) gives an isomorphism from LP(S))

, !/
onto (W‘l’p/(Q) NP (Q)) . Moreover one has

1

o < ||T0,:D||(LP(Q)H(W4,p/(Q)OW02’p/(Q))/) <2

where C, is the constant appearing in Theorem D.13.

D.4 Regularity between weak and strong

In the following section we consider via interpolation solutions between
the ‘strong’ and the ‘weak’ ones defined in the previous sections.
We first give the three intermediate notions of solution.

Definition D.15 Lerp € (1, 0).
/ !/
1. Let F € (Wol’p (Q)) . We say that u € W3?(Q) N WP(Q) is a
“one-quarter weak solution” of problem (1.1) with right hand side

F if it satisfies

— /Q(VAu(x)) (Vu(z)) dz = F(v) for every v € WP ().
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, !/
2. Let F € (WOQ’p (Q)) . We say that u € W2P(Q) is a “one-half
weak solution” of problem (1.1) with right hand side F' if it satisfies

/Q(Au(x)) (Av(x)) dx = F(v) for every v € Woz’p/(Q).

, !/
3. Let F € <W3’p’(Q) NWeP (Q)) . We say that u € W,*(Q) is a
“three-quarter weak solution” of problem (1.1) with right hand side
F if it satisfies for every v € W37 (Q) N WP (Q)

— /(Vu(x)) (VAv(z)) de = F(v).
Q
Theorem D.16 Assume Condition D.I and let 1 < p < oc.

, /
1. Then for every F € (VVO1 P (Q)) there exists a unique u “one-
quarter weak solution” of problem (1.1) with right hand side F'.

Moreover u satisfies

1

E Il oy < Ny < G I

wor @)
with Cl - Cl(pap/a M7 ;0517 RQ)

, /
2. Then for every I’ € (VVO2 P (Q)) there exists a unique u “one-half
weak solution” of problem (1.1) with right hand side F'.

Moreover u satisfies

1

& 1P v gy < Nlwasiey < G2 IF

(W' @)
with C2 = C2<p7p/7 M7 p;)l? RQ)

; !/
3. Then for every F' € (W?”p/(Q) NP (Q)) there exists a unique

u “three-quarter weak solution” of problem (1.1) with right hand
side F'.
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Moreover u satisfies

1

03 ||F||(W3ap/(Q)ﬂW02’pl(Q)), S ||u||W17P(Q) S C3 ||F||

(wa @’ (@)
with Cy = Cs(p, p', M, pg*, Ra).

Remark D.17 Theorem D.16 part 2 has been studied in [23, Chap.7].

Our aim in giving the proof of Theorem D.16 is to show how the con-
stants in the estimates depend on the domain. We proceed through interpo-
lation: [-, -]y denotes the complex interpolation with parameter 6 € (0, 1).

For sake of conciseness we use the following notation:

Aoy = LP(Q) Ayy = Wh(Q) N WP (Q),
Boy = (Asp) Buyp = LP(Q)(= (Aoy)'),

and for 0 € (0,1)
A49p [A0p7A4p]9 and B40p [BOpaB4p}

With this notation we have 1y ,, : Ay, — By, and Ty, : Ay, — Bay,
where T, s defined in (D.3) and 7, ;, is defined in (D.2).

Lemma D.18 Assume Condition D.1 and let 1 < p < oco. The operator
Ty is a restriction of Ty, to Ay, in the sense that for every u € Ay,

Top(u) € (B4,p/)/ and Ty p(u) = i,y(Typ(u)).

Proof: Let u € Ay, Forevery v € Ay, we have

(Top(u))(v) = /Q u A% dy = /Q v A2 dy = /Q v Typ(u) da.

The claim follows. O

As a consequence of Lemma D.18 in the following lemma we find via
interpolation a family of isomorphisms which are extensions of 7}, and
restrictions of 7 ,,.
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Lemma D.19 Assume Condition D.1 and let § € (0,1). Consider the
operator Tyy,, such that D(Typ,) = A, and Tygp(u) = Top(u) for
ue D(Ty,)and 1 < p < oo.

Then Ty, is an isomorphism from Ayg ,, onto By, and moreover

1
- - < < |
max {OS, Cw} - HT49’p||(A497p_)B4g,p) = 27 (D.4)

where Cy and C', are the constants appearing in Theorems D.6 and D.13
respectively.

Proof: The claim follows from Corollaries D.11 and D.14 since the com-
plex interpolation functor is exact and of type 6 ([25, Th.1.9.3a]). ad

Remark D.20 Notice that (D.4) implies that for every u € Ay, it holds

1T B1s,, < Nttllasy,, < max{Cy, Cu}|Tao ()l 4.,

In the following we consider the operators 717 ,,, 15, and 75 ,; i.e. the
operators Ty, , defined in Lemma D.19 with 0, = iz’ and ¢+ = 1,2,3.
Notice that the solution operator for the “three-quarter weak solution” of
problem (1.1) is the inverse of 7} ,,. Analogously the solution operator for
the “one-half weak solution” of problem (1.1) is the inverse of 75, and
the solution operator for the “one-quarter weak solution” of problem (1.1)
is the inverse of 75 .

For these operators we have that

Aip = WH(Q) N W 9212 (Q)) with equivalent norms, (D.5)

where A;, = D(T;,). Identity (D.5) can be found in Triebel for C'*°-
domains. We first show that in order (D.5) to hold it is sufficient that
0Q € C*“. Furthermore we give the dependence on the domain of the
constants Dy ;,; and D, ; that appear in

Dyl ) < llulla, < Dapil

|u||W’L,p(Q)mW5“in {i12}vP(Q |u||Wivp(Q)ﬁW5mn {i,2},p(Q) 5

foru € Wir(Q) n Wmnt2he ().

We first recall a classical result from [25].
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Proposition D.21 [25, Th.4.3.3] Let B denote the unit ball in R". Then
fori=1,2,3and1 < p < oo one has

|:Lp<B), W47P(B> ﬂ W027p(B)i| 1 — WZ,P(B) m Wéﬂin{i,Q},p(B)

4

as Banach spaces (equivalent norms). Hence there exist constants C'  ;
and Csy,; such that for every u € W*(B) N Wy™" 242 BY one has

Crpillullwiem) < ||u||[LP(B)’W4»P(B)QW02W(B)]1. < Copillullwin(s).-
ZZ

Theorem D.22 Let assume Condition D.1. Then for 1 < p < oo and
1=1,2,3 it holds

[Aop, Aayls, = WP(Q) n W 2hr(Q),

i
Hence there exist constants D1, ; and D, ; such that for every u €

WHP(Q) N Womin{i’Q}’p(Q) one has
Dipillullwisq) < \|U|’[Ao,p,A4,p]ii < Dapillullwir(),
with Dj,p,i = Dj,p,i(pa M, ,051, RQ)fO}"j = 1, 2.

Proof: Let S denote a C** transformation from € onto B.
Considering the operator

E,: LP(Q) — LP(B) such that E,(f) := fo S,
one finds that the following properties hold:
e [, is an isomorphism;

o fori=1,...,4 the restriction of £, to WiP(Q) n W 1"27(Q) is
an isomorphism onto WiP(B) N W 22 B).

e there are constants C , and C, such that
Croll Ep(u)lwer(s) < lullwin@) < Copll Ep(u)llwins), (D.6)

for every i = 0,1,...,4 and u € W*P(Q) N w2 () Fur-
thermore the constants C , and C5, depend only on p, R, p," and
the M of Condition D.1.
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For 6 € (0, 1) the operator E,, induces isomorphisms

By : Asgy — [LP(B), W*(B) N WP (B)]

0 Y
and since the complex interpolation functor is exact ([25, Th.1.9.3a]) one
has

él,p||Ep79(u) || [LP(B),W‘I’I’(B)QWOQ’;’(B)]B

< fJuflay, < CV?,pHEp,O(U)H[Lp(B),W&p(B)nt@(B)}g> D.7)

(See Theorem 1.2.4 in [25]).
Hence, by (D.7) and Proposition D.21, we have that

Aip = [LP(Q), WHP(Q) N TSP ()]

)

(5,0)” (o))

— (E 1‘>—1 <Wi,p(B) n Wgnin{i,Q},p(B>) — W (Q) N Wgnin{i,2},p(Q).

p,47,

NG

Furthermore we explicitly find the constants that give the equivalence of
the norms. Indeed from (D.6), (D.7) and Proposition D.21 it follows

lellas, < Copll By siC sy winmyowze s,

1
4
~ Cs

< 027P027P71‘||Ep,ii(u)HW”’ (B) < c pC’2m||u||sz (Q)>

1p
and
[ullwin) < Copll By 15(w)llwines)
ég 02 1
< 2PHE 1. < =P
= 1’p’iH p,iz(u)H[LP(B),WALP(B)QWOQP( ] '_Clpclsz | Aip-

O

Remark D.23 The existence of the C** transformation from () onto B
depends upon the regularity of 2 and the fact that €2 is simply connected.
This technical assumption can be removed.
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Corollary D.24 Let assume Condition D.1. Then for 1 < p < oo and
1 =1,2,3 it holds

i min {4—1 / !
By Bagly, = (W (@) nwg™ 27 ()

1, —
at

Moreover there exist constants D; ,; = D;,.;(p', M, po*, Rq) for j = 1,2
such that

Dl,p,i ||U|| (W47i,p’(Q)ngnin {47i,2},P/(Q))/

S ||u||[BO,p:B4,p]li S DQ,p,’iHuH 4—ip! min {4—i,2},p’ )
} (Wi (@nwg (@)

. ) , '
holds for every u € (W4_i’p/(Q) N Wi t4i2he (Q)) :

Proof: The result follows from Theorem D.22 through duality results for
complex interpolation spaces ([25, Th.1.11.3]). a

Corollary D.25 Assume Condition D.1 and let 1 < p < oc.
Then for 1 = 1,2, 3 there exist isomorphisms

) . .y . . , /
Ty - WHr(@) W™ B8 (@) — (Wi () g™ A ())

which are restrictions of 1 , and extensions of Ty .
Moreover there exists constants C; = C;i(p,p', M, p{zl, Rq) such that

for every u € Wir(Q) N W™ W22 (Q)) it holds

1
a HJ—IMD(U) ” <W47i’pl (Q)ngHin {4—i,2},p’ (Q)) ’

S ||u||W%P(Q) S CiHEvp(u)H(W‘l*’ixp/(ﬂ)ﬂwgnn{4_i’2}’p/(ﬂ))/'

Proof: The result follows from Lemma D.19, Theorem D.22 and Corol-
lary D.24. O

Theorem D.16 follows directly from the previous corollary.
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